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Simple Summary: Hepatocellular carcinoma accounts for around 75% of all liver cancers, and
represents the fourth most common cause of cancer-related deaths worldwide. Microwave ablation is
a worldwide-diffused treatment of hepatocellular carcinoma. According to the literature, the success
rate for completely eliminating small liver tumors in patients treated with microwave ablation is
greater than 85%. Microwave ablation is also highly recommended for COVID-19 patients with
liver tumors as a fast treatment with a short recovery time. The involvement of the temperature
dependence of the heat capacity, the thermal conductivity, and blood perfusion, is pivotal for
establishing the correct ablation process and preserving the healthy tissue. The obtained simulation
results clearly show that precisely localized heating distributions and heating efficiency can be
achieved by using a multislot antenna probe. Deeper knowledge in this area would aid in the
prediction and planning of patient-individual procedures.

Abstract: Microwave ablation at 2.45 GHz is gaining popularity as an alternative therapy to hepatic
resection with a higher overall survival rate than external beam radiation therapy and proton
beam therapy. It also offers better long-term recurrence-free overall survival when compared with
radiofrequency ablation. To improve the design and optimization of microwave ablation procedures,
numerical models can provide crucial information. A three-dimensional model of the antenna
and targeted tissue without homogeneity assumptions are the most realistic representation of the
physical problem. Due to complexity and computational resources consumption, most of the existing
numerical studies are based on using two-dimensional axisymmetric models to emulate actual three-
dimensional cancers and surrounding tissue, which is often far from reality. The main goal of this
study is to develop a fully three-dimensional model of a multislot microwave antenna immersed into
liver tissue affected by early-stage hepatocellular carcinoma. The geometry of the tumor is taken from
the 3D-IRCADb-01 liver tumors database. Simulations were performed involving the temperature
dependence of the blood perfusion, dielectric and thermal properties of both healthy and tumoral
liver tissues. The water content changes during the ablation process are also included. The optimal
values of the input power and the ablation time are determined to ensure complete treatment of the
tumor with minimal damage to the healthy tissue. It was found that a multislot antenna is designed
to create predictable, large, spherical zones of the ablation that are not influenced by varying tissue
environments. The obtained results may be useful for determining optimal conditions necessary for
microwave ablation to be as effective as possible for treating early-stage hepatocellular carcinoma,
with minimized invasiveness and collateral damages.
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1. Introduction

Liver cancer is the abnormal growth of cells arising in the liver (primary) or spreading
to the liver from primary cancer somewhere else in the body (secondary) [1–8]. The most
prevalent form of primary liver cancer is hepatocellular carcinoma (HCC), which may start
as a single tumor that grows or as a series of small cancer nodules forming throughout
the liver [9–14]. Other types of liver cancer, such as intrahepatic cholangiocarcinoma,
hepatoblastoma, angiosarcoma, and hemangiosarcoma are much less common [15–18].
Liver cancer is not only one of the most common cancers in the world, but also the fastest-
growing cause of cancer death [19–22]. Thus, recognizing the safest and most efficient
treatments for liver cancer has never been more urgent. Among various procedures,
microwave ablation is an extremely promising, heat-based, minimally invasive thermal
ablation modality in treating hepatic malignancies [23–25].

Although HCC is a highly aggressive cancer that accounts for more than 75% of
all liver cancers, it has limited therapeutic options [26]. The most persuasive treatment
modalities capable of achieving a cure are hepatic resection and hepatic transplantation.
However, for patients that are not candidates for these therapies, the treatment option is
highly individualized, depending on the type and stage of the HCC [27]. Patients in very-
early (single lesion < 2 cm) and early-stage (single lesion < 5 cm or 2–3 nodules < 3 cm) HCC
can be effectively treated with ablative therapies such as radiofrequency ablation (RFA)
or microwave ablation (MWA) [28,29]. While RFA is recognized as a method with a very
low rate of procedure-related morbidity and almost zero mortality [30], MWA provides
some additional benefits [31]. Firstly, the treated tissue can be larger, while the treatment
duration is shorter. Further, MWA is less affected by the defense of the neighboring
tissues due to vaporization, and is less susceptible to the heatsink effect generated by
the cooling effect of blood flow. Unlike RFA, MWA is not limited by tissue conductance
since the propagation of energy does not depend on electrical tissue properties [31]. For
HCC lesions smaller than 3 cm, both techniques are safe, with similar survival rates [32].
Transarterial chemoembolization (TACE) is the appropriate treatment of intermediate-
stage HCC, while for advanced-stage disease, sorafenib is the only approved front-line
molecular-targeted treatment [33–35]. Furthermore, a recent evaluation the of efficacy and
safety of percutaneous MWA versus TACE, even for large HCC (5–7 cm), has shown that
MWA displayed a lower incidence of tumor recurrence, de novo lesions, or post-treatment
ascites [36].

