
life

Review

Structure, Function, and Interactions of the HIV-1
Capsid Protein

Eric Rossi 1, Megan E. Meuser 2 , Camille J. Cunanan 2 and Simon Cocklin 2,*

����������
�������

Citation: Rossi, E.; Meuser, M.E.;

Cunanan, C.J.; Cocklin, S. Structure,

Function, and Interactions of the

HIV-1 Capsid Protein. Life 2021, 11,

100. https://doi.org/10.3390/

life11020100

Academic Editor: Marko Noerenberg

Received: 23 December 2020

Accepted: 27 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Angle North America, 1500 1st Avenue, Suite 1010, King of Prussia, PA 19462, USA; e.rossi@angleplc.com
2 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307,

10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA; mem484@drexel.edu (M.E.M.);
cjc435@drexel.edu (C.J.C.)

* Correspondence: sc349@drexel.edu; Tel.: +1-215-762-7234 or +1-215-762-4979; Fax: +1-215-762-4452

Abstract: The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential
structural component of a virion and facilitates many crucial life cycle steps through interactions
with host cell factors. Capsid shields the reverse transcription complex from restriction factors while
it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2.
In addition, the capsid facilitates the import and localization of the viral complex in the nucleus
through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life
cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In
the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA
into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers
and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next
round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the
importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic
target for the development of HIV-1 inhibitors.

Keywords: HIV-1/AIDS; capsid; host proteins; post-entry events; assembly; virus-host interactions;
restriction factors

1. Introduction

Acquired immunodeficiency syndrome (AIDS) affected approximately 38 million
people in 2019. The etiologic agent for AIDS is the human immunodeficiency virus (HIV) [1].
While HIV is categorized into two subgroups, type 1 and type 2, HIV type 1 (HIV-1) is
the most prevalent cause of AIDS worldwide [2]. It is an enveloped virus containing a
9.8kb positive-sense RNA genome (Figure 1) that codes for three polyproteins (Gag, Pol,
and Env) and six accessory proteins (Tat, Rev, Nef, Vpr, Vif, and Vpu) [3]. HIV-1 targets
human cells presenting the CD4 receptor and CCR5 or CXCR4 co-receptors, such as T
helper cells and microglial cells [4,5]. It penetrates the host cell through receptor-mediated
entry, which results in the viral core entering the cytoplasm of the host cell [6]. The capsid
core is a fullerene-like cone made of the capsid (CA) portion of the Gag polyprotein. The
core contains the viral genome and viral proteins essential for replication, such as integrase
and reverse transcriptase (Figure 2) [7]. The CA protein is essential in both the early and
late stages of the HIV-1 life cycle, with many host cell factors currently identified as direct
binding partners [7].
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Figure 1. A diagram of the 9.8 kb HIV-1 genome. The Gag portion of the genome is transcribed into the Gag polyprotein, 
consisting of the matrix (MA), capsid (CA), nucleocapsid (NC), P6, and two spacer peptides (SP1 and SP2). During matu-
ration, the polyprotein is cleaved into its constituent parts. Image created with BioRender.com. 

 
Figure 2. A schematic of the HIV-1 virion. Envelope proteins, GP41 and GP120, surround the host-
derived membrane surface, which is lined internally with a layer of matrix protein. Inside the vi-
rion are viral proteins and the CA core containing the HIV-1 genome and proteins essential for 
infection. Image created with BioRender.com. 

The life cycle of HIV-1 (Figure 3) can be broken down into two stages: early and late. 
The early-stage begins with an infectious virion binding to the host cell and ends with the 
integration of the viral genome into the host DNA. The late stage of the life cycle is the 
period from post-integration until viral maturation [8]. The HIV-1 life cycle's early stage 
begins with the virion’s glycoprotein complex, Env, interacting with the CD4 receptor and 
the CCR5 or CXCR4 co-receptors on the host cell [9]. This recognition event initiates a 
cascade of conformational rearrangements that results in viral fusion, where the viral core 
is released into the cytoplasm of the host cell [9]. The complex of the capsid protein and 
its contents is referred to as the reverse-transcription complex (RTC) [7]. From here, re-
verse transcription must occur within the core. During reverse transcription, capsid be-
gins uncoating and trafficking to the nucleus for import and integration [10]. Once the 
RTC has entered the nucleus, it is referred to as the pre-integration complex (PIC) [7]. The 
processes of uncoating and reverse transcription are then completed after nuclear import 
and before nuclear integration [11–13]. The capsid is responsible for localizing the PIC to 
transcriptionally active sites on chromatin and facilitating the integration of the viral tran-
scripts into the host genome [11,14–16]. The viral genes are then transcribed by the host 

Figure 1. A diagram of the 9.8 kb HIV-1 genome. The Gag portion of the genome is transcribed into the Gag polyprotein,
consisting of the matrix (MA), capsid (CA), nucleocapsid (NC), P6, and two spacer peptides (SP1 and SP2). During
maturation, the polyprotein is cleaved into its constituent parts. Image created with BioRender.com.
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Figure 2. A schematic of the HIV-1 virion. Envelope proteins, GP41 and GP120, surround the
host-derived membrane surface, which is lined internally with a layer of matrix protein. Inside the
virion are viral proteins and the CA core containing the HIV-1 genome and proteins essential for
infection. Image created with BioRender.com.

