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Abstract

In the face of predicted climate change, a broader understanding of biotic

responses to varying environments has become increasingly important within

the context of biodiversity conservation. Local adaptation is one potential

option, yet remarkably few studies have harnessed genomic tools to evaluate

the efficacy of this response within natural populations. Here, we show evidence

of selection driving divergence of a climate-change-sensitive mammal, the Ame-

rican pika (Ochotona princeps), distributed along elevation gradients at its

northern range margin in the Coast Mountains of British Columbia (BC),

Canada. We employed amplified-fragment-length-polymorphism-based genomic

scans to conduct genomewide searches for candidate loci among populations

inhabiting varying environments from sea level to 1500 m. Using several inde-

pendent approaches to outlier locus detection, we identified 68 candidate loci

putatively under selection (out of a total 1509 screened), 15 of which displayed

significant associations with environmental variables including annual precipita-

tion and maximum summer temperature. These candidate loci may represent

important targets for predicting pika responses to climate change and inform-

ing novel approaches to wildlife conservation in a changing world.

Introduction

A significant challenge facing wildlife species will be

coping with contemporary climate change. When subject

to environmental stresses, species have three options:

disperse, adapt, or go extinct (Hewitt and Nichols 2005).

While it has been suggested that most species will shift

their geographical ranges rather than adapt in situ (Par-

mesan 2006), factors such as habitat fragmentation may

act synergistically to impair species’ dispersal to more

favorable conditions. Distributional shifts may be particu-

larly challenging for species with limited dispersal capacity

or those with highly restricted habitat requirements; thus,

local adaptation may represent the only option for con-

tinued persistence (Sgr�o et al. 2011).

The identification of genes underlying ecologically

important traits has traditionally been limited to well-

studied or model organisms using a targeted gene
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approach within systems where individual adaptive traits

segregate into contrasting phenotypes (e.g., detection of

the genetic basis of fur coloration in mammals; Hoekstra

2006). Additionally, associations between phenotypes and

genotypes have been characterized using quantitative trait

loci, yet such studies are restricted to well-studied taxa

that can be experimentally manipulated and crossed.

Moving beyond model systems, the development of popu-

lation genomic approaches (Luikart et al. 2003) has

enabled the investigation of the genetic basis of adapta-

tion in natural populations of nonmodel organisms. By

screening large numbers of loci distributed throughout

the genome, researchers are able to tease apart neutral

(genome-wide) and adaptive (locus-specific or “outlier”)

effects. This approach has been employed at multiple

scales for investigating the genetic basis of adaptation,

from continuous distributions along gradients of altitude

(Bonin et al. 2006) and temperature (Jump et al. 2006),

to phenotypically discrete ecotypes (Nosil et al. 2008) and

subspecies (Nunes et al. 2011). When applied to popula-

tions along altitudinal gradients, where environmental

conditions change rapidly over short distances, popula-

tion genomics may be used to investigate expected tem-

poral changes in selection pressures generated by climate

change (Luikart et al. 2003).

The American pika (Ochotona princeps; Fig. 1) is a

small lagomorph discontinuously distributed in moun-

tainous areas throughout western North America. Pikas

inhabit talus slopes in close proximity to meadows in

which they forage. In recent years, O. princeps has been

propelled to the position of a model mammalian species

for studies of metapopulation dynamics, island biogeogra-

phy, and source-sink dynamics (Clinchy et al. 2002).

Given their limited tolerance to thermal stress, pikas have

become a focal system for testing extinction dynamics in

the face of climate change (Beever et al. 2011). In a study

testing several alternative models, Beever et al. (2010)

identified that climatic variables, especially mean summer

temperature, (a measure of chronic heat stress), were the

most influential factors driving pika extirpation. An

ad hoc analysis showed maximum elevation, and the

number of days with temperatures below �10°C (a mea-

sure of acute cold stress) was also strong predictors of

pika extirpation (Ray et al. 2012). In that vein, pikas are

considered harbingers of global warming, predicted by

some to be the first mammalian species that may go

extinct due to the direct effects of climate change (Smith

et al. 2004).

In the present study, we used population and landscape

genomic approaches to investigate the genetic basis of

adaptation in O. princeps populations found along three

elevations and one latitudinal gradient in the central Coast

Mountains of British Columbia, Canada, ranging from sea

level to 1500 m. Specifically, we addressed the following

questions: (1) What proportion of the American pika

genome is under positive selection in this system? and (2)

What are the main environmental variables associated

with adaptive population divergence in this species along

independent elevation and longitudinal gradients?

