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Abstract

Stilbenes are a group of chemicals characterized with the presence of 1,2-diphenylethylene.

Previously, our group has demonstrated that synthesized (E)-N-(2-(3, 5-dimethoxystyryl)

phenyl) furan-2-carboxamide (BK3C231) possesses potential chemopreventive activity

specifically inducing NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression and

activity. In this study, the cytoprotective effects of BK3C231 on cellular DNA and mitochon-

dria were investigated in normal human colon fibroblast, CCD-18Co cells. The cells were

pretreated with BK3C231 prior to exposure to the carcinogen 4-nitroquinoline 1-oxide

(4NQO). BK3C231 was able to inhibit 4NQO-induced cytotoxicity. Cells treated with 4NQO

alone caused high level of DNA and mitochondrial damages. However, pretreatment with

BK3C231 protected against these damages by reducing DNA strand breaks and micronu-

cleus formation as well as decreasing losses of mitochondrial membrane potential (ΔΨm)

and cardiolipin. Interestingly, our study has demonstrated that nitrosative stress instead of

oxidative stress was involved in 4NQO-induced DNA and mitochondrial damages. Inhibition

of 4NQO-induced nitrosative stress by BK3C231 was observed through a decrease in nitric

oxide (NO) level and an increase in glutathione (GSH) level. These new findings elucidate

the cytoprotective potential of BK3C231 in human colon fibroblast CCD-18Co cell model

which warrants further investigation into its chemopreventive role.

1. Introduction

Cancer-related mortality has increased tremendously and is expected to further increase

despite emerging medical improvements [1]. The global incidence of cancer is estimated to
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have risen in 2018 with colorectal cancer being the third most commonly diagnosed cancer

and is ranked second in terms of mortality due to poor prognosis worldwide [2]. In Malaysia,

cancer is the third most common cause of death after cardiovascular diseases and respiratory

diseases. According to Malaysia National Cancer Registry (MNCR) Report 2007–2011, colo-

rectal cancer is the second most common cancer [3].

Advances in costly surgical and medical therapies for primary and metastatic colorectal

cancer have had limited impact on cure rates and long-term survival [4,5]. The shift of

momentum towards chemoprevention is the result of several observations. These include local

recurrences after surgery, treatment-induced long-term complications, chemotherapy-

induced adverse effects, as resistance to chemotherapy due to multidrug resistance phenotypes

and tumour heterogeneity [6–8].

Chemopreventive approaches have effectively decreased cancer incidence rates such as for

lung cancer and cervical cancer [2]. The cancer chemoprevention approach exploits nontoxic

natural or synthetic pharmacological agents to prevent, block or reverse the multistep pro-

cesses of carcinogenesis [9,10]. Chemopreventive agents inhibit the invasive development of

cancer by affecting the three defined stages of carcinogenesis namely initiation, promotion

and progression which are induced by carcinogens through genetic and epigenetic mecha-

nisms [11,12].

Exposure of cells to carcinogens causes DNA mutation and leads to accumulation of addi-

tional genetic changes through sustained cell proliferation. This rapid and irreversible process

is known as tumour initiation, the first stage of carcinogenesis. Tumour promotion, which is

referred to as the lengthy and reversible second stage of carcinogenesis, involves the selective

clonal expansion of initiated cells to produce preneoplastic lesions which enables additional

mutations to accumulate. The final stage of carcinogenesis, tumour progression, involves neo-

plastic transformation after accumulating chromosomal aberrations and karyotypic instability

resulting in metastatic malignancy [13,14].

Altered cellular redox status and disrupted oxidative homeostasis play key roles in cancer

development by enhancing DNA damage and modifying key cellular processes such as cell

proliferation and apoptosis [15]. Oxidative/nitrosative stress is the result of disequilibrium

between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and antioxidants [16].

If oxidative/nitrosative stress persists, this may lead to modification of signal transduction and

gene expression, which in turn may lead to mutation, transformation and progression of can-

cer [17,18].

Stilbenes are produced in the skin, seeds, leaves and sapwood of a wide variety of plant spe-

cies including dicotyledon angiosperms such as grapevine (Vitis vinifera), peanut (Arachis
hypogaea) and Japanese knotweed (Fallopia Japonica); monocotyledons like sorghum (Sor-
ghum bicolor) and gymnosperms such as several Pinus and Picea species [19–21]. They are a

well-known class of naturally occurring phytochemicals acting as antifungal phytoalexins, pro-

viding protection against UV light exposure and also involved in bacterial root nodulation and

coloration [19,22–24]. These compounds bear the core structure of 1,2-diphenylethylene in

which two benzene rings are separated by an ethanyl or ethenyl bridge [25].

Despite being known as plant defense compounds, stilbenes have an enormous diversity of

effects on biological and cellular processes applicable to human health, particularly in chemo-

prevention. Resveratrol, as the biosynthetic precursor of most oligostilbenoids, has been

known to possess a myriad of biological activities such as anticancer, antioxidant, anti-aging,

antimicrobial, cardioprotection, anti-diabetes, anti-obesity, and anti-inflammation [26–33].