The life cycle of HIV-1 (Figure 3) can be broken down into two stages: early and late.
The early-stage begins with an infectious virion binding to the host cell and ends with
the integration of the viral genome into the host DNA. The late stage of the life cycle is
the period from post-integration until viral maturation [8]. The HIV-1 life cycle’s early
stage begins with the virion’s glycoprotein complex, Env, interacting with the CD4 receptor
and the CCR5 or CXCR4 co-receptors on the host cell [9]. This recognition event initiates
a cascade of conformational rearrangements that results in viral fusion, where the viral
core is released into the cytoplasm of the host cell [9]. The complex of the capsid protein
and its contents is referred to as the reverse-transcription complex (RTC) [7]. From here,
reverse transcription must occur within the core. During reverse transcription, capsid
begins uncoating and trafficking to the nucleus for import and integration [10]. Once the
RTC has entered the nucleus, it is referred to as the pre-integration complex (PIC) [7]. The
processes of uncoating and reverse transcription are then completed after nuclear import
and before nuclear integration [11–13]. The capsid is responsible for localizing the PIC
to transcriptionally active sites on chromatin and facilitating the integration of the viral
transcripts into the host genome [11,14–16]. The viral genes are then transcribed by the host
cell and exported from the nucleus. Export is followed by localization of the Gag protein
to the plasma membrane through a myristoyl group at the amino-terminus of Gag [17].
Localization is followed by an immature virion budding, with intact Gag polyproteins
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coating the host-derived viral membrane [18]. The final step of the viral life cycle is
maturation, which results in a fully infectious virion. The maturation step is facilitated by
the viral protease that cleaves the polyprotein into its smaller, functional constituents [19].
In this step, the viral capsid is formed and assembles into the fullerene-cone, forming a
mature and fully infectious HIV-1 virion. At this stage, the newly formed and matured
virion can restart the HIV-1 life cycle, infecting another host cell [19].
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Figure 3. The life cycle of the HIV-1 virus. The early-stage begins with the recognition of host cell receptors (1), resulting in
the fusion of the virus and release of the viral core into the cytoplasm of the host cell (2). This is followed by the trafficking
of the core through the cytoplasm (3) as reverse transcription and uncoating begins to take place (4). Once at the nuclear
pore, the viral contents are imported into the nucleus and localized (5) to transcriptionally active chromatin while uncoating
and reverse transcription are completed (6). Following uncoating and reverse transcription, integration occurs (7). After
the viral genome is integrated into the host cell, viral genes are transcribed (8) and translated (9) into the Gag polyprotein.
The Gag polyprotein then localizes to the host cell membrane (10), where budding occurs (11), followed by the release of
an immature virion (12). The final step in the HIV-1 lifecycle is maturation (13), where the viral protease cleaves the Gag
polyprotein into its constituent, functional proteins. Image created with BioRender.com.

Continued studies into the life cycle of HIV-1 have revealed that CA is essential
in infection and replication. It provides structure and protection to the RTC and PIC
while allowing dNTP diffusion for reverse transcription [20,21]. Additionally, it facilitates
retrograde movement in the cytoplasm, nuclear import, and localization [12,14,22–27].
Since CA is essential in the HIV-1 lifecycle, it is a promising target for future research into
HIV-1 inhibitors [28–34].

2. Structure of the HIV-1 Capsid
2.1. Gag Polyprotein

The proteins of HIV-1 are transcribed and translated as polyproteins, which are long
peptides that are cleaved into smaller, functional units by the viral protease [35]. The CA
protein of HIV-1 is translated as a constituent of the larger Gag polyprotein (Figure 1) that
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contains many integral viral components [36]. This intact Gag protein is essential in the late
stages of the viral life cycle. It is responsible for the localization of viral components to the
host cell plasma membrane through a myristoyl group located at its amino-terminus [17].
Following budding, the virus is still immature because the Gag polyprotein remains whole.
It is not until cleavage by the viral protease that the polyprotein is separated into its
individual constituents, and a mature, infectious virion is formed [37].

2.2. CA Monomer: The Building Block of the Capsid Core

The most basic component of the capsid core is the CA monomer (Figure 4A), a highly
conserved and genetically fragile protein [38]. The CA monomer is a 231-residue long
protein with two major alpha-helical domains, the N-terminal and C-terminal domains
(CA-NTD and CA-CTD, respectively) that are connected by a five-residue linker (residues
146–150) [39]. While a virion is in its immature form, CA is a constituent of the Gag
polyprotein, linked to the matrix (MA) domain at its N-terminus and the spacer peptide
1 (SP1) domain of the polyprotein at its C-terminus (Figure 1). After budding and during
maturation, the Gag polyprotein undergoes proteolytic cleavage, separating it from the MA
and SP1 domains. Interactions then occur between CA residues Ala14 and Glu45 of adjacent
monomers, allowing the monomers to form larger oligomers (Figure 7) [40]. One study that
examined CA dynamics determined that the protein exists in an equilibrium of monomers
and dimers. In this equilibrium, the orientation of the NTD and CTD exists in a range of
different states. This equilibrium was suggested to account for the pentamer/hexamer
configuration seen in the fully assembled CA core, with the variability of the NTD of the
dimer determining the pentamer/hexamer pattern of assembly in the finished core [41].
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Figure 4. HIV-1 CA monomers oligomerize into hexamers and pentamers that assemble to form the capsid fullerene-cone
core. (A) Shows the CA monomer with the amino-terminus colored blue and the carboxyl-terminus colored tan (PDB
3H47). (B) Shows the CA hexamer with each subunit colored differently (PDB 3H47). (C) Shows the hexamer with the
amino-terminus of each subunit colored blue and the carboxyl terminus colored tan (PDB 3H47). (D) Shows the CA
pentamer with each subunit colored differently (PDB 3P05). (E) Shows the pentamer with the amino-terminus of each
subunit colored blue and the carboxyl terminus colored tan (PDB 3P05). (F) The complete capsid core structure containing
approximately 250 hexamer oligomers and 12 pentamer oligomers (PDB 3J3Q). Image created with the PyMOL Molecular
Graphics System, Version 2.4 Schrödinger, LLC.

2.3. CA Oligomers: Pentamers and Hexamers

While the HIV-1 CA monomers may form various curved oligomers, the most abun-
dant oligomer in the mature cone is the hexamer (Figure 4B,C). Approximately 250 hex-
amers and precisely 12 pentamers (Figure 4D,E) form the fullerene-like cone lattice of
the viral capsid core (Figure 4F) [40]. The hexamers are structured with the N-terminal
domain forming a central, stable core and the C-terminal domains forming a flexible
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outer ring [40]. The center of the hexamer core, referred to as the R18 pore, is lined
with six arginine residues and a “molecular-iris” formed from the N-terminal β-hairpin
(Figure 5). This pore is a size-selective, positively charged channel that allows for the
diffusion of nucleotides into the capsid core while preventing access to nucleases, host cell
restriction factors, and sensors [20].
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Figure 5. The HIV-1 CA hexamer with the R18 ring expanded. The amino-terminus is colored blue, the carboxyl-terminus is
colored tan, and each subunit’s R18 residue is colored in cyan. This is referred to as the R18 ring. This pore allows for the
diffusion of materials needed for reverse transcription while sequestering reverse transcription machinery from host cell
restriction factors. (PDB 3H47) Image created with the PyMOL Molecular Graphics System, Version 2.4 Schrödinger, LLC.