MWA is a thermal ablation modality based on increasing the temperature above the
normal physiological threshold to kill cancer cells with minimal damage to surrounding
tissues [37–41]. During MWA a rapidly oscillating electromagnetic field leads to frictional
heating of water molecules in the soft tissues around the field source [42,43]. The currents
in the antenna, which are the source of the microwave fields, are also affected by the
surrounding tissue impacting the antenna ablation performance and unpredictable ablation
zones. One of the most sophisticated antenna designs achieves this by three different
mechanisms: thermal control, field control, and wavelength control [44].

The initial MWA systems were constrained by poor antenna design and the inability
to achieve spherical ablation zones, causing significant damage to adjacent healthy tis-
sues [45,46]. The major limitation of earlier MWA devices is the lack of predictability of the
ablation zone size and shape, since it depends on the inherent characteristics of the target
tissues. Various antennas for ablation of near-spherical tumors, including choke, cap-choke,
floating sleeve, and water-cooled antennas have been developed [47–50]. Some modern,
commercially available MWA systems rely on the, so-called, “thermosphere technology”,
that enables the formation of spherical ablation zones by implementing small saline irriga-
tion channels in the antenna, thus making them independent of tissue properties [51,52].
Recently, a compact, multislot coaxial antenna was built to obtain the required ablation
shape and proper impedance matching to the target tumor tissue without damaging the
surrounding healthy tissues [53,54], so this design shall be used in the present study.
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In further developments and improvements of the design and optimization of mi-
crowave ablation devices, a numerical model of the antenna-tissue system play a central
role in providing vital information on the thermal behavior of the tissue [55–59]. The
performance of the antenna has been estimated considering the specific absorption rate, an-
tenna impedance, and geometry of the obtained thermal lesion [60–64]. Several numerical
works are devoted to the prediction of the temperature profile in the tissue and resultant
tissue damage created by ablation devices [65,66]. In most of the studies, the Arrhenius
model is used to estimate the degree of destruction of biological tissue [67]. For studying
the influence of the shape and size of the tumor during MWA, coupled bioheat and elec-
tromagnetic equations are solved by using the finite element method (FEM) [68]. Most
of the numerical studies related to MWA refer to two-dimensional (2D) axis-symmetric
simulations assuming a homogeneous medium [69]. This reduces the problem from a
three-dimensional (3D) to a 2D one, which is often far from reality.

In this paper, we developed and tested a full 3D model of the microwave ablation
process with realistic geometry of the liver tumor taken from 3D-IRCADb-01 liver tumors
database [70]. The Comsol Multiphysics simulation package has been used as a platform
to solve the coupled electromagnetic–thermal problem of MWA [71,72]. As a source of
microwaves, we shall use a compact 10-slot coaxial antenna with a pi impedance-matching
network that creates near-spherical ablation zones [53,54]. The finely tuned pi impedance
matching eliminates the damaging of the surrounding healthy tissues. Simulations were
performed for an antenna operating at 2.45 GHz inserted into the tumor, including the
temperature dependence of dielectric and thermal properties of healthy and malignant
liver tissues, the blood perfusion, and water content. The power dissipation, the time
evolution of the temperature, and the degree of tissue destruction under the influence of
high temperature have been estimated. The ultimate goal of the developed simulation
model is to help practitioners to determine optimal input power of the ablation device
and duration of the ablation process for the actual shape of the patient tumor and chosen
position of the ablation probe.

2. Numerical Method and Simulation Conditions

Every mathematical model for the simulation of microwave ablation consists of three
fundamental components. The first component is the model of the antenna probe (or
applicator) that generates a microwave field in the tissue. The second component describes
the heat distribution in the tissue including sources and sinks and the phase changes. In
our case, the microwave field is the source of heat, and the heat sinks are represented by
the blood perfusion term in the heat transfer equation. The third part deals with the effect
of heat on tumor cells and their destruction. All these components of the ablation model
depend on a variety of material parameters, which themselves depend on the various states
of the tissue.