However, low water solubility and poor bioavailability are the major setbacks to the exploita-

tion of these biological activities [34,35].
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Our group has previously demonstrated that synthetic stilbene BK3C231 (Fig 1) potently

induced antioxidant gene NQO1 as a detoxifying mechanism in human embryonic hepato-

cytes, WRL-68 cells [36]. Therefore in this study, we propose to elucidate the cytoprotective

effects of BK3C231 using normal human colon fibroblast CCD-18Co cells. We anticipate this

study will build a strong base and accelerate the development of BK3C231 as a potential drug

for chemoprevention.

2. Materials and methods

2.1 Test compounds

(E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) was synthesized

and contributed by Dr. Noel Francis Thomas and Dr. Kee Chin Hui from Department of

Chemistry, Faculty of Science, University of Malaya (Kuala Lumpur, Malaysia). 4-Nitroquino-

line 1-oxide (4NQO) (Cas. No: 56-57-5,�98% purity) was purchased from Sigma-Aldrich

(St. Louis, MO, USA). Stock solution of BK3C231 at 100mM and 4NQO at 25mg/mL were

prepared by dissolving the compounds in solvent dimethyl sulfoxide (DMSO; Thermo Fisher

Scientific, Waltham, MA, USA).

2.2 Cell culture

The normal human colon fibroblast CCD-18Co cell line (ATCC CRL-1459) was obtained

from the American Type Culture Collection (ATCC; Manassas, VA, USA). CCD-18Co cells

were grown in Minimum Essential Medium (MEM; Gibco, Grand Island, NY, USA) supple-

mented with 10% fetal bovine serum (FBS; Biowest, Nuaillé, France) and 1% 100x Antibiotic-

Fig 1. Chemical structure of BK3C231 [36].

https://doi.org/10.1371/journal.pone.0223344.g001
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Antimycotic solution (Nacalai Tesque, Kyoto, Japan). All cells were between passages 3–5 for

all experiments and maintained at 37˚C with 5% CO2.

2.3 MTT cytotoxicity assay

CCD-18Co cells were seeded in 96-well microplate (Nest Biotechnology, Jiangsu, China) at the

concentration of 5 x 104 cells/mL in a volume of 200 μL per well. The seeded cells were incu-

bated under 5% CO2 at 37˚C for 24 hours prior to respective compound treatments at different

timepoints. After incubation, 20 μL of Thiazolyl Blue Tetrazolium Bromide (MTT; Sigma-

Aldrich, St. Louis, MO, USA) solution (5mg/mL in PBS) was added to the treated cells and fur-

ther incubated for 4 hours at 37˚C. Subsequently, the total medium in each well was discarded

and the crystalline formazan was solubilised using 200 μL DMSO. For complete dissolution,

the plate was incubated for 15 minutes followed with gentle shaking for 5 minutes. The cyto-

toxicity of BK3C231 and 4NQO was assessed by measuring the absorbance of each well at 570

nm using iMarkTM microplate reader (Bio-Rad Laboratories, Hercules, CA, USA). Mean

absorbance for each compound concentration was expressed as a percentage of vehicle control

absorbance and plotted versus compound concentration. The inhibitory concentration that

kills 50% of cell population (IC50) represents the compound concentration that reduced the

mean absorbance at 570 nm to 50% of those in the vehicle control wells. [dx.doi.org/10.17504/

protocols.io.bdp6i5re]

2.4 Alkaline comet assay

Seeded cells (5 x 104 cells/mL) in 6-well plate (Nest Biotechnology, Jiangsu, China) were pre-

treated with BK3C231 at 6.25 μM, 12.5 μM, 25 μM and 50 μM for 2 hours prior to 4NQO treat-

ment at 1 μM for 1 hour. Following incubation, detached cells in the medium were collected

and added back to trypsinised cells. Then, the cell suspension was transferred to the tube for

centrifugation (450 x g/5 minutes at 4˚C). The supernatant was removed and pellet was

washed with Ca2+- and Mg2+-free PBS and re-centrifuged. The pellets left at the bottom were

mixed thoroughly with 80 μl of 0.6% w/v LMA (Sigma-Aldrich, St. Louis, MO, USA). The mix-

ture was then pipetted onto the hardened 0.6% w/v NMA (Sigma-Aldrich, St. Louis, MO,

USA) as the first layer gel on the slide. Cover slips were placed to spread the mixture and slides

were left on ice for LMA to solidify. Following removal of the cover slips, the embedded cells

were lysed in a lysis buffer containing 2.5M NaCl (Merck Milipore, Burlington, MA, USA), 1

mM Na2EDTA (Sigma-Aldrich, St. Louis, MO, USA), 10 mM Tris (Bio-Rad Laboratories, Her-

cules, CA, USA) and 1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) overnight at 4˚C.