Materials and Methods

Sampling design

This study was carried out in the Bella Coola Valley, BC,

Canada (Fig. 2). This area was chosen for several reasons,

including historical records of the occurrence of O. prin-

ceps from sea level to tree line. The valley runs from east

to west and thus provides a longitudinal gradient from

the interior to the coast, with marked differences in

precipitation. American pikas were sampled from August

2008 to September 2010 at 10 sites along three elevation

gradients (Hill, Nusatsum and Bentinck gradients) using

recently developed noninvasive hair snares (Fig. 2; Henry

and Russello 2011). The transects ranged from sea level to

over 1400 m, representing strong temperature gradients,

with differences of up to six degrees Celsius in mean

summer temperatures from the bottom to the top of the

Hill over a distance of only 16 km (Fig. 2; Henry et al.

2012a). At each site, hair snares were set up along travel

routes (identified by observation of pika behavior) as well

as at each detected haypile and latrine sites that were a

minimum of 20 m apart.

A total of 288 georeferenced hair samples were previ-

ously collected and used for DNA extractions (Henry

et al. 2012b). Multilocus microsatellite genotyping

revealed the presence of 168 individuals (Henry et al.

2012b). At the Hill gradient, six populations were sam-

Figure 1. Photograph of an American pika (Ochotona princeps)

foraging in a meadow close to some talus in the Bella Coola Valley

British Columbia, Canada. Kindly contributed by Alison Henry.
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pled (Table 1; Supplementary Data S1 and S2): two high-

elevation sites, (A1 [n = 15]; A2 [n = 6]), one mid-eleva-

tion site (B [n = 17]), and three low elevation sites (C

[n = 26]; D [n = 32]; E [n = 21]). At the Nusatsum

gradient, one mid-elevation site (F [n = 10]) and one

high-elevation site (G [n = 30]) were sampled. Lastly at

the Bentinck gradient, one low elevation site, H (n = 5)

and one high-elevation site, I (n = 6) were sampled. Each

sampling site was defined as the entire area covered by

talus, with the exception of site H, where sea level pikas

inhabited the rocky interstice between forest and fjord.

The surface area where sampling took place varied from

578 to 22,768 m2 (mean = 11,772, SD = 8690 m2).

AFLP genotyping and band scoring

We used amplified-fragment-length-polymorphism (AFLP)

-based genomic scans to screen large numbers of molecular

markers in the 168 sampled individuals. AFLPs produce

high genomic coverage at a relatively low cost and consti-

tute effective markers for genomic scans in nonmodel

organisms without a reference genome (Bonin et al.

2007a). Approximately 50 ng of isolated DNA was digested

sequentially using TaqI and EcoRI restriction endonucleases

(New England Biolabs, Ipswitch, MA) following the proto-

col outlined in Bonin et al. (2005) with the following modi-

fications: double-stranded adapters (Table S1) were

prepared fresh each time the procedure was repeated and

ligation took place at 16°C overnight in order to maximize

the efficiency of the reaction. Following ligation, the reac-

tion volume was diluted four times instead of 10 times. Pre-

selective and selective amplifications were performed using

a Veriti� thermal cycler (Applied Biosystems, Foster City,

CA) in a 25 lL volume (Bonin et al. 2005). Initially, we

used a representative sample of 16 individuals distributed

throughout our study area and across elevation gradients to

assess amplification success and polymorphism of all possi-

ble combinations of primers with three selective base pairs

(Table S1). Based on results from the pilot analysis, twenty

primer combinations that produced a large number of

bands with high repeatability were retained and screened

on the remainder of the sample. In order to quantify error

Figure 2. Map of the study area located in

the Bella Coola Valley, British Columbia,

Canada including the ten sampling sites

located along three elevation gradients (lowest

to highest elevations indicated): The Hill,

Nusatsum and Bentinck from east to west.

Insets indicate the location of the study area as

well as the distribution of O. princeps in

western North America.

Table 1. Site-specific information including site names, sample size (N), transect, geographical location, area (sq m), altitude (m), mean annual

precipitation (MAP, mm), mean annual temperature (MAT, °C), precipitation as snow (PAS, mm), summer mean maximum temperature (Tmax, °C),

and winter mean minimum temperature (Tmin, °C).