For small tumors or tumors adjacent to vital organs, MWA with antennas operating at
2.45 GHz is recommended due to its more localized ablation zone [26,73]. The antennas
are usually mechanically and geometrically complex, and the simulation relies on having
accurate electromagnetic material and tissue properties. In this study, we use a compact
10-slot microwave antenna with an impedance pi-matching network that creates near-
spherical ablation zones, schematically represented in Figure 1 [53,54]. The finely tuned,
impedance matching eliminates the damaging of the surrounding healthy tissues. The
multislot radiating probe is composed of several periodic elements equal to a linear uniform
antenna array. Each periodic element individually comprises a slot with a width of 0.6 mm
and a spacing conductor of 0.8 mm between adjacent slots. The required ablation shape is
achieved by optimizing the distance between the adjacent slots and the number of the slot.
In comparison with previously developed antennas [74–77], this multislot coaxial antenna
produces a more localized heating pattern and a smaller overtreatment region for spherical
liver tumors.
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(b) configuration of the antenna inserted into biological tissue and positions of four test points (A, 

B, C, D). 

For this study, the 3D finite elements method (FEM) is used to solve coupled elec-

tromagnetic-field and heat-transfer equations, including all details of antenna design and 

properties of healthy and tumoral tissue. Our 3D model is created within the COMSOL 

Multiphysics FEM-based simulation platform [68,71]. Equations that describe the prop-

agation of microwaves in tissue by an antenna have forms [71,72]: 

2 2

0 r

0

j
k 0,r


 



 
    

 
E E  (1) 

with the angular frequency ω, the vacuum propagation constant k0 = ω/c0, the electric field 

vector E, and the tissue electrical conductivity σ. ε0, εr, and μr are the vacuum dielectric 

constant, relative permittivity, and permeability of the tissue, respectively. 

During MWA, the elevated temperatures reached by the tissue close to the antenna 

cause structural modifications of treated tissue, resulting in changes in the dielectric and 

Figure 1. Schematic view of the 10-slot microwave antenna with an impedance match network. Black, green, light blue, and
brown colors correspond to conducting material, Teflon, air, and dielectric, respectively. The width of the slot is 0.6 mm,
while the spacing between slots is 0.8 mm.

To define as realistic a simulation model as possible, we did not use a spherical tumor
geometry, as is usually the case. In our analysis, we shall use the data from the 3D-IRCADb-
01 database [70] that includes several sets of CT scans of patients manually segmented by
clinical experts. We perform a simulation on the data reported for patient 16 in the database.
The shapes of the tumor (and the surrounding liver) are shown in Figure 2a. Figure 2b
illustrates a 10-slot microwave antenna inserted into a liver tumor with four test points (A,
B, C, and D) marked in red, blue, green and purple, and located at different sites. Points
A and D are positioned close to the heating center along the antenna shaft. Points B and
C were placed along with the radial direction corresponding to the maximum transverse
of each antenna. At these points, we shall follow the time dependence of temperature
and tissue damage during the ablation process. They correspond to the usual positions of
thermocouples in experimental studies [54].
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Figure 2. Three-dimensional (a) simulation model of the liver (triangulated surface) and an early-
stage HCC (solid surface) corresponding to patient 16 in the 3D-IRCADb-01 database [70] and (b)
configuration of the antenna inserted into biological tissue and positions of four test points (A, B,
C, D).

For this study, the 3D finite elements method (FEM) is used to solve coupled
electromagnetic-field and heat-transfer equations, including all details of antenna de-
sign and properties of healthy and tumoral tissue. Our 3D model is created within the
COMSOL Multiphysics FEM-based simulation platform [68,71]. Equations that describe
the propagation of microwaves in tissue by an antenna have forms [71,72]:

∇2E− µrk2
0

(
εr −

jσ
ωε0

)
E = 0, (1)

with the angular frequency ω, the vacuum propagation constant k0 = ω/c0, the electric field
vector E, and the tissue electrical conductivity σ. ε0, εr, and µr are the vacuum dielectric
constant, relative permittivity, and permeability of the tissue, respectively.