After lysis, the slides were soaked in electrophoresis buffer solution for 20 minutes for DNA

unwinding before electrophoresis at 300 mA, 25V for 20 minutes. Subsequently, the slides

were rinsed with neutralising buffer for 5 minutes and stained with 30 μL of 50 μg/mL ethid-

ium bromide (EtBr; Sigma-Aldrich, St. Louis, MO, USA) solution. Slides were left overnight at

4˚C before analyzing with Olympus BX51 fluorescence microscope (Tokyo, Japan) equipped

with 590 nm filter. DNA damage scoring was performed on 50 cells per slide whereby tail

moment representing the product of tail length and fraction of total DNA in tail was quantified

using Comet ScoreTM software (TriTek Corp, Sumerduck, VA, USA). [dx.doi.org/10.17504/

protocols.io.bdqgi5tw]

2.5 Cytokinesis-block micronucleus (CBMN) assay

Seeded cells (5 x 104 cells/mL) in 6-well plate were pretreated with BK3C231 at 6.25 μM,

12.5 μM, 25 μM and 50 μM for 2 hours prior to 4NQO treatment at 1 μM for 2 hours. After

incubation, cells were treated with 4.5 μg/mL Cytochalasin B (Sigma-Aldrich, St. Louis, MO,
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USA) for 24 hours to block cytokinesis. The cells were then harvested and centrifuged (450 x

g/5 minutes at 4˚C). The supernatant was removed and pellet was resuspended with 300 μL of

0.075M KCl solution for 5 minutes. The cells were then fixed with Carnoy’s solution consisting

of acetic acid (Sigma-Aldrich, St. Louis, MO, USA) and methanol (HmbG Chemicals, Ham-

burg, Germany) prepared at the ratio of 1:3 and spreaded on glass slides which were placed on

a slide warmer. The slides were dried overnight and stained with 30 μL of 20 μg/mL acridine

orange (AO; Sigma-Aldrich, St. Louis, MO, USA) prior to fluorescence microscopic observa-

tion. The number of viable mononucleated, binucleated and multinucleated cells per 500 cells

were scored to derive Nuclear Division Index (NDI) and frequency of micronucleus in 1,000

binucleated cells was measured. [dx.doi.org/10.17504/protocols.io.bdqhi5t6]

2.6 Mitochondrial membrane potential (ΔCm), mitochondrial mass and

ROS assessment

The treated cells (5 x 104 cells/mL) were collected by centrifugation (450 x g/5 minutes at 4˚C).

The supernatant was discarded and pellet was resuspended with 1 mL fresh prewarmed FBS-

free MEM with addition of 1 μL of 50 μM tetramethylrhodamine ethyl ester (TMRE; Thermo

Fisher Scientific, Waltham, MA, USA), 5 mM nonyl acridine orange (NAO; Sigma-Aldrich,

St. Louis, MO, USA), 10 mM hydroethidine (HE; Thermo Fisher Scientific, Waltham, MA,

USA) or 10 mM 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA; Thermo Fisher Scien-

tific, Waltham, MA, USA). The cells stained with TMRE or NAO were incubated for 15 min-

utes at 37˚C whereas cells stained with HE and DCFH-DA were incubated for 30 minutes at

37˚C in the dark. After incubation, the cells were centrifuged (450 x g/5 minutes at 4˚C) and

pellet was washed with 1 mL chilled PBS solution. The supernatant was discarded and 500 μL

of chilled PBS was used to resuspend the pellets. The stained cell suspension was transferred to

flow tubes and analyzed using FACSCanto II Flow Cytometer (BD Biosciences, San Jose, CA,

USA). [dx.doi.org/10.17504/protocols.io.bdqii5ue; dx.doi.org/10.17504/protocols.io.bdqji5un;

dx.doi.org/10.17504/protocols.io.bdqki5uw; dx.doi.org/10.17504/protocols.io.bdqmi5u6]

2.7 Intracellular Nitric Oxide (NO) assessment using BD Pharmingen™
orange nitric oxide (NO) probe staining

The seeded cells (5 x 104 cells/mL) were pre-stained with 1 μL Orange NO probe (BD Biosci-

ences, San Jose, CA, USA) per 500 μL cell suspension for 30 minutes. The cells were then pre-

treated with BK3C231 at 50 μM and positive control, resveratrol (Sigma-Aldrich, St. Louis,

MO, USA) at 25 μM for 2 hours, 4 hours, 6 hours, 12 hours and 24 hours prior to 4NQO treat-

ment at 1 μM for 1 hour. The stained and treated cells were centrifuged (450 x g/5 minutes at

4˚C) and pellet was washed with 1 mL chilled PBS solution. The supernatant was discarded

and 500 μL of chilled PBS was used to resuspend the pellets. The stained cell suspension was

transferred to flow tubes and analyzed using FACSCanto II Flow Cytometer (BD Biosciences,