Site N Transect Latitude Longitude Area (sq m) Altitude (m) MAP (mm) MAT (°C) PAS (mm) Tmax (°C) Tmin (°C)

A1 15 Hill N52°18′36″ W125°29′47″ 7867 1433 848 0.3 499 16.4 �14

A2 6 Hill N52°18′26″ W125°29′34″ 3971 1338 838 0.8 477 16.7 �13.5

B 17 Hill N52°15′9″ W125°31′39″ 16,030 793 706 2.7 359 19.4 �11.9

C 26 Hill N52°14′56″ W125°32′14″ 19,088 362 724 4.5 292 20.7 �9.6

D 32 Hill N52°14′49″ W125°33′15″ 17,849 301 775 4.7 297 20.7 �9

E 21 Hill N52°14′39″ W125°31′14″ 22,375 329 711 5 260 21.1 �8.9

F 10 Nusatsum N52°9′37″ W126°11′29″ 4734 707 2671 3.8 933 16.9 �7.4

G 30 Nusatsum N52°7′46″ W126°13′4″ 22,768 1058 2589 2.4 1,219 16.9 �10.3

H 5 Bentinck N52°13′21″ W126°29′22″ 578 2 2193 6.4 382 19.6 �4.1

I 6 Bentinck N52°10′22″ W126°32′5″ 2458 1282 2863 2.2 1374 16.8 �9.7
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rates and check repeatability of our protocol, 42 individuals

(25% of total sample) were randomly selected as duplicates.

Cycling parameters for preselective and selective

amplification were carried out according to Bonin et al.

(2005) with the exception that we used KAPA Taq (KAPA

Biosystems, Cape Town, South Africa) for the preselective

amplification. Each EcoRI primer was fluorescently labeled

(Table S1) to enable analysis on a capillary system.

PCR products were multiloaded and run on an ABI

3130XL genetic analyser (Applied Biosystems) with Gene-

Scan
TM 600 LIZ� size standard.

AFLP profiles were called using a semi-automated

approach in GeneMapper 4.0 (Applied Biosystems). First,

we allowed GeneMapper to automatically generate bins of

1 base pair (bp) width between 50 bp and 600 bp. We

manually checked all bins and removed those that over-

lapped. Fragments with a relative fluorescent unit (rfu)

less than 50 were discarded as this threshold was used to

represent instrument noise, and the peak heights were left

as un-normalized. The output from GeneMapper (frag-

ment size and peak heights) was then imported into scan-

AFLP 1.3 (Herrmann et al. 2010) for further processing.

Marker selection proceeded by first discarding fragments

with the following characteristics: (1) peaks lower than

200 rfu; (2) heights lower than 10% of the mean height

of the maximum height frequency class; and/or (3) a

coefficient of variation higher than one. In addition,

markers that differed by more than one fragment among

replicates were also discarded. The resulting binary matrix

was handled with AFLPdat (Ehrich 2006) to produce files

formatted for further analyses. A total of 1509 AFLP loci

produced using 20 selective primer combinations were

reliably scored, ranging in size from 50 to 473 base pairs.

Each primer combination yielded on average 75 bands,

with a mean error rate of 0.41% ranging from 0.2% to

0.9% (Table S2).

Environmental data

Climatic data were calculated based on geographical loca-

tion and elevation for each site using ClimateBC 3.1

(http://www.genetics.forestry.ubc.ca/cfcg/climate-models.

html; Wang et al. 2006). This software downscales and

interpolates PRISM 1961–1990 monthly normal data

(2.5 9 2.5 arcmin) into 100 m 9 100 m resolution and

outputs a number of measured and derived variables.

Initially, we targeted the 39 annual and seasonal environ-

mental variables available through ClimateBC. In order to

remove redundant information, we performed a principal

component analysis (PCA) and calculated correlation coef-

ficients between each pair of variables using the package

ADE4 1.5-2 (Dray and Dufour 2007) in R version 3.0.1 (R

Development Core Team 2012). Variables were considered

redundant if they produced a correlation coefficient higher

than 0.8 (Manel et al. 2010), in which case the variables

that were deemed less biologically relevant (e.g., derived

variables or variables that a priori do not affect the species)