Cancers 2021, 13, 5784 5 of 15

During MWA, the elevated temperatures reached by the tissue close to the antenna
cause structural modifications of treated tissue, resulting in changes in the dielectric and
thermal properties that affect the electromagnetic power distribution. Since dielectric
properties of the tissue are temperature-dependent [78,79], we used the expressions [68,80]:

εr(T) = s1

[
1− 1

1 + exp(s2 − s3T)

]
, (2)

σ(T) = r1

[
1− 1

1 + exp(r2 − r3T)

]
, (3)

with coefficients taken from [68]. Figure 3 displays the sigmoidal temperature-dependent
model of (a) relative permittivity and (b) electric conductivity for healthy and tumoral
tissues. As expected, relative permittivity and conductivity of liver tumors are around 24%
and 11% higher than those corresponding to healthy liver tissue [81]. Due to the water
evaporation during the MWA, dielectric properties of tissue decrease with increasing the
temperature [82]. Additionally, the change rate of dielectric properties with temperature is
the same in both healthy and tumoral tissues.
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Figure 3. The temperature dependence of (a) relative permittivity and (b) electric conductivity of the healthy (red circles)
and tumoral liver tissue (blue diamonds). Plots are obtained by using expressions (2) and (3) with coefficients taken from
the literature [68].

Heat transfer during the MWA process can be accurately described by the Pennes
bioheat equation [83]:

ρc
∂T
∂t

= ∇× (k∇T) + ρbWbcb(Tb − T) + Qext + Qm, (4)

where t is time, ρ, c, and T are the density, the heat capacity, and the temperature of the
tissue, respectively, and ρb, cb, Tb, and Wb are the density, the heat capacity, the temperature,
and the perfusion rate of the blood, respectively. The heat source from metabolism Qm is
neglected in our calculation, while the external heat source Qext describes coupling with
electromagnetic field and is given by:

Qext =
σ|E|2

2
. (5)

The tissue thermal conductivity k varies with the temperature [68,84]:

k(T) = k0 + ∆k|T − T0|, (6)
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where k0 is the thermal conductivity measured at temperature T0, while ∆k represents the
change in k due to temperature. Blood perfusion dictates the bioheat transfer in living
tissues. The difference in temperature between blood and tissue leads to convective heat
transfer, so the blood perfusion rate ωb is also a function of temperature [68]:

ωb = 2.1× 10−5T + 3.5× 10−3. (7)

Another important temperature-dependent parameter is water vaporization, which
influences specific heat. The water content W is given by the expression [85]:

W(T) =


0.778·

(
1− e

T−106
3,42

)
, 70 ◦C ≤ T < 100 ◦C

7.053− 0.064096·T, 100 ◦C ≤ T < 104 ◦C
0.778·e− T−80

34.37 , T ≥ 104 ◦C
(8)

At steady state, the water content of liver tissue is around 78% water by mass, as
depicted in Figure 4a. For temperatures above 100 ◦C, the tissue water content may
decrease to less than 20% by a mass due to evaporation, leading to drastic changes in tissue
dielectric parameters and greater penetration of microwaves [82,85]. Since a large fraction
of liver tissue consists of water, the tissue’s thermal properties are similar to those of water
and vary with temperature and water content [86]. It is shown in [87] that the influence of
internal water evaporation can be included in bioheat Equation (4) by replacing specific
heat c with an effective value c’, given by the relation:

c′ = c− α

ρ

∂W
∂T

(9)

where α is the water latent heat constant equal to 2260 (kJ/kg) [85]. The derivative of the
W(T) appearing in the above relation is shown in Figure 4b.
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Figure 4. (a) The time dependence of the water content W(T) of the tissue according to expression (8), taken from
reference [85] and (b) the first derivate of W(T) which is then used to calculate an effective specific heat given by Equation (9).

The biological damage depends on both temperature and time. Although tissue
damage can be associated with many different reactions, it may be approximated in a single
process characterized by a single rate constant of the Arrhenius form [88]. An arbitrary
function of tissue injury Ω is defined as [89]:

Ω(t) =
t∫

0

A exp
(
−∆E

RT

)
dt, (10)
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where A and ∆E represent the frequency factor and the activation energy for irreversible
damage reaction, respectively, T is the temperature calculated at each point of the model
region and R is the gas constant. Fraction of necrotic tissue, θd, can be determined from the
degree of tissue injury Ω [65]:

θd = 1− exp(−Ω). (11)

Numerical simulations were performed for the microwave frequency of 2.45 GHz
and the input power of 13 W, including the temperature dependence of the dielectric
properties of tissues, thermal conductivity, heat capacity, and blood perfusion. Parameters
that characterize healthy liver, tumoral tissue, and blood are found in the literature [68]
and listed in Table 1.