San Jose, CA, USA). [dx.doi.org/10.17504/protocols.io.bdqni5ve]

2.8 Extracellular Nitric Oxide (NO) assessment using griess reagent

CCD-18Co cells were seeded in culture dish (60 x 15 mm) at the concentration of 5 x 104 cells/

mL. The seeded cells were incubated under 5% CO2 at 37˚C for 24 hours. The cells were then

pretreated with BK3C231 at 50 μM and positive control, resveratrol at 25 μM for 2 hours, 4

hours, 6 hours, 12 hours and 24 hours prior to 4NQO treatment at 1 μM for 1 hour. Subse-

quently, 100 μL of culture medium from each sample was collected and mixed with the same

volume of Griess reagent (1% sulfanilamide in 5% phosphoric acid and 0.1% N-(1-naphthyl)
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ethylenediamine (NNED) hydrochloride in distilled water, Merck Milipore, Burlington, MA,

USA) in 96-well microplate. Absorbance of the mixture in each well was determined at 570

nm using iMarkTM microplate reader (Bio-Rad Laboratories, Hercules, CA, USA). The con-

centration of nitrite accumulated in the culture was determined in comparison to the sodium

nitrite standards. [dx.doi.org/10.17504/protocols.io.bdqpi5vn]

2.9 Glutathione (GSH) assessment using ellman’s reagent

The treated cells (5 x 104 cells/mL) were detached, collected and centrifuged (450 x g/5 minutes

at 4˚C). The supernatant was discarded and pellet was resuspended in 100 μL ice-cold lysis

buffer (50 mM K2HPO4, 1 mM EDTA, pH 6.5 and 0.1% v/v Triton X-100, Sigma-Aldrich,

St. Louis, MO, USA). The cells were incubated on ice for 15 minutes with gentle tapping from

time to time. The crude lysates were cleared by centrifugation (10000 x g/15 minutes at 4˚C).

At this point, the lysates were used immediately or stored at -80˚C for a day or two. Then,

50 μl of lysates and GSH standards (two fold dilution from 1.25 mM to 0 mM dissolved in

reaction buffer consisting of 0.1 M Na2HPO4.7H2O and 1 mM EDTA, pH 6.5, Sigma-Aldrich,

St. Louis, MO, USA) were pipetted into designated wells in a 96-well microplate. After adding

40 μl of reaction buffer (0.1 M Na2HPO4.7H2O and 1 mM EDTA, pH 8), 10 μl of 4 mg/ml 5,50-

dithiobis(2-nitrobenzoic acid) (DTNB; Sigma-Aldrich, St. Louis, MO, USA) in reaction buffer

pH 8 was added to wells containing samples and standards. The plate was incubated for 15

minutes at 37˚C. Absorbance of each well was measured at 405 nm using iMarkTM microplate

reader (Bio-Rad Laboratories, Hercules, CA, USA). The concentration of free thiols in samples

was calculated based on GSH standard and expressed as nmol/mg protein after protein con-

centration was quantified using Bradford’s method. [dx.doi.org/10.17504/protocols.io.

bdqqi5vw]

2.10 Statistical analysis

The data are expressed as the mean ± standard error of mean (S.E.M.) from at least three inde-

pendent experiments. The statistical significance was evaluated using one-way ANOVA with

the Tukey post hoc test used to assess the significance of differences between multiple treat-

ment groups. Differences were considered statistically significant with a probability level of

p<0.05.

3. Results

3.1 Cytotoxic assessment of BK3C231 and 4NQO

The non-cytotoxic concentrations of BK3C231 and 4NQO were determined using MTT cyto-

toxicity assay. BK3C231 did not show evidence of cytotoxicity up to 50 μM treatment, however

an IC50 value of 99 μM was observed (Fig 2A). Therefore a series of BK3C231 concentrations

ranging from 6.25 μM till 50 μM was used for subsequent experiments. On the other hand,

4NQO treatment exerted no cytotoxicity at 1 hour. However, reduction in cell viability was

significant with IC50 values observed starting from 2 hours till 24 hours (Fig 2B). Hence,

4NQO concentration at 1 μM was selected to induce genotoxicity and mitochondrial toxicity

in subsequent experiments as used by previous studies as well [37,38]. Interestingly, in com-

parison to 4NQO-treated cells whereby cell viability greatly reduced especially at higher con-

centrations, BK3C231 was able to suppress 4NQO-induced cytotoxicity by increasing cell

viability up to 8-fold with no IC50 value observed (Fig 2C).
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3.2 BK3C231 protection against 4NQO-induced DNA microlesions

Significant DNA damage as indicated by the comet tail which represents DNA strand breaks

can be observed in cells treated only with 4NQO. Untreated control cells and BK3C231-treated

cells showed intact round nuclear DNA and no DNA strand break was observed at all treated

concentrations (Fig 3A). There was also a decrease in comet tail in cells pretreated with

BK3C231 when compared with that of cells treated only with 4NQO (Fig 3B). This was further

confirmed by quantification of tail moments obtained from comet scoring. Tail moment

increased significantly up to 48-fold in 4NQO-treated cells at 28.79 ± 1.02 (p<0.05) over con-

trol and BK3C231-treated cells ranging from 0.59 ± 0.11 to 0.68 ± 0.06 (Fig 3C). On the other

hand, BK3C231 pretreatment showed a 0.8-fold decrease of 4NQO-induced DNA strand

breaks in a concentration-dependent manner, significantly at 50 μM with a tail moment value

of 7.21 ± 0.34 (p<0.05) (Fig 3D).