were removed from further analyses. We thus retained alti-

tude (ALT), mean annual precipitation (MAP), mean

annual temperature (MAT), precipitation as snow (PAS),

summer mean maximum temperature (Tmax), and winter

mean minimum temperature (Tmin) as the explanatory

variables in tests of associations with allele frequency data

(Table 1). While ALT is often considered as a covariate

with other variables such as temperature and precipitation,

it was not found to be redundant given our criteria, possi-

bly due to the complex topography of the study area. ALT

was also retained here as it has been identified as a strong

predictor of pika population extirpation in previous mod-

eling exercises (Beever et al. 2003, 2011). The other vari-

ables we retained were deemed biologically relevant based

on previous work, including MAT and Tmax, as high sum-

mer temperatures have been shown to cause acute or

chronic heat stress (Ray et al. 2012). Likewise, extreme cold

temperatures in the winter have also been found to affect

pika persistence (Beever et al. 2010), and snowpack was

found to mitigate extreme colds by acting as an insulating

blanket (Morrison and Hik 2007), thus we retained Tmin

and PAS. Lastly, we retained MAP, as drier sites are known

to be less favorable to pikas, possibly due to an indirect

effect on vegetation abundance (Ray et al. 2012).

Detection of outlier loci

We used a set of alternative methods to identify loci

potentially subject to selection in our system: (1) two

frequentist FST outlier detection methods relying on differ-

ent simulation frameworks, (2) a Bayesian FST outlier

detection method, and (3) a spatial analysis method

incorporating multiple linear regression models to corre-

late AFLP band frequencies with environmental variables.

We chose to use the multiple methods available as each

approach has its own assumptions and algorithm. We

applied the frequentist method implemented in Mcheza

(Antao and Beaumont 2011), which is based on the algo-

rithm of Fdist (Beaumont and Nichols 1996). This soft-

ware estimates allele frequencies using a Bayesian method

and calculates FST indices between predefined populations

(10 sample sites). Coalescent simulations are performed

under a finite island model to generate an FST null distri-

bution. Loci with unusually high or low FST values contin-

gent on their allele frequencies are considered outliers,

and thus potentially under selection. We performed these

analyses using 1,000,000 iterations and the most stringent

settings including a 0.95 confidence interval (CI) and 5%

false discovery rate (FDR) to guard against false positives.
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All other parameters used default values with h = 0.1, b-a
and b-b = 0.25 and a critical frequency of 0.99. Addition-

ally, we used the neutral mean FST and force mean FST

options. This undertakes an initial run and removes

potential outliers in order to compute an unbiased neu-

tral FST. The second frequentist method, also derived from

Fdist (Beaumont and Nichols 1996) and implemented in

Arlequin 3.5 (Excoffier and Lischer 2010), applies a hier-

archical island model (Excoffier et al. 2009) that takes

underlying population genetic structure into account in

calculating FST. This method has been shown to substan-

tially reduce false positive rates in hierarchically struc-

tured populations (Excoffier et al. 2009), such as that

observed in our system (Henry et al. 2012b). We thus

grouped populations belonging to the same elevation

transect as suggested in this previous study and used a

95% CI to identify outliers. We applied 1,000,000 itera-

tions and simulated 100 demes per group for 10 groups

with minimum and maximum expected heterozygosities

bounded between 0 and 1 under a pairwise difference

model.

The second general approach we used for outlier

detection was the Bayesian method implemented in

BayeScan 2.01 (Foll and Gaggiotti 2008). This approach

directly estimates the probability that each locus is sub-

ject to selection by teasing apart population-specific and

locus-specific components of FST coefficients using a

logistic regression. The posterior probability of a given

locus being under selection is assessed by defining two

alternative models, one including the locus-specific effect

and the other excluding it. Departure from neutrality is

assumed when the locus-specific component is necessary

to explain the observed pattern of diversity using a

reversible jump Markov chain Monte Carlo (MCMC)

algorithm that takes into account all loci at once, thus

resolving the issue of multiple testing of a large number

of loci. We ran chains of 1,000,000 iterations with a

thinning of 10, resulting in 100,000 iterations considered

following a burn-in of 50,000. As above, all other

parameters were kept as default, including 20 pilot runs

of 5000 iterations in length, prior odds for the neutral

model of 10, and a uniform distribution of FIS between

0 and 1. As above, we opted for stringent settings,

implementing a posterior probability of 0.76 and above

and a 5% false discovery rate in order to identify outlier

loci.

The third independent approach we used for outlier

detection was the spatial analysis method, SAM (Joost

et al. 2007, 2008; http://www.econogene.eu/software/sam/),

that computes multiple univariate logistic regression mod-

els to test for associations between the frequency of AFLP

bands and data from selected environmental variables. To

ensure the robustness of the method, likelihood ratio (G)

and Wald statistical tests are implemented to assess the sig-

nificance of coefficients calculated by the logistic regression

function. A model is considered significant only if the null

hypothesis is rejected by both tests, after Bonferroni cor-

rection for multiple testing. For both tests, the null hypoth-

esis is that the model with the examined variable does not

explain the observed distribution better than a model with

a constant only (Joost et al. 2008). We used a significance

threshold corresponding to a 95% CI after Bonferroni cor-

rection.