Table 1. The parameters of biological materials (healthy liver tissue, tumoral liver tissue, and blood)
were collected from the literature [68] and used in numerical simulations.

Parameter Value

Tissue properties

Density 1079 kg/m3

Thermal conductivity 0.52 W/m ◦C

Specific heat 3540 J/kg ◦C

Tumor properties

Density 1040 kg/m3

Thermal conductivity 0.57 W/m ◦C

Specific heat 3960 J/kg ◦C

Blood properties

Density 1060 kg/m3

Thermal conductivity 0.5 W/m ◦C

Specific heat 3600 J/kg ◦C

Temperature 37 ◦C

3. Results

Figure 5 contains the results of the test calculations for the liver tissue exposed to
microwave frequency of 2.45 GHz and the input power of 10 W by using (a) 2D axial-
symmetric and (b) full 3D simulation models. As can be observed, the temperature
distributions obtained by both models are in an excellent agreement, confirming that the
full 3D model that we developed could provide correct results and could be useful for
realistic modelling of the effect of MWA on early-stage HCC.

To determine the proper value of the input power that leads to the minimal tissue
damage, calculations were carried out for a frequency of 2.45 GHz, ablation time of 600 s,
and three values of the input power (10 W, 13 W, and 15 W). The optimal input power that
causes minimal healthy tissue damage can be estimated from the isocontours related to the
fraction of damage equal to 1, shown in Figure 6. For the input power of 10 W, tumoral
tissue is not treated completely with MWA. When the input power is 15 W, the ablation
zone encompasses the whole tumor, but some parts of healthy tissue are also damaged.
The isocontour that best fits the necrotic tissue corresponds to the input power of 13 W,
where the tumor is totally treated with minimal damage to the healthy tissue. Since the
proper choice of the input power strongly depends on the size and the shape of the tumor,
they have to be determined before any procedure in order to achieve the desired ablation
margin.
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Figure 6. Isocontours represent the totally ablated regions (gray surfaces) around the liver tumor [70] (triangulated surface)
exposed to 600 s of microwave ablation at 2.45 GHz and the three values of the input power (10 W, 13 W, and 15 W).

Figure 7 shows (a) x–y, (b) y–z, and (c) x–z cut planes of the microwave power density
absorbed in tumoral liver tissue during MWA at 2.45 GHz and input power of 13 W at the
end of the 600 s ablation process. A microwave field oscillates rapidly, causing rotation of
polar molecules, primarily water, and some amount of electromagnetic energy is absorbed.
Close to the antenna, absorbed power density is large, and this decreases with distance.
The energy emitted from the antenna through the tissue is converted into heat that destroys
cancer cells. The majority of the heat is due to the excitement of polar water particles, while
ionic polarization contributes to a minor part of the generated heat. The heated zone is
almost spherical and encompasses the tumoral tissue. The input power and ablation time
are chosen so that a very small area of healthy tissue around the tumor is heated.

The absorbed energy converted into thermal energy leads to an increase in the tissue
temperature, as shown in Figure 8. The boundary of the tumoral tissue is designated by the
black line, while the white line represents the 60 ◦C isothermal contours. It was reported
that cell death occurs instantly above 60 ◦C [54], so the 60 ◦C isothermal contour is linked
to the lesion size and shape of the ablated tissue. The perfusion of blood restricts the extent
of the heated area. The temperature also rises with the ablation time, reaching a value
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of around 104 ◦C after 600 s. As expected, a multislot antenna structure enables more
localized near-spherical heating distributions.
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Figure 7. (a) x–y, (b) y–z, and (c) x–z cut planes of the total power dissipation density (expressed in W/m3) calculated for
the liver tumor [70] (plotted as triangulated surface) exposed to microwave frequency of 2.45 GHz and input power of 13 W
after 600 s.
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Figure 8. Temporal evolution of the temperature (in ◦C) when an early-stage HCC [70] is treated by microwave ablation at
a frequency of 2.45 GHz and input power of 13 W in y–z cut plane. The boundary of the tumor tissue is marked by the
black line.