3.3 Inhibition of 4NQO-induced DNA macrolesions by BK3C231

The protective role of BK3C231 against 4NQO-induced micronucleus formation was assessed

using CBMN assay (Fig 4A). In untreated control cells, a micronucleus frequency level as low

Fig 2. Effect of BK3C231 and 4NQO on the viability of CCD-18Co cells as assessed by MTT assay. (A) Cells were treated with BK3C231 from 6.25 μM till 100 μM for

24h. An IC50 value of 99 μM was observed. (B) Cells were treated with 4NQO from 3.125 μM till 50 μM for 1h (no IC50 value), 2h (IC50 value was 41 μM), 4h (IC50 value

was 24 μM), 12h (IC50 value was 34 μM) and 24h (IC50 value was 13 μM). (C) Cells were pretreated with BK3C231 at 50 μM for 2h prior to 4NQO treatment from

3.125 μM till 50 μM for subsequent 22h (no IC50 value) in comparison to BK3C231-treated (no IC50 value) and 4NQO-treated cells (IC50 value was 13 μM). Each data

point was obtained from three independent experimental replicates and expressed as mean ± SEM of percentage of cell viability. � p<0.05 against negative control.

https://doi.org/10.1371/journal.pone.0223344.g002
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as 0.23 ± 0.03 was observed. Cells treated with 4NQO significantly demonstrated up to 93-fold

increase in frequency of micronucleus in binucleated cells at 21.56 ± 1.36 (p<0.05). However,

pretreatment of cells with BK3C231 was shown to cause a maximum of 0.8 fold decrease of

4NQO-induced micronucleus formation in a concentration-dependent manner, significantly

at 25 μM with a frequency level of 6.58 ± 0.52 and 50 μM with a frequency level of 3.80 ± 0.47

(p<0.05) (Fig 4B). In addition, the NDI values measured in control, 4NQO-treated cells and

BK3C231-treated cells were 1.78 ± 0.01, 1.68 ± 0.03 and 1.79 ± 0.01 respectively. As for cells

pretreated with BK3C231 prior to 4NQO induction, the average NDI value measured was

1.72 ± 0.01 (Table 1). All NDI values obtained in this assay indicated normal cell proliferation

[39].

Fig 3. DNA microlesion assessment in CCD-18Co cells using alkaline comet assay. (A) Fluorescence microscopic images with EtBr staining of untreated cells (i), cells

treated with BK3C231 at 6.25 μM (ii), 12.5 μM (iii), 25 μM (iv) and 50 μM (v) for 24h and cells treated with 4NQO at 1 μM for 1h (vi). (B) Fluorescence microscopic

images of untreated cells (i), cells treated with BK3C231 at 6.25 μM (ii), 12.5 μM (iii), 25 μM (iv) and 50 μM (v) for 2h prior to 4NQO induction at 1 μM for 1h and cells

treated with 4NQO at 1 μM for 1h (vi). (C) Screening for DNA damage expressed as tail moment in cells treated respectively with BK3C231 from 6.25 μM till 50 μM for

24h and 4NQO at 1 μM for 1h. (D) Cells were pretreated with BK3C231 from 6.25 μM till 50 μM for 2h prior to 4NQO induction at 1 μM for 1h. Each data was obtained

from three independent experimental replicates and each data point in (C) and (D) was expressed as mean ± SEM of tail moment. � p<0.05 against negative control,

CON (C) and # p<0.05 against positive control, 4NQO only (D).

https://doi.org/10.1371/journal.pone.0223344.g003
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Fig 4. DNA macrolesion assessment in CCD-18Co cells using CBMN assay. (A) Fluorescence microscopic images

with acridine orange staining of mononucleated cell (i), binucleated cell (ii) and binucleated cell with micronucleus

(iii). Cellular nucleus was stained green while cytoplasm was stained orange in this assay. (B) Cells were pretreated with

BK3C231 from 6.25 μM till 50 μM for 2h prior to 4NQO induction at 1 μM for 2h. Each data point was obtained from

three independent experimental replicates and expressed as mean ± SEM of frequency of micronucleus in binucleated

cells. � p<0.05 against positive control, 4NQO only.

https://doi.org/10.1371/journal.pone.0223344.g004

Table 1. NDI values in untreated control cells, BK3C231-treated cells, 4NQO-treated cells and cells pretreated

with BK3C231 prior to 4NQO induction.