After identifying loci that showed outlier behavior or

significant association with the selected environmental

variables using the approaches described above, we

performed linear regression analysis using R. For each lin-

ear regression, the residuals were extracted and the

assumption of linearity and normality was verified by plot-

ting the distribution of residuals and corresponding Nor-

mal Quantile Plots. Homoscedasticity was verified by

looking at each residual plot and using a Levene test for

homogeneity of variances. Given the linearity, normality,

and homoscedasticity of residuals, we calculated the

adjusted R2 values (R2
adj) for each regression model sepa-

rately and for each environmental variable. The R2
adj values

were used as they provide an unbiased estimate of the

explanatory power of each alternative model (Ohtani

2000). All above analyses were repeated four times, once at

a regional scale using all the sampled populations repre-

senting a longitudinal gradient from the interior to the

coast, and once across each of the three elevation gradients

separately. In the latter cases, and with the exception of the

Hill, the analyses using hierarchical population structure

implemented in Arlequin 3.5 (Excoffier and Lischer 2010)

and the SAM (Joost et al. 2007) analyses were omitted as it

is not applicable to within-transect comparisons.

Results

Detection of outlier loci across a
longitudinal gradient

We detected 58 outlier loci across all sampling sites along

this longitudinal gradient (3.8% of the genomic scan;

Table 2). The algorithm implemented in Mcheza (Antao

and Beaumont 2011) identified 102 loci with FST values

significantly greater than that expected under a neutral

model (95% significance level and a 5% FDR), indicative

of positive or directional selection, 58 of which were also

identified by at least one other approach (Table 2). Arle-

quin (Excoffier et al. 2009) identified 68 loci under selec-

tion (95% CI level), 51 of which were shared with

Mcheza (Antao and Beaumont 2011). The Bayesian

approach of BayeScan (Foll and Gaggiotti 2008) was the

most conservative of all, detecting 12 outliers (posterior
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Table 2. List of outlier loci detected by four methods across our entire sample.

Transect Comparison Marker1 Mcheza2 Bayescan3 Arlequin4 SAM5 Linear (Radj
2, F, P-value)6

Longitudinal Algorithm E31T37_100 0.991 0.779 0.004 MAP7; PAS7 (0.65, 17.8, 0.003); (0.25, 4.1, 0.08)

Longitudinal Algorithm E31T37_104 0.964 0.836 – PAS8; MAP7;

Tmin
8

(0.36, 6.13, 0.04); (0.84, 47.27, 0.0001);

(0.39, 6.63, 0.03)

Longitudinal Algorithm E31T37_105 0.972 – 0.015 –

Longitudinal Algorithm E31T37_51 0.998 – 0.024 –

Longitudinal Algorithm E31T37_99 – 0.840 – MAP7; Tmin
8 (0.65, 17.8,0.003); (0.36, 6.14, 0.04)

Longitudinal Algorithm E31T39_108 0.999 – 0.002 –

Longitudinal Algorithm E31T39_53 0.987 0.901 – MAP7; PAS7 (0.56, 12.3, 0.008); (0.32, 3.7, 0.09)

Longitudinal Algorithm E31T39_56 0.999 – 0.000 –

Longitudinal Algorithm E31T39_62 0.957 – 0.013 MAP7; PAS8 (0.71, 23, 0.001); (0.44, 7.9, 0.02)

Longitudinal Algorithm E31T39_84 0.965 0.927 0.023 MAP8; PAS8 (0.46, 8.8, 0.02); (0.35, 4.4, 0.07)

Longitudinal Algorithm E31T39_88 0.999 – 0.002 –

Longitudinal Algorithm E31T43_53 0.985 – 0.029 –

Longitudinal Algorithm E31T43_82 0.999 0.887 0.004 –

Longitudinal Algorithm E32T35_112 0.971 – 0.014 –

Longitudinal Algorithm E32T35_53 0.985 – 0.030 –

Longitudinal Algorithm E33T32_104 0.965 – 0.030 –

Longitudinal Algorithm E33T32_93 0.999 – 0.020 –

Longitudinal Algorithm E33T37_103 – – 0.041 MAP7; Tmin
8 (0.66, 18.2, 0.003); (0.4, 6.9, 0.03)