Isocontours that correspond to the temperatures of 40 ◦C (light gray), 60 ◦C (light
brown), and 70 ◦C (brown) around the tumoral tissue (triangulated surface) are plotted in
Figure 9a. Close to the antenna the heat source is stronger, so the temperature is higher.
The time dependence of the temperatures at four test points (A, B, C, and D) marked
in Figure 4b can be seen in Figure 9b. All curves have the same tendencies for all test
points. For channel D (located near the heating center), the temperature rapidly increased
to approximately 79 ◦C after 70 s and then steeply rises up to 105 ◦C after 600 s, which
is in line with the temperature distributions shown in Figure 8 and the data found in
the literature [54]. In contrast, the lowest value of the temperature of around 48 ◦C after
600 s is calculated for channel C which is the most distant from the antenna. The maximal
temperatures recorded at the points located along the radial direction concerning the
maximum transverse of each antenna D (close to the heating center) and B (away from
the heating center) differ by around 42%. On the other hand, the maximal value of the
temperature at point D is larger by around 37% and 53% than those in points A and C
distributed at a distance from the heating center along the antenna shaft, respectively.
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Figure 9. (a) Three-dimensional plot of the liver tumor [70] represented by triangulated surface and isocontours that
correspond to the temperature of 40 ◦C (light gray), 60 ◦C (light brown), and 70 ◦C (brown). (b) The time dependence of the
temperature calculated at test points (A, B, C, and D) is marked in Figure 4b.

Numerical predictions of the fraction of necrotic tissue during MWA at a frequency of
2.45 GHz and the input power of 13 W are presented in Figure 10. The black line denotes the
boundary of the tumoral tissue. Regardless of the time, the damage zones are concentrated
around the tip and slots of the antenna, while the backward heating effect is smaller. The
use of multiple slots in the antennas provided a more spherical ablation volume for the
tissue heated. Thermally ablative devices lead to necrotic tissue with two distinct heating
zones, recognized as an active heating zone and a passive heating zone [90]. The active
heating zone arises within the tissue nearest to the device where the intensity of energy is
high and its absorption by tissue is fast. On the other hand, the passive zone is outside the
active zone, far from the ablation device where the intensity of energy is lower.
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Figure 10. The time evolution of the fraction of necrotic tissue exposed to the microwave ablation at a frequency of 2.45
GHz and the input power of 13 W. The boundary of the tumoral tissue is marked by the black line.

Isocontours related to fractions of damage of 0.3 (violet), 0.5 (blue), 0.75 (dark green),
and 1 (dark gray) are shown in Figure 11a. Figure 11b demonstrates the time evolution of
the necrotic tissue at four test points (A, B, C, and D) marked in Figure 4b. For test points A,
B, and D, at the beginning of the ablation, the tumor damage gradually increases and then
reaches a saturation region, which presents the completion time of tumor necrosis. The
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fastest completion of tumor necrosis is obtained for point D, while for point C the tumor
necrosis is uncomplete.
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Figure 11. (a) The liver tumor [70] is shown as triangulated surface and isocontours corresponding to the fractions of
damage of 0.3 (violet), 0.5 (blue), 0.75 (dark green), and 1 (dark gray). (b) The time evolution of the necrotic tissue was
calculated at four test points (A, B, C, and D) marked in Figure 4b.

4. Conclusions

This paper reports on simulation studies of the effect of microwave ablation on the
early-stage hepatocellular carcinoma. For this purpose, a full three-dimensional model has
been developed and tested within COMSOL Multiphysics, a finite element method-based
platform [71]. Calculations were performed for a model of real liver tumor extracted from
the database 3D-ICRADb-01 [70], exposed to radiation by a 10-slot microwave antenna
operating at 2.45 GHz, combined with biological materials data collected from the liter-
ature [68]. The obtained simulation results show that full 3D simulation of the ablation
process provides the best operating parameters (input power of 13 W and ablation time of
600 s) to achieve the greatest performance of MWA for this concrete, real, complex antenna
and realistic tumor tissue [70]. Other antennas or tumor shapes will require different
operating parameters. The inclusion of the temperature dependence of the heat capacity,
the thermal conductivity, and blood perfusion, is important for calculating the correct
ablation time, thus contributing to the preservation of the healthy tissue. One of the main
characteristics associated with the efficiency of MWA is that temperature profile is mainly
governed by the heat-source distribution. The temperature increases during ablation and
reaches the maximal value near the microwave antenna slots. After achieving saturation,
the diffusion and the heat conduction due to the blood perfusion become significant. Tem-
perature distributions are almost spherical, and the damage zones are concentrated around
the tip and slots of the antenna. The extension of the necrotic tissue increases, taking place
mainly in the tumor, and only a small amount of surrounding tissue is damaged.
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