Treatment NDI value

Untreated control 1.78 ± 0.01

4NQO 1 μM 1.68 ± 0.03

BK3C231 50 μM 1.79 ± 0.01

BK3C231 6.25 μM + 4NQO 1 μM 1.74 ± 0.01

BK3C231 12.5 μM + 4NQO 1 μM 1.70 ± 0.01

BK3C231 25 μM + 4NQO 1 μM 1.74 ± 0.01

BK3C231 50 μM + 4NQO 1 μM 1.71 ± 0.01

NDI, nuclear index division; μM, micromolar; 4NQO, 4-Nitroquinoline 1-oxide.

https://doi.org/10.1371/journal.pone.0223344.t001
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3.4 Cytoprotective role of BK3C231 in 4NQO-induced mitochondrial

damages

The cytoprotective role of BK3C231 was further investigated at the mitochondrial level

through flow cytometric assessment of ΔCm loss using TMRE staining. Significant loss of

ΔCm (p<0.05) as indicated by a 1.2-fold increase of TMRE-negative cells from 15.63 ± 1.09%

in control cells to 34.77 ± 1.29% in 4NQO-treated cells was observed. However, BK3C231 pre-

treatment was shown to reduce the amount of TMRE-negative cells significantly to

22.13 ± 2.51% (p<0.05) at 50 μM, thereby protecting the cells against 4NQO-induced ΔCm

loss (Fig 5A). Positive control, resveratrol also decreased the amount of TMRE-negative cells

significantly to 24.07 ± 0.22% (p<0.05) at 25 μM.

In a bid to further establish the protective role of BK3C231 in mitochondria, cardiolipin

level was assessed through flow cytometric analysis using NAO staining. Our study demon-

strated significant cardiolipin loss (p<0.05) as indicated by a 2.8-fold increase of NAO-nega-

tive cells from 5.07 ± 0.52% in control cells to 19.33 ± 0.94% in 4NQO-treated cells. However,

BK3C231 pretreatment was shown to induce up to 0.4-fold decrease of 4NQO-induced cardio-

lipin loss in a concentration-dependent manner (Fig 5B). Positive control, resveratrol also

reduced the amount of TMRE-negative cells significantly to 12.83 ± 0.13% (p<0.05) at 25 μM.

3.5 4NQO-induced DNA and mitochondrial damages independent of ROS

production

Flow cytometric assessment of intracellular ROS namely superoxide and hydrogen peroxide

levels using HE and DCFH-DA staining was performed to determine the role of ROS in

4NQO-induced DNA and mitochondrial damages. Interestingly, as shown in Fig 6A and 6B,

there were no inductions of superoxide and hydrogen peroxide levels in 4NQO-treated cells as

compared to control cells. Hydroquinone (HQ), which was used as positive control, had signif-

icantly increased ROS level in CCD-18Co cells (p<0.05). This suggested that ROS was not

involved in DNA and mitochondrial damages caused by 4NQO, also leading to indication that

neither cytoplasm nor mitochondria played a role in ROS production in 4NQO-treated cells.

In addition, BK3C231 demonstrated potential as antioxidant by inhibiting HQ-induced ROS

production.

3.6 Inhibition of 4NQO-induced nitrosative stress by BK3C231

Intracellular nitric oxide (NO) level was assessed using BD Pharmingen™ Orange NO Probe

staining whereas extracellular NO level was assessed using Griess assay to determine the

involvement of RNS in 4NQO-induced DNA and mitochondrial damages. Our study demon-

strated a significant 0.98-fold increase of intracellular NO level, 15.7 ± 0.19% and 2.4-fold

increase of extracellular NO level, 5.15 ± 0.17 μM (p<0.05) in 4NQO-treated cells over control

cells, at 7.63 ± 0.19% and 1.51 ± 0.26 μM respectively, thereby demonstrating the involvement

of NO in 4NQO-induced DNA and mitochondrial damages. Moreover, both BK3C231 and

positive control, resveratrol significantly inhibited 4NQO-induced NO production from as

early as 2 hours up till 24 hours of pretreatment (p<0.05) and were able to restore NO level

back to basal level at 24 hours of pretreatment (Fig 7A and 7B).