Along with the R18 pore, there is a crucial interprotomer pocket (Figure 6) that forms
between hexameric subunits and is generated by the NTD of one subunit interacting with
the CTD of another subunit. This NTD-CTD interprotomer interface is present in the
mature HIV-1 capsid and is critical for proper capsid assembly, stability, and host cell factor
recognition. There is evidence that this pocket binds host cell factors involved in nuclear
import, suggesting that intact CA oligomers are imported into the nucleus during nuclear
entry of the pre-integration complex (PIC) [42]. Due to these roles, the interprotomer
interface has been used as a target for small-molecule inhibition [43].
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Figure 6. Here, two adjacent CA protomers of the CA hexamer form a functional interprotomer pocket. N-terminal domains
(NTDs) are colored in shades of blue, and C-terminal domains (CTDs) are colored in shades of orange. Interacting domains
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in green. (PDB 6MQA) Image created with the PyMOL Molecular Graphics System, Version 2.4 Schrödinger, LLC.

Additional interactions involved in the polymerization of capsid monomers include
the NTD-NTD interactions that promote the formation of hexamers and CTD-CTD in-
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terfaces that connects hexameric units into the conical lattice [40,44]. The NTD-NTD
interface involves helices 1 and 3 of one monomer and helix 2 of the adjacent monomer [40].
Conversely, the CTD-CTD interface links two neighboring capsid subunits belonging to
different hexamers and is defined by helix 9 of the adjacent monomers [44].

2.4. The Fullerene Cone

The hexamers and pentamers associate into the curved lattice that forms the mature
capsid core. Electron microscopy has demonstrated that the natural viral core exhibits cone
angles of ~19◦, indicating that the capsid core of HIV-1 is structured as a fullerene cone,
with the rigid rotation between the pentamers and hexamers appearing to generate the
continuous curve of the fullerene cone [45,46]. However, both perfect and aberrant fullerene
cones have been observed after maturation and are believed to be caused by the de novo
capsid assembly that occurs after proteolytic cleavage of the Gag polyprotein [47]. The
fullerene cone is an important structure, as it protects the viral genome from a wide range of
host cell factors that would otherwise restrict infection. Mutagenesis studies revealed that
residues within the interprotomer pocket and pentamer/hexamer interface are essential,
with disruption of those interactions leading to decreased capsid assembly, stability, and
viral infectivity [48–53]. Specifically, the hydrophobic residues in the three-helix bundle
center within the CA-CTD are crucial for hexamer/pentamer association (Figure 7) [37].
This again emphasizes the importance of a stable capsid core since instability in the core
has been shown to cause a loss of the viral genome and integration [54].
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3. Function of the HIV-1 Capsid

The HIV-1 capsid possesses many functions that are due to the interactions of capsid
with various host cell factors. The capsid core is responsible for the safe delivery of the
viral genome and reverse-transcription machinery from the periphery of the cytoplasm
to transcriptionally active locations in the nucleus. It permits for this safe delivery by
preventing restriction factors from sensing the viral genome while allowing the proper
molecules to diffuse through the core to allow for reverse transcription to occur.

3.1. Nucleotide Diffusion through R18 Pore Is Accelerated by ATP and IP6 Interactions

One of the earliest known functions of the capsid core is to protect the reverse tran-
scription machinery from host cell restriction factors that would prevent HIV-1 reverse tran-
scription and proper infection. While the reverse transcription machinery is sequestered,
an influx of dNTPs is needed to complete the reverse transcription process, accomplished
through the R18 pore. Studies have determined that dNTPs can pass through the R18 pore
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by diffusion through the positive electrostatic field within the pore [20]. The potential of
the R18 pore attracts dNTPs where they can bind, becoming confined. While confined in
the ring, diffusion through the pore is favored over its movement back into the cytoplasm.
In addition to dNTPs, it has been observed that inositol hexaphosphate (IP6) and ATP
can also bind to the R18 pore, and the competition for binding between these molecules
accelerates the rate of dNTP diffusion by accelerating the release of the bound dNTP [21].
It was calculated that the binding of ATP or additional dNTPs accelerates release through
the pore approximately 103-fold, while IP6 binding results in an increase in the release
rate of approximately 106-fold. This diffusion mechanism is sufficient to supply dNTPs for
encapsidated reverse transcriptase [21].

3.2. Capsid Uncoating, Reverse Transcription, and Associated Host Factors
3.2.1. Capsid Uncoating Is Essential for and Timed by Reverse Transcription

Following membrane fusion, the core is released into the cytoplasm of the host cell,
where it must be uncoated and trafficked to the nucleus for nuclear import so that integra-
tion of the viral genome can occur. Upon entry into the cell, the viral core forms the RTC.
The RTC, in which the capsid core plays an essential role, is responsible for generating a
DNA copy of the viral RNA genome for integration [55]. Prior to integration, the capsid
must undergo the process of uncoating, in which the fullerene core begins to disassemble,
allowing for the integration of the viral cDNA transcript into the host genome. Multiple
theories of uncoating have been developed. Previous findings have illustrated that uncoat-
ing begins immediately after entry into the cytoplasm and is completed before nuclear
import. However, it has thereafter been suggested that uncoating does not begin until
after certain stages of reverse transcription and is completed after viral integration in the
nucleus [56,57]. One study determined that capsid uncoating occurs approximately 30 min
post-fusion, and most, but not all, of the CA is found in the cytoplasm of the cell [56].
However, it has recently been shown that the rate-limiting step of uncoating is the initial
breach of the fullerene cone lattice and that different stages of the uncoating process involve
various host cell factors [57]. The interactions with these host cell factors and the cellular
environments of different cell types regulate the timing of the rate-dependent and essential
uncoating process [49,57,58].

More recent studies have demonstrated that the uncoating process occurs after reverse
transcription has started and is completed after nuclear entry [12,59,60]. Such studies show
that uncoating does not begin until after the reverse transcription process completes the
first strand transfer and that the capsid core is necessary to protect the RTC/PIC from
degradation within the cytoplasm [10,61]. Additionally, the capsid core is required to
mediate docking at the nuclear pore, indicating that uncoating does not occur until after
nuclear docking [61]. Recent results have shown that intact capsid cores are imported into
the nucleus through mechanisms involving host cell factor cleavage and polyadenylation
specificity factor 6 (CPSF6) and that reverse transcription is completed near the site of
integration less than one and a half hours before viral uncoating is completed [11–13].