Longitudinal Algorithm E33T37_105 0.987 – 0.019 –

Longitudinal Algorithm E33T39_54 0.999 – 0.001 –

Longitudinal Algorithm E33T39_56 0.966 – 0.009 –

Longitudinal Algorithm E33T39_58 0.999 0.926 0.032

Longitudinal Algorithm E33T39_59 0.999 – 0.019 –

Longitudinal Algorithm E33T39_86 0.995 0.923 0.005 –

Longitudinal Algorithm E33T39_89 0.969 0.916 0.015 MAP8; PAS8;

Tmax
8

(0.44, 8.1, 0.02); (0.33, 5.5, 0.02);

(0.43, 7.7, 0.02)

Longitudinal Algorithm E33T39_919 0.992 0.974 0.013 Tmax
7; MAP8 (0.41, 7.3, 0.03); (0.24, 3.9, 0.08)

Hill Algorithm E33T39_919 0.985 – – Tmin
8 (0.72, 10.4, 0.03)

Longitudinal Algorithm E34T38_83 0.994 – 0.020 –

Longitudinal Algorithm E34T38_92 0.982 – 0.010 –

Bentinck Transect E34T44_579 0.989 – NA NA NA

Hill Transect E34T44_579 0.970 – – –

Hill Transect E34T45_1039 0.995 – – –

Nusatsum Transect E34T45_1039 0.995 – NA NA NA

Longitudinal Algorithm E34T45_122 0.985 0.848 – –

Hill Transect E34T45_1449 0.999 – – –

Nusatsum Transect E34T45_1449 0.955 – NA NA NA

Longitudinal Algorithm E34T45_519 0.999 – 0.023 –

Hill Transect E34T45_519 0.965 – – Tmin
8 (0.54, 8.3, 0.04)

Nusatsum Transect E34T45_519 0.988 – NA NA NA

Longitudinal Algorithm E34T45_56 0.995 – 0.038 –

Longitudinal Algorithm E34T45_86 0.994 – 0.026 –

Longitudinal Algorithm E38T32_126 0.998 – 0.018 –

Longitudinal Algorithm E38T32_1369 0.963 – 0.024 –

Hill Algorithm E38T32_1369 0.951 – – MAP7; Tmax
7 (0.82, 24, 0.008); (0.82, 23, 0.009)

Longitudinal Algorithm E38T32_160 0.963 – 0.020 –

Longitudinal Algorithm E38T32_80 0.963 – 0.034 –

Longitudinal Algorithm E38T32_91 0.977 – 0.011 –

Hill Algorithm/Transect E38T37_1059 0.973 0.790 – MAP8; Tmax
8 (0.6, 8.4, 0.04); (0.58, 7.9, 0.04)

Nusatsum Transect E38T37_1059 0.999 – NA NA NA

Longitudinal Algorithm E38T37_155 0.999 – 0.009 –

Longitudinal Algorithm E38T37_52 0.990 – 0.040 –

Longitudinal Algorithm E38T37_53 0.996 – 0.033 –

Hill Algorithm E38T37_60 0.998 – – Tmax
8 (0.71, 13.3, 0.02)

Longitudinal Algorithm E38T37_83 0.985 – 0.027
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probability of 0.76% and 5% FDR), 8 of which were also

identified by Arlequin (Excoffier et al. 2009), while all 12

were also detected by Mcheza (Antao and Beaumont

2011). Lastly, the SAM (Joost et al. 2008) identified 11

loci potentially associated with four of the six environ-

mental variables under study (MAP, PAS, Tmax, and Tmin;

95% confidence level incorporating Bonferroni correc-

tions with a confidence threshold of 5.52 9 10�6), all of

which were also identified as outliers by one or more of

the FST-based methods (Table 2).

Three outliers (E31T39_84, E33T39_89, and E33T39

_91) were identified by all methods and were found to

be associated with mean annual precipitation (MAP),

precipitation as snow (PAS) and mean temperature of

the warmest months (Tmax). After performing linear

regression analysis on each of the 58 outliers with each

of the six environmental variables separately, ten loci dis-

played strong and significant associations with MAP,

PAS, Tmin, and/or Tmax (Table 2; Fig. 3A).

Detection of outlier loci across elevation
gradients

The above analyses were repeated separately for each tran-

sect (Fig. 2) in order to evaluate the potential selection

pressures associated with elevation. Along the Hill transect,

we identified a total of six outliers detected by multiple

algorithms (0.4% of the genomic scan; Table 2), each of

Table 2. Continued.