In addition to that, antioxidant GSH level was assessed using Ellman’s reagent. 4NQO-

treated cells showed a reduced GSH level at 194.70 ± 23.83 nmol/mg as compared to untreated

control cells at 245.96 ± 12.44 nmol/mg (Fig 7C). Overall, the simultaneous increase in NO

level and decrease in GSH level by 4NQO further confirmed the involvement of nitrosative

stress in 4NQO-induced DNA and mitochondrial damages. However, no induction of GSH
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level was observed in cells pretreated with BK3C231 for 2 hours, 4 hours, 6 hours and 12

hours. BK3C231 was only able to significantly increase GSH level, 313.97 ± 27.83 nmol/mg

(p<0.05) at 24 hours of pretreatment as compared to that of 4NQO-treated cells (Fig 7C). This

Fig 5. Assessment of mitochondrial toxicity in CCD-18Co cells. (A) Flow cytometric analysis of ΔCm level using TMRE staining. (B) Flow cytometric analysis of

cardiolipin level using NAO staining. Cells were pretreated with BK3C231 from 6.25 μM till 50 μM and resveratrol (res) at 25 μM for 2h prior to 4NQO induction at

1 μM for 2h. Each data point was obtained from three independent experimental replicates and expressed as mean ± SEM of TMRE- or NAO-negative cells (%). �

p<0.05 against positive control, 4NQO only.

https://doi.org/10.1371/journal.pone.0223344.g005

Fig 6. Assessment of ROS production in CCD-18Co cells. (A) Flow cytometric analysis of superoxide level using HE staining. (B) Flow cytometric analysis of

hydrogen peroxide level using DCFH-DA staining. Cells were treated with BK3C231 at 50 μM for 24h and 4NQO at 1 μM for 1h. HQ treatment at 50 μM for 2h was

used as positive control in this assay. Cells were also pretreated with BK3C231 at 50 μM for 24h prior to HQ induction at 50 μM for 2h. Each data point was obtained

from three independent experimental replicates and expressed as mean ± SEM of HE- or DCF-stained cells (%). � p<0.05 against negative control, CON.

https://doi.org/10.1371/journal.pone.0223344.g006
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suggested that BK3C231 inhibited 4NQO-induced nitrosative stress through early reduction

of NO production and late induction of GSH level in CCD-18Co cells.

4. Discussion

Epidemiological studies have shown that consumption of fruits particularly rich in stilbenes

led to a reduced risk of colorectal cancer, which is one of the most commonly diagnosed can-

cers worldwide [40,41]. Furthermore, cytoprotection of DNA and mitochondrial function

Fig 7. Nitrosative stress assessment in CCD-18Co cells. (A) Determination of intracellular NO level using Orange NO probe staining. (B) Determination of

extracellular NO level using Griess assay. (C) Measurement of intracellular GSH level using Ellman’s reagent. Cells were pretreated with BK3C231 at 50 μM and

resveratrol (res) at 25 μM for 2h, 4h, 6h, 12h and 24h prior to 4NQO induction at 1 μM for 1h. Each data point was obtained from three independent experimental

replicates and expressed as mean ± SEM of orange NO probe-stained cells (%), NO level and concentration of free thiol. � p<0.05 against positive control, 4NQO only.

https://doi.org/10.1371/journal.pone.0223344.g007
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limits the occurrence of cancer. Since DNA is the repository of hereditary material and genetic

information in every living cell, the maintenance of its stability is pivotal as unrepaired DNA

damage caused by diverse assaults from the environment, nutrition and natural cellular pro-

cesses lead to cancer [42,43]. As for mitochondria, impairments and alterations of mitochon-

drial structure and functions, including morphology and redox potential, are associated with

cancer transformation and have been frequently reported in human cancers [44–46]. In agree-

ment with this, our study showed that BK3C231 was able to inhibit 4NQO-induced cytotoxic-

ity as well as protect against DNA damage and mitochondrial dysfunction in the normal

human colon fibroblast CCD-18Co cell line.

Firstly, we sought to understand the carcinogenic actions of 4NQO. Studies have demon-

strated that 4NQO elicited carcinogenicity through its proximate carcinogenic metabolite

namely 4-hydroxyaminoquinoline 1-oxide (4HAQO) produced by the enzymatic four-elec-

tron reduction of 4NQO’s nitro group [47,48]. Being a potent chemical carcinogen and as a

UV-mimetic agent, 4NQO is often used as positive control in various genotoxicity studies due

to its well characterized metabolic processes [49]. As a result of a study by Brüsehafer et al.

[50], it was reported that 4NQO predominantly induces mutagenicity more than clastogenicity

and that the latter depends on cell types, our study has proved that 4NQO is a significant cause

of DNA damage via DNA strand breaks and chromosomal damage via micronucleus forma-

tion. Our study was also in agreement with previous studies which demonstrated that 4NQO

caused damage to mitochondrial membrane as characterized by loss of mitrochondrial mem-

brane potential (ΔCm) and cardiolipin [51].

As 4HAQO’s carcinogenic effect is mainly based on DNA adduct formation, our study

investigated 4NQO’s other carcinogenic mechanism of action through generation of ROS and

RNS and its involvement in the cytoprotective role of BK3C231 [52–54]. Interestingly, our

study which revealed no superoxide and hydrogen peroxide production by 4NQO at 1 μM for

1 hour in CCD-18Co cells contradicts the study by Arima et al. [37] who reported ROS forma-

tion in human primary skin fibroblast by 4NQO using the same treatment concentration and

timepoint. The discrepancy is likely due to the difference in the origin of fibroblast used.