Furthermore, it was shown that many reverse transcription intermediates are enriched
in nuclear fractions suggesting that a large part of reverse transcription occurs in the
nucleus [11]. All of this points to uncoating and reverse transcription taking place later
than previously thought and completing in the nucleus. The latest research revealed the
formation of a single-stranded RNA molecule into a filamentous coiled structure through
high-resolution mechanical mapping. This stiff structure was enough to increase the core’s
internal pressure and then breach the capsid lattice, resulting in the commencement of
uncoating [62]. This now strongly indicates that the capsid core undergoes nuclear import
and that reverse transcription and uncoating are linked, and both are completed within
the nucleus.
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3.2.2. CypA Stabilizes the Capsid Core

A host cell factor implicated in viral uncoating is Cyclophilin A (CypA). It has been
determined that CypA is responsible for stabilizing the capsid core and helps facilitate
HIV-1 infection [63,64]. CryoEM studies concluded that the CA hexamer is intrinsically
curved and that CypA recognizes the curved lattice of the assembled capsid, interacting
with three CA protomers from adjacent hexamers (Figure 8) [65]. These interactions include
the established CypA binding loop (residues 85 to 93) on the CA-NTD (Figure 8, blue) as
well as two non-canonical binding sites (Figure 8, pink and grey) [64–67]. Through these
interactions with the capsid core, CypA is able to block certain restriction factors in human
lymphocytes, such as tripartite motif-containing protein 5 alpha (TRIM5α), discussed later
in the paper [68,69].
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Figure 8. CypA binds to three CA protomers from two adjacent CA hexamers. One protomer of the
CA protein is shown with the NTD in dark blue and the CTD in light blue. In total, two protomers
from an adjacent CA hexamer are shown with the NTD in dark purple and light grey and the CTD in
light pink and light grey. CypA, shown in green, binds to all three protomers through the canonical
CypA binding loop (blue protomer) and the non-canonical binding sites (purple and grey). (PDB
6Y9W). Image created with the PyMOL Molecular Graphics System, Version 2.4 Schrödinger, LLC.

3.2.3. PDZ Domain-Containing Protein 8 and Pin1 have Competing Effects on the Capsid Core

There have been multiple additional host factors identified that stabilize the capsid
core. One of these is the PDZ domain-containing protein 8 (PDZD8), which has been
shown to interact with both the Gag polyprotein and capsid, resulting in increased infec-
tivity [70,71]. The coiled-coil domain of PDZD8 binds to CA, while other domains of the
protein (PDZ domain) are responsible for stabilizing the capsid. In PDZD8 knockdown
cells, the rate of capsid disassembly increased while the efficiency of early-stage infection
decreased [72]. However, PDZD8-knockout cells were still able to be infected at the same
level as PDZD8-expressing cells indicating that PDZD8 is not essential for HIV-1 infection,
further demonstrating the adaptability of HIV-1 [70].

An additional host cell factor with a competing effect on viral uncoating is the peptidyl-
prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein, which induces capsid core
uncoating [73]. Suppression of Pin1 resulted in attenuation of HIV-1 replication and
an increase in capsid core particulates in the cytosol of the host cell [74]. It has been
found that Pin1-CA interactions occur through the phosphorylated Ser16 on CA, which is
phosphorylated by the extracellular signal-regulated kinase 2 (ERK2) [75].
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3.2.4. ERK2 and MELK

Extracellular Signal-Regulated Kinase 2 (ERK 2) and Maternal Embryonic Leucine
Zipper Kinase (MELK) have been implicated in CA function. ERK2 phosphorylates Ser16
on CA [75]. Pharmacological inhibition of ERK activity results in decreased Ser16 phos-
phorylation and impaired reverse transcription, leading to reduced viral replication [75].
Additionally, genetic suppression of ERK2 expression resulted in attenuated ERK2 pack-
aging inside virions and decreased CA phosphorylation [75]. Additional host cell factors
implicated in uncoating include MELK, which is responsible for optimal uncoating and
cDNA generation. MELK phosphorylates Ser149 of CA, resulting in proper disassembly of
the CA core [76]. MELK deficient cells demonstrated delayed disassembly and inhibition
of reverse transcription, while small-molecule MELK inhibitors have been found to reduce
the infectivity of HIV-1 [76]. The effects of ERK2 and MELK on HIV-1 infection illustrates
the importance of phosphorylation on HIV-1 infectivity.

3.3. Cytoplasmic Trafficking and Associated Host Factors
3.3.1. Capsid Facilitates Retrograde Trafficking by Hijacking Cytoskeleton-Associated Proteins

In addition to uncoating, capsid plays a vital role in cytoplasmic trafficking during
HIV-1 infection. After receptor-mediated entry of the virus into the host cell, the capsid core
is responsible for facilitating movement towards the nucleus (retrograde movement) for
nuclear import. Yeast two-hybrid screening indicated that microtubule-associated proteins
MAP1A and MAP1S interact with the viral capsid, and depletion of MAP1A/MAP1S leads
to drastically attenuated infectivity [77]. The attenuation was due to impaired retrograde
trafficking suggesting that MAP1A and MAP1S play a role in connecting the capsid protein
to the host cell’s microtubule network [77].

3.3.2. FEZ1 and BICD2 Link Capsid to Motor Proteins

In addition to these microtubule-associated proteins, fasciculation and elongation
factor zeta 1 (FEZ1) have also been shown to bind to capsid directly. FEZ1 is a kinesin-1
adaptor protein that directly interacts with the central pore of the CA hexamer, competing
with IP6 and dNTPs. Through this interaction with the R18 pore, the adaptor protein
promotes the early stages of infection by allowing for net retrograde transport [78,79].

Protein bicaudal D2 (BICD2) is a dynein adapter protein responsible for directly
interacting with various dynein cargoes and activating processivity in the dynein-dynein
complex. BICD2 has also been implicated in the cytoplasmic trafficking of the HIV-1 core in
host cells since it has been found to bind to HIV-1 capsid at the CC3 domain and contribute
to the viral complex’s retrograde movement [26,27]. Additionally, the depletion of BICD2
leads to an increased expression of IFN stimulated genes, suggesting this microtubule
adaptor protein assists HIV-1 in evading host immune responses [27]. Through these
interactions, it can be seen how HIV-1 can hijack various adapter proteins to use kinesin
and dynein to move from the cell membrane to the nucleus for nuclear import [80].

The process of uncoating is complex and concurrent with multiple processes of the
early stage of HIV-1 infection, including core trafficking. Disruption of microtubules
drastically reduces uncoating, while inhibition of either dynein or the kinesin 1 heavy
chain (KIF5B) delayed uncoating, providing evidence that uncoating and trafficking may
be linked [81].