Transect Comparison Marker1 Mcheza2 Bayescan3 Arlequin4 SAM5 Linear (Radj
2, F, P-value)6

Longitudinal Algorithm E43T35_57 0.999 – 0.005 –

Longitudinal Algorithm E43T35_61 0.954 – 0.037 –

Longitudinal Algorithm E43T35_68 0.999 – 0.014 –

Longitudinal Algorithm E43T37_213 0.999 – 0.000 –

Longitudinal Algorithm E43T37_2159 0.999 0.999 0.000

Hill Transect E43T37_2159 0.984 – – –

Nusatsum Transect E43T37_2159 0.988 – NA NA NA

Longitudinal Algorithm E43T37_51 0.997 – 0.012 –

Longitudinal Algorithm E43T37_53 0.990 – 0.045 –

Longitudinal Algorithm E43T43_104 – – 0.044 MAP8; PAS7 (0.37, 6.2, 0.04); (0.7, 22.3, 0.001)

Hill Algorithm E43T43_80 0.999 – – PAS8; Tmax
8 (0.76, 16.9, 0.01); (0.79, 20.3, 0.01)

Longitudinal Algorithm E43T44_107 0.953 – 0.025 –

Longitudinal Algorithm E43T44_87 0.997 – 0.013 –

Longitudinal Algorithm E43T44_88 0.972 – 0.022 –

Nusatsum Algorithm E44T38_115 0.999 0.810 NA NA NA

Longitudinal Algorithm E44T38_124 0.968 – 0.025 –

Longitudinal Algorithm E44T38_71 0.971 – 0.047 –

Longitudinal Algorithm E44T38_72 0.954 – 0.016 –

Longitudinal Algorithm E44T38_87 0.991 – 0.018 –

Longitudinal Algorithm E44T44_104 0.999 – 0.028 –

Hill Transect E46T38_1259 0.999 – – –

Nusatsum Transect E46T38_1259 0.990 – NA NA NA

Bentinck Algorithm/Transect E46T38_659 0.998 0.770 NA NA NA

Hill Transect E46T38_659 0.953 – – –

Nusatsum Transect E46T38_659 0.967 – NA NA NA

Longitudinal Algorithm E46T45_769 0.964 – – Tmax
7 (0.67, 19.1, 0.002)

Hill Algorithm E46T45_769 0.957 – – Tmax
7 (0.74, 15.1, 0.02)

1Outliers detected by either more than one algorithm within a transect (Algorithm) or detected independently in more than one elevation transect

(Transect).
2For Mcheza, 95% significance level and 5% false discovery rates were used.
3For Bayescan, a posterior probability above 0.76 indicated a strong outlier with a 5% FDR.
4For Arlequin, a 95% CI level was used to identify an outlier.
5For the SAM, the environmental variables significantly correlated at a 95%and 99% CI and after Bonferroni corrections (confidence threshold at

5.52 9 10�6 and 1.1 9 10�6) are indicated. Climatic variable abbreviations are as follows: MAP, mean annual precipitation; PAS, precipitation as

snow; Tmax, summer maximum temperature; Tmin, winter minimum temperature.
6Values in italic indicate relationships that were marginally significant using linear regression.
7Statistically significant at P < 0.01, corresponding to a confidence threshold after Bonferroni corrections of 1.1 9 10�6.
8Statistically significant at P < 0.05, corresponding to a confidence threshold after Bonferroni corrections of 5.52 9 10�6.
9Indicates outliers loci that were detected among multiple individual transects.
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which also exhibited a significant association with at least

one environmental variable based on the SAM (Fig. 3B;

Joost et al. 2008). Five outlier loci detected along the Hill

transect overlapped with those found in the regional scale

analysis (Table 2). At both the Nusatsum and Bentinck

transects, only a single, nonoverlapping locus was identi-

fied by multiple algorithms (Table 2). In both cases, the

SAM (Joost et al. 2008) algorithm reached its iteration

limit and produced no results, possibly caused by the fact

that these transects contained only two populations each.

Interestingly, Mcheza (Antao and Beaumont 2011) iden-

tified eight loci that were detected independently as out-

liers in two or more transects (Table 2). One locus was

detected independently in all three transects (E46T38_65)

and corresponded to the only locus detected by multiple

algorithms in Bentinck (Table 2). Three loci independently

detected in the Hill and Nusastum transects were also

identified in the longitudinal analysis (E34T45_51,

E43T37_215; Table 2) or by multiple algorithms in the

Hill transect alone (E38T37_105; Table 2). Two of these

eight loci (E38T37_105 and E24T45_51) also showed a

significant association with at least one environmental var-

iable along the Hill transect.