Hence, our study is the first to elucidate such findings on 4NQO mechanism which has never

been shown in other studies thus far.

In addition, our study demonstrated an increased NO level and a depleted GSH level by

4NQO. This is possibly due to formation of 4NQO-GSH conjugates leading to generation of

nitrite, a stable end product of NO, which inactivated γ-glutamylcysteine synthase and there-

fore suppressed intracellular synthesis of GSH [37,54–56]. Our data was also in agreement

with previous studies that NO could be the main culprit in 4NQO-induced DNA and mito-

chondrial damages in CCD-18Co cells as NO has been demonstrated to induce genotoxicity

and damage to mitochondria via multiple mechanisms directly or indirectly [57,58]. More-

over, the concurrent increase in NO level and decrease in GSH level postulates the occurrence

of nitrosative stress which may contribute to 4NQO-induced DNA and mitochondrial damage

[59,60].

More importantly, BK3C231 was shown in our study to protect against 4NQO-induced

DNA and mitochondrial damages by decreasing DNA strand breaks and micronucleus forma-

tion as well as reducing loss of mitochondrial membrane potential (ΔCm) and cardiolipin (Fig

8). Our study further revealed that BK3C231 exerted these cytoprotective effects in CCD-18Co

cells by suppressing 4NQO-induced nitrosative stress through reduction in NO level and late

upregulation of GSH level. Furthermore, inhibition of HQ-induced ROS production by

BK3C231 as demonstrated in this study corroborates the potential of BK3C231 as an antioxi-

dant. The role of stilbene derivatives as potential antioxidants has been demonstrated in sev-

eral studies involving for example resveratrol, a well-known stilbenoid, which attenuates
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nitrosative stress in the small intestine of rats [61]. Piceatannol and isorhapontigenin, which

are natural occurring stilbenes, have also been demonstrated to scavenge NO and nitrogen

dioxide (NO2) radicals as well as increasing GSH/GSSG ratio [62,63]. Therefore, we have

included resveratrol, which is under the same stilbene family as BK3C231, as the positive con-

trol in this study which supported the BK3C231 findings and were consistent with previous

studies which had reported the protective effects of resveratrol on mitochondrial function as

well as its role in NO suppression and GSH induction [64–68].

Nitrosative stress is one of the most critical factors in multi-stage carcinogenesis with NO

playing an important role in tumour biology and overproduction of NO can promote tumour

growth [69]. Kee et al. [36] has reported the chemopreventive activity of BK3C231 involving

upregulation of the detoxifying enzyme NQO1 due to the presence of methoxy and furan car-

boxamide groups. Therefore, it is possible that the presence and substitution pattern in relation

to the methoxy group enables BK3C231 to act as an NO scavenger.

The Keap1-Nrf2 signaling pathway may also be involved in the depletion of NO level by

BK3C231. The upstream Keap1-Nrf2 signaling pathway, which is a major regulator of phase II

detoxification and cytoprotective genes, is postulated to be involved through upregulation of

detoxifying enzymes which may lead to NO suppression [70]. Stilbene derivatives particularly

resveratrol play a significant role in the activation of Nrf2-related gene transcription which

induces expression of cytoprotective enzymes such as NQO1, glutathione S-transferase (GST),

glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) thus lead-

ing to protection against cancer [71]. Moreover, the increase in GSH as observed in this study

can be attributed to the redox-sensitive Nrf2 activation [72,73].

Cytoprotection plays an important role in chemoprevention by suppressing the initiation

stage of carcinogenesis. Cytoprotective mechanisms in response to DNA and mitochondrial

damages by key causes of malignant transformation such as electrophile, oxidative stress and

nitrosative stress represent a target for chemopreventive agent [74]. Our study has demon-

strated the cytoprotective role of BK3C231, therefore it warrants further investigation of the

chemopreventive role of BK3C231 in the Keap1-Nrf2 pathway which serves as both an impor-

tant target thus provide significant protection of normal cells against carcinogenesis.

Fig 8. Schematic representation of BK3C231-induced cytoprotection against 4NQO damage in CCD-18Co human

colon fibroblast cells. 4NQO caused DNA strand breaks and micronucleus formation as well as mitochondrial

membrane potential (ΔCm) and cardiolipin losses in CCD-18Co cells through NO formation. BK3C231 inhibited

these 4NQO-induced DNA and mitochondrial damages by decreasing NO level and increasing GSH level.

https://doi.org/10.1371/journal.pone.0223344.g008
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5. Conclusion

In conclusion, this study has provided a good insight into 4NQO-induced carcinogenicity in

CCD-18Co cells. The demonstration of BK3C231 as a cytoprotective agent also served as a

stepping stone for further elucidation of its chemopreventive potential against both genetic

and epigenetic bases of cancer development. Based on our current findings in this study, we

aim to reduce the gap between understanding molecular mechanism occurring in cancer car-

cinogenesis and instigating successful adoption of chemoprevention using BK3C231.
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