3.3.3. Capsid can Bind to and Exploit Microtubule Plus-End Tracking Proteins

The RTC can also bind to microtubule plus-end tracking proteins (TIPs), which stabi-
lize microtubules. Cytoplasmic linker-associated protein 2 (CLASP2) is a TIP that capsid
utilizes to stabilize microtubules and promote early infection. CLASP2 has a microtubule-
binding domain at the N-terminus with a C-terminus CA binding domain, linking cargo to
the resultant stabilized microtubule. Upon entry into the cell, the viral core can bind the
CLASP2 protein, acting as an adapter to traffic the capsid core to the nucleus [82]. This
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is significant, as the viral genome cannot be integrated into the host if it does not reach
the nucleus.

3.3.4. EB1 and DRFs Coordinate Cytoplasmic Microtubules for Capsid Trafficking

Another protein implicated in early-stage HIV-1 infection is the microtubule plus-
end binding protein 1 (EB1), a highly conserved protein that localizes to the spindle and
cytoplasmic microtubules, especially at their distal tips. EB1 depletion prevented HIV-1
from inducing stable microtubule structures, suggesting that EB1 can facilitate early HIV-1
infection [83]. Interestingly, while EB1 does not directly bind to the capsid core, it seems to
use an adapter protein to interact. The HIV-1 core presents an EB1-like domain through its
pentamer interface that can interact with the CLIP170 protein, which is shuttled to the cell
periphery by EB1.

In addition to EB1, diaphanous-related formins (DRFs) have been shown to facilitate
microtubule stabilization and assist in the intracellular trafficking and timed disassembly
of capsid by interacting directly with the capsid core to coordinate these processes [84].
Such findings suggest a mechanism for HIV-1 to highjack host cell machinery to achieve
movement in the cell [85].

3.4. Nuclear Import and Localization
3.4.1. Capsid and Nucleoporins: the Key to the Nucleus

Along with uncoating and trafficking, capsid plays a crucial role in nuclear import and
localization once the core reaches the nuclear pore. Many studies have implicated capsid in
interactions with nuclear pore proteins, known as nucleoporins, as well as molecules such
as CPSF6 and transportin-1 that are responsible for import into the nucleus and localization
to sites of actively transcribed chromatin following import.

The nuclear import of the core begins with docking at the nuclear pore. Docking is
mediated through the cytoplasmic filament nucleoporin 358 (NUP358), also called RANBP2,
a 358 kDa protein involved in the nuclear import and export of proteins [14,86]. It has been
shown that KIF5B causes the re-localization of NUP358 so that it can directly associate
with the core through multiple binding surfaces [14]. NUP358 is an isomerase that has
been shown to catalyze CA’s cis-trans isomerization and play a role in synchronizing
nuclear entry and uncoating [86]. Interestingly, this interaction appears to be dependent on
CPSF6 [14].

In addition to the role of NUP358 in nuclear import, nucleoporin 153 (NUP153)
is also involved in the import of the capsid core into the nucleus [87]. In NUP153, a
phenylalanine-glycine motif interacts with the interprotomer pocket between monomers of
the CA hexamer (Figure 9), resulting in the mediated import of the core [88]. It has been
shown that mutations that abolish NUP153-CA interactions also inhibit interactions with
CPSF6 and result in a core complex that is incapable of nuclear import and infection of
non-dividing cells [24]. Additionally, it has been suggested that NUP153 contributes to the
integrity of the viral core in the nucleus since the depletion of NUP153 in cells results in
increased susceptibility to host cell restriction factors [89]. The N74D mutation in CA has
been shown to disrupt the CPSF6-CA interaction and switch the nucleoporin requirement
from NUP153 to NUP155 [90]. This indicates that capsid can utilize multiple nuclear import
pathways, with the nucleoporins being only one class of protein that the capsid hijacks to
achieve nuclear import.
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Figure 9. The NUP153 peptide binds between two protomers of the CA hexamer in the NTD-CTD
interface pocket. The NTD of protomer A is in light grey, and the CTD is in dark grey. The NTD
of protomer B is in light purple, and the CTD is in dark purple. The NUP153 peptide is shown
in green. (PDB 5TSX). Image created with the PyMOL Molecular Graphics System, Version 2.4
Schrödinger, LLC.

3.4.2. CPSF6 and Transportin-1 Facilitate Nuclear Import and Localization

The localization of the PIC inside the nucleus is facilitated by CPSF6 binding within
the interprotomer pocket of CA (Figure 10). The interaction between capsid and CPSF6
facilitates nuclear import and nuclear localization, with recent studies showing that CPSF6
drives the PIC towards the nuclear periphery [22,23]. CPSF6 also is involved in localiza-
tion within the nucleus by associating the PIC with SC35 nuclear speckles [11]. These
speckles are highly active transcription sites, suggesting that the CPSF6-CA interaction
recruits viral complexes to SC35 speckles to increase reverse transcription [11,91]. When
interactions between CA and CPSF6 are halted, PICs accumulate at the nucleus’s edge and
uncharacteristically target lamina-associated domains rather than transcriptionally active
speckles [92].
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Transportin-1 (TRN-1) has been identified as a host cell factor that binds to incoming
capsid cores, triggering uncoating and promoting nuclear import [60]. Previous studies
have shown that depletion of TRN-1 significantly impedes the early steps of infection [60].
Additionally, TRN-1 promotes the efficient nuclear import of the capsid core and mediates
the release of the viral genome from the core [60]. Once imported into the host cell nucleus,
these cores, through CPSF6-CA interactions, localize the PIC to SC35 speckles, which are
highly active transcriptionally [11].

3.4.3. Transportin-3 Is Crucial for Nuclear Import and Localization

Another important host cell factor that plays a part in the nuclear import for the core
of HIV-1 is the transportin-3 protein (TNPO3, also called TRN-SR2). It was initially thought
to interact with the HIV-1 integrase protein, although recent studies have suggested that
capsid is involved in this interaction [15,16,93,94]. Additionally, it has been determined
that TNPO3 plays a role in the integration and nuclear import, as depletion of TNPO3
reduces integration in gene-dense regions [95]. Furthermore, it was found that TNPO3 acts
to export viral tRNAs in a RanGTP dependent manner in addition to its capsid interactions.
It was proposed that TNPO3 is exploited by HIV-1 and used to displace CA and tRNA in
the PIC post-nuclear entry, thereby facilitating integration [94].

3.5. Capsid Acts to Shield the Reverse Transcription Machinery from Innate Immune Detection

One question that has been raised is why interferons (IFNs) are not strongly induced
through cGAS (cyclic GMP-AMP synthase) sensing in the cytoplasm of the cell during the
early stages of HIV-1 infection. The capsid core was hypothesized to act as a shield for
the viral nucleic acids by protecting the genome and sequestering the process of reverse
transcription, in addition to acting as an essential factor in cytoplasmic trafficking and
nuclear import. To investigate this hypothesis, the capsid core was destabilized through
genetic mutation and pharmacological inhibition, resulting in decreased infection and
increased IFN induction [96]. One HIV-1 variant that has been identified, referred to as the
RGDA/Q112D virus, contains five mutations within CA (H87R, A88G, P90D, P93A, and
Q112D) that makes it hypersensitive to IFNs [97]. Interestingly, this mutant virus was able
to acquire either a Q4R or G94D/G116R mutation in CA, which not only allows for the virus
to evade IFN restriction but also results in altered sensitivity to MxB, CPSF6, and CypA
and in altered kinetics of reverse transcription and uncoating [97]. These findings indicate
that HIV-1 is able to evolve quickly to exploit various pathways to elude IFN-mediated
restriction [97].

3.6. Gag Lattice Formation and Maturation

The late stage of HIV-1 infection begins after the integration of the viral genome into
the host cell genome. This stage includes viral protein production, Gag-lattice formation,
the release of an immature virion, and maturation. The HIV-1 CA protein plays an impor-
tant role in the early stages of the viral life cycle, but its functions are critical in the late
stages as well. During assembly, the presence of oligonucleotides has been shown to induce
conformational changes in Gag that promote the enthalpically-favorable dimerization of
the Gag polyprotein [98]. These Gag oligomers are trafficked to the host cell membrane and
begin to form an immature virion. A mechanism for trafficking the Gag polyprotein was
demonstrated through interactions with the CA region of Gag and filamin A, a 280 kDa
non-muscle actin filament cross-linking protein [99]. Filamin A is known to regulate actin
dynamics and is involved in anchoring membrane proteins to the cytoskeleton. Filamin A
has also been implicated as a facilitator of cell-to-cell transmission of HIV-1 through binding
to and regulating receptor clustering on host cell surfaces. Disruption of the Gag-filamin A
interaction eliminates localization and accumulation of Gag at the plasma membrane [99].
Once assembled, the CA and SP1 domains are responsible for stabilizing the Gag-Gag in-
teractions that create the oligomeric lattice of the immature virion [100–103]. The immature
arrangement of CA differs greatly from the mature arrangement of the capsid core. In an
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immature virion, the CA-CTD plays a central role in stabilizing the immature lattice. Still,
after the viral protease cleaves the Gag polyprotein, drastic rearrangements in the CA-NTD
occurs, and the CA collapses into the known fullerene cone shape (Figure 4F) characteristic
of a mature, infectious virion [102]. This highlights the essential role that CA plays in the
late stage of the viral life cycle.

IP6 Coordinates CA Assembly

Inositol hexaphosphate (IP6) is a highly negatively-charged host cell factor present
in all mammalian cells [104]. In HIV-1 infection, IP6 has been shown to coordinate capsid
assembly and stability [105,106]. The molecule interacts with the positively charged R18
pore at the center of the hexamer structure (Figure 11) [107]. Studies indicate that at
clinically relevant levels, IP6 can stabilize the core, limiting spontaneous disassembly and
increasing reverse transcription efficiency by promoting the accumulation of DNA within
the core [107]. Interestingly, it was shown that IP6 preferentially stabilizes pentamers over
hexamers, which was suggested to enhance fullerene cone assembly [108].
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A recent study has shown that IP6 stimulates Gag lattice assembly and maturation
by facilitating the formation of the six-helix bundle that stabilizes the Gag hexamer [109].
Ablation of IP6 drastically reduced infectious HIV-1 particle production between 10- and
20-fold, highlighting the essential role of IP6 in infection [109]. IP6 interacts with Lys290
and Lys359 of the CA subunit in the Gag hexamer [109]. Upon proteolytic cleavage of Gag,
IP6 was found to interact with the capsid and stimulate assembly of the mature capsid
lattice [107,109]. Crystallization of mature capsid hexamer in the presence of IP6 illustrated
that IP6 binds primarily at the β-hairpins at the N-terminal region of capsid [109].

3.7. Interaction with Lipids

Capsid interacts with a wide range of host cell factors but has also been implicated in
lipid binding. Previous studies have shown interactions between the CTD of CA and lipid
vesicles, in which the CTD undergoes a conformation change upon lipid binding. Such
findings further demonstrate CA’s structural flexibility and suggest that CA can bind to
the inner leaflet of a virion and coordinate late-stage processes [110].
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4. Capsid Is a Target of Host Cell Restriction Factors

Host cell restriction factors significantly influence viral infectivity. Host cell restriction
factors are proteins in the host cell that can inhibit the viral lifecycle and prevent infection
by restricting replication or inducing the innate immune response. In HIV-1, restriction
factors can interact with CA to alter its function in various ways, including altering the
stability of the core and preventing interactions with host cell factors that facilitate the viral
life cycle [111].

4.1. MxB Stabilizes the Capsid Core and Represses Nuclear Import

Myxovirus resistance protein B (MxB), a GTPase known to inhibit a variety of viruses,
is an alpha-interferon (IFN-α)-inducible restriction factor for HIV-1 infection [112,113].
Recent studies have demonstrated that MxB targets an interface created at the junction
of three CA hexamers, leading to increased stabilization of the viral core and subsequent
uncoating inhibition [114]. The binding of capsid to MxB is facilitated by MxB dimerization
since inhibition of dimerization precludes the binding of MxB to CA [113,115]. In addition
to the stabilizing effect of MxB, it appears to repress nuclear import by NUP358 through a
CPSF6 dependent pathway [116]. It was also discovered that naturally occurring CA vari-
ants might render HIV-1 MxB-resistant while maintaining viral infectivity and interferon
induction escape [117].

Interestingly, different clades of HIV-1 seem to be affected by MxB at varying rates.
For example, clade C, the dominant HIV-1 clade found in Africa and the most rapidly
expanding clade, possesses the most MxB resistant variants [117]. It has been suggested
that this supports a potential mechanism where MxB acts as a selective force during HIV-1
evolution [117]. Additionally, it is thought that MxB sensitivity is based on core confor-
mation rather than cofactor recruitment. The binding of CypA induces conformational
flexibility, which results in the evasion of restriction factors, such as MxB and TRIM5α [118].
Moreover, the effects of CypA and MxB can be induced or blocked depending on the expres-
sion levels of different NUP factors, specifically NUP93, NUP62, NUP88, NUP214, NUP358,
and NUP153 [119]. This emphasizes how HIV-1 can exploit different NUP-dependent
pathways for nuclear import.

4.2. Trim5α Binds to the Capsid Core and Prevents RT

The tripartite motif-containing protein 5α (TRIM5α) is a host cell restriction factor
that binds directly to HIV-1 capsid and can restrict infection in non-human primate cells by
preventing reverse transcription [120]. Reverse transcription restriction is caused by the
oligomerization of TRIM5α into a lattice on the surface of the capsid core. This destabilizes
the core, resulting in premature uncoating and inhibited reverse transcription [121]. Inter-
estingly, recent studies have shown that when TRIM5α binds, CA-CypA interactions are
abolished. One study showed that by disrupting the CA-CypA interaction, HIV-1 becomes
susceptible to TRIM5α. When the CA-CypA interaction is disrupted, TRIM5α associates
with the viral core as soon as viral entry occurs, resulting in extreme HIV-1 restriction [69].
Through simulations, binding has been predicted to occur between the SPRY domain of
TRIM5α and near the CypA binding loop of the CA, which would account for the abolished
interactions between CA and CypA [122–124]. TRIM5α binds through its SPRY domain
with low affinity (KD > 1mM); however, assembly into a larger oligomeric state, forming a
hexagonal lattice, generates enough avidity for sufficient binding [122]. Recent simulations
have revealed that TRIM5α initially dimerizes and then diffuses across the capsid core
surface to interact with other TRIM5α dimers, which then continue to assemble to form
the TRIM5α hexameric lattice that encages the capsid core [122]. Rhesus TRIM5α is the
most potent HIV-1 restriction factor known; however, human TRIM5α has lost its ability to
restrict HIV-1 and cannot prevent infection [125–130].

TRIMCyp is another restriction factor associated with TRIM5 expression and was
originally found to restrict HIV-1 in owl monkey cells [131]. TRIMCyp is similar to TRIM5α,
but the SPRY domain is replaced with CypA [131]. The CypA region of this fusion protein
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has been shown to be involved in binding to the capsid core through the CA CypA binding
loop since mutation of the CypA binding loop (G89V) and addition of cyclosporin A both
can prevent TRIMCyp from properly restricting HIV-1 [132–134]. Since the identification
of TRIMCyp in owl monkey cells, it has also been identified in other primates highlighting
the evolutionary significance of this restriction factor [135–138].

4.3. TRIM34 Restricts Reverse Transcription Independently of IFN Stimulation

The tripartite motif-containing protein 34 (TRIM34), a paralog of the well-known
TRIM5α, has also been shown to inhibit HIV-1 infection by targeting the CA protein.
TRIM34 restricts reverse transcription independently of interferon stimulation. These
inhibitory effects have been proven in CD4+ T cells and monocyte-derived dendritic cells;
however, these inhibitory effects are abolished in cells deficient in TRIM5α [139].

4.4. Overexpression of TRIM11 Hastens Uncoating

Another TRIM protein that has been implicated in CA binding is TRIM11, a potent
inhibitor of HIV-1 through the reduction of viral transcripts. Results show that over-
expression of TRIM11 caused increased capsid uncoating and the generation of fewer
transcripts, while a knockdown of TRIM11 resulted in increased capsid stability with
increased transcript numbers [140].

4.5. Daxx Inhibits Capsid Uncoating

A ubiquitously expressed and developmentally essential protein recently implicated
in HIV-1 inhibition is the death domain-associated protein 6 (Daxx). Daxx is involved
in apoptosis-mediated extrinsic cell death and has also been shown to inhibit reverse
transcription in HIV-1 [141]. Daxx acts as a scaffolding protein to regulate the functions of
other proteins through interactions between its SIM (SUMO-interacting motif) domain and
the target protein [141]. Recent studies have found that Daxx expression is upregulated
during HIV-1 infection and suggest that Daxx interacts with CypA-bound capsid and
recruits various restriction factors, such as TNPO3, TRIM5α, and TRIM34 [141]. Such
interactions with Daxx prevent capsid uncoating, thereby inhibiting reverse transcription
and infection [141].

4.6. NONO’s Low Affinity Prevents Restriction

Recent studies have found that the non-POU domain-containing octamer-binding
protein (NONO), a nuclear RNA and DNA binding protein that serves to activate the cGAS
innate immune response pathway, binds to the HIV-1 capsid. However, it has a higher
affinity to capsid of the less pathogenic HIV-2. It was concluded that NONO’s low affinity
for the HIV-1 capsid is the cause of its inability to restrict HIV-1 infection [142]. Additional
studies need to be carried out to determine if this a viable avenue for clinically relevant
HIV-1 restriction.

4.7. REAF Restriction Is Prevented by Vpr-Induced Degradation

RNA-associated early-stage antiviral factor (REAF) has been reported to interact with
HIV-1 during the early stages of the life cycle, affect uncoating and reverse transcription,
and inhibit not only HIV-1 but also HIV-2 and SIV. REAF overexpression resulted in fewer
detectable infected cells and reverse transcripts. Early studies suggest that REAF associates
with viral nucleic acids, inhibiting RT [143]. Mapping of the interaction sites of REAF to
MA and CA through mutational studies determined that CA was likely the direct-binding
partner. This interaction is a part of the Lv2/REAF mechanism that affects a broad range of
lentiviruses [144].

Interestingly, it has been shown that the Vpr viral protein plays a role in preventing
REAF from inhibiting viral infection. It was determined that Vpr, within 30 min of core
entry into the cytoplasm, induces the degradation of REAF. While REAF levels are up-
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regulated during infection, the presence of Vpr is enough to prevent this response from
restricting viral infection [145].

5. HIV-1 CA as a Target for Inhibitors

Due to the multiple roles and interactions that CA is involved in throughout the
HIV-1 lifecycle, as well as its high sequence conservation, CA is an attractive target for
therapeutic intervention. Although many CA inhibitors have been discovered, two com-
pounds designed by Pfizer and Gilead are of particular interest due to their potencies and
mechanisms of action [33,146–154]. One such inhibitor is the Pfizer compound PF-3450074
(PF74), which has been shown to inhibit HIV-1 replication with a potency in the nanomolar
range (EC50 = 8–640 nM) [155,156]. PF74 binds at the interprotomer pocket (Figure 12A)
and has been shown to accelerate the capsid core uncoating, thereby inhibiting reverse
transcription in the early stage of the lifecycle [34,154–157]. Another consequence of PF74
binding in the interprotomer pocket is the displacement of host factors CPSF6 and NUP153,
which are necessary interactions for successful nuclear import and integration of the viral
contents [42,158,159]. In addition to its inhibitory capabilities in the early stages of the life
cycle, PF74 also has an effect on the late stages of the viral life cycle. By increasing the
CA multimerization rate, PF74 causes atypical viral morphologies and inhibits the proper
maturation of virions [155]. These numerous functions that PF74 has throughout the HIV-1
lifecycle highlight the multimodal mechanism of this CA inhibitor.
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Another recently discovered compound that also binds to the CA interprotomer
pocket (Figure 12B) is the Gilead compound GS-6207 (Lenacapavir), which has also been
shown to have a multimodal mechanism of action with a potency in the low picomolar
range (EC50 = 55–314 pM) [29,160]. Similar to PF74, GS-6207 functions by stabilizing the
capsid core leading to a buildup of intact core in the cytoplasm. GS-6207 prevents adequate
binding of CPSF6 and NUP153 to the interprotomer binding site, leading to reduced
nuclear import and integration of viral contents [29]. Additionally, GS-6207 demonstrates
an inhibitory effect in the late stages of the HIV-1 lifecycle, but the mechanism has yet to
be fully elucidated. GS-CA1, the parental compound of GS-6207, was recently found via
electron cryotomography and lattice mapping to decrease capsid core integrity and cause
substantial disassembly and fractioning of the core [55,161]. It is believed that GS-CA1
stabilizes the CA hexamer causing flattening of the naturally curved capsid, which leads to
fracturing of the capsid core. This indicates a potential mechanism by which GS-6207 and
other capsid stabilizing inhibitors may also function.

These inhibitors show that exploiting the structure and function of the CA protein is
a viable therapeutic avenue to prevent HIV-1 infection and have led numerous research
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groups to further explore analogs of these compounds with similar binding sites and
functional mechanisms [32–34,152–154,162–167].

6. Conclusions

The HIV-1 CA is responsible for several crucial processes in the HIV-1 life cycle
and is integral in the early and late stages. The 231 residue-long protein forms a wide
range of oligomeric conformations, allowing for assembly into the complex fullerene cone
structure attributed to a mature virion. It interacts dynamically with various host cell
factors involved in cytoplasmic trafficking, such as FEZ1, BICD2, and CLIP170. Capsid is
also involved in nuclear import and localization through its interactions with nucleoporins,
TNPO-3, and CPSF-6. Capsid is also essential in reverse transcription, where it shields the
RTC from host cell restriction factors, such as MxB and TRIM5α. Furthermore, capsid has
been implicated in Gag-Gag lattice formation and viral maturation, which are essential
stages for the generation of infectious viral particles.

The interactions of capsid and their cellular contexts need to be further investigated
as the myriad of host cell factors (Table 1) could indicate different pathways that the virus
employs to successfully infect different cells. Exploiting these different pathways and
the numerous interfaces that capsid utilizes to interact with them both represent novel
avenues to explore for therapeutic development. Although much is left to be elucidated,
unveiling the interaction partners of the capsid, the mechanisms of how they interact and
function, and the kinetics of these events could provide more opportunities and targets for
anti-HIV-1 therapies.

Table 1. Summary of capsid-binding host cell factors.

Abbreviation Name Binding Site on CA Related Process Complex PDB ID

ATP Adenosine triphosphate R18 pore Reverse Transcription -

BICD2 Bicaudal D2 - Trafficking -

CLASP2 Cytoplasmic linker-associated
protein 2 - Trafficking -

CLIP170 Cytoplasmic linker protein 170 EB1-like domain at pentamer
interface Trafficking -

CPSF6 Cleavage and polyadenylation
specificity factor 6 Interprotomer Pocket Nuclear Import

and Localization 4WYM

CypA Cyclophilin A/Peptidylprolyl
isomerase A

CypA loop (residues 85 to
93)/Inter-hexamer interface Uncoating

5FJB
6Y9W
6Y9V

Daxx Death domain-associated protein CA-CypA complex Uncoating Inhibition -

dNTP Deoxynucleoside triphosphate R18 pore Reverse Transcription -

DRFs Diaphanous-related formins - Uncoating/Trafficking -

ERK2 Extracellular signal-regulated
kinase 2 Phosphorylates Ser-16 of CA Uncoating -

FEZ1 Fasciculation and elongation
protein zeta-1 R18 pore Trafficking -

IP6 Inositol Hexaphosphate R18 pore Reverse Transcription 6ES8
6BHT

MAP1A/MAP1S Microtubule-associated proteins
1A and 1S Monomeric CA interface Trafficking -

MELK maternal embryonic leucine
zipper kinase Phosphorylates Ser-149 of CA Uncoating -

MxB Myxovirus resistance protein B Inter-hexamer interface Uncoating Inhibition/Nuclear
Import Inhibitor -

NONO Non-POU domain-containing
octamer-binding protein CA NTD cGAS Response -
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Table 1. Cont.

Abbreviation Name Binding Site on CA Related Process Complex PDB ID

NUP153 Nucleoporin 153 Interprotomer Pocket Nuclear Import 4U0C
6AYA

NUP358 Nucleoporin 358 CA NTD Nuclear Import 4LQW

PDZD8 PDZ domain-containing
protein 8 Gag Uncoating -

Pin1 Peptidyl-prolyl cis-trans
isomerase NIMA-interacting 1 Phosphorylated Ser-16 of CA Uncoating -

REAF RNA-associated early-stage
antiviral factor - Uncoating Inhibitor/Reverse

Transcription Inhibitor -

TNPO3/
TRN-SR2 Transportin 3 CA-CPSF6 complex Uncoating, Nuclear Import

and Integration -

TRIM11 Tripartite motif-containing
protein 11 - Uncoating -

TRIM34 Tripartite motif-containing
protein 34 - Reverse Transcription

Inhibition -

TRIM5α Tripartite motif-containing
protein 5

Capsid lattice near CypA
binding loop Uncoating Inhibition -

TRN1 Transportin 1 CypA binding loop
(G89 crucial) Nuclear Import -
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