Discussion

While climate change is regarded as a potential threat to

species persistence, we have relatively little understanding

of the genetic basis underlying biotic responses to envi-

ronmental changes. This information will likely become

increasingly important for the design and implementation

of conservation strategies that explicitly take environmen-

tal changes into consideration, potentially informing

conservation unit delimitation (Funk et al. 2012) and

direct intervention in the form of assisted migration (Al-

lendorf et al. 2010). In order to meaningfully inform such

strategies, it is important to better understand the extent

and distribution of adaptive genetic variation, as well as

the underlying drivers of divergence. In this study, we

used AFLP-based genomic scans to begin to fill this

knowledge gap for American pika, a sentinel mammalian

species of growing conservation concern.

The extent and distribution of outlier loci

We identified 3.8% of loci analyzed as displaying evidence

for positive selection or significant association with an

environmental variable at the regional scale. This percent-

age falls below the reported values for AFLP-based geno-

mic scans using Dfdist (5–10%) (Nosil et al. 2009). A

possible explanation for the lower percentage of outliers

detected in our study is the fact that it was conducted

within a subspecies of American pika (O. princeps fenisex)

and at a finer scale in comparison with previous work

(but see Parisod and Joost 2010). Indeed, other studies

have used populations that were separated by several

hundred kilometers (Nunes et al. 2011), or at both conti-

nental and regional scales (Manel et al. 2010). The only

comparable study in vertebrates is that of Bonin et al.

(2006) that focused on common frog populations sam-

(A)

(B)

Figure 3. (A) Linear regression of the frequency of E31T37_104

against mean annual precipitation (MAP), depicting a significant

negative relationship (R2adj = 0.84, F-test, F = 47.27, DF = 8,

P = 0.0001) across the longitudinal gradient from coast to interior. (B)

Linear regression of the frequency of E38T32_136 against summer

mean maximum temperature (Tmax), depicting a significant negative

relationship (R2adj = 0.82, F-test, F = 23, DF = 6, P = 0.009) across the

Hill elevation gradient. Points indicate sampling locations.
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pled along an altitudinal gradient and recovered a similar

percentage of outliers as those reported here.

It can be challenging, however, to compare percent

outliers between studies, given that no convention has yet

been established regarding the type and number of algo-

rithms used and their associated significance criteria (but

see De Mita et al. 2013) Here, we implemented a conser-

vative approach to outlier locus detection, employing

both FST-based and environment–allele association

approaches, and only identifying outliers as loci detected

by at least two independent tests (Perez-Figueroa et al.

2010) or by a single test across multiple environmental

transects. The cost associated with this approach, how-

ever, may have led to an inflated type II error, effectively

underestimating the proportion of outlier loci in our

sample compared with other studies. Nonetheless, cross-

validation appears to be an effective strategy for increas-

ing confidence in identified outliers. For example, the

algorithm implemented in Arlequin (Excoffier et al. 2009)

that takes into account hierarchical population structure

in the detection of outlier loci was largely consistent with

Mcheza (Antao and Beaumont 2011), which does not

account for population structure and implements a finite

island model. In this case, only four loci were identified

as outliers by the latter, but not the former. Yet these

four loci were not regarded as false positives as they were

also detected independently by the SAM (Joost et al.

2008).

While differences in sampling design for each transect

precluded the use of all the analyses described above, our

experimental design still enabled us to make meaningful

comparisons with regards to differences in outlier detec-

tion across multiple environmental gradients. First, a

larger proportion of outlier loci were detected along the

latitudinal gradient as compared with that found in alti-

tudinal gradients. Reasons for this discrepancy include

differences in the numbers of populations tested (10 for

latitudinal and 6, 2, and 2 for altitudinal gradients) and

spatial scale (70 km for latitudinal and approximately

10 km for altitudinal gradients). Second, each elevation

gradient was characterized by its own set of outlier loci,

which may be the result of divergent population histories

within each transect. The populations from the Hill dis-

played the largest amount of outliers detected by multiple

independent approaches, while Nusatsum and Bentinck

yielded eight and two outliers each. This discrepancy

between proportion of outliers detected may be due to

differences in sampling design (2 vs. 6 populations) as

well as differences in sample size. Interestingly, eight loci

were detected independently as outliers in two or more

transects (Table 2). One locus was detected independently

in all three transects (E46T38_65) and corresponded to

the only locus detected by multiple algorithms in

Bentinck (Table 2). Three loci independently detected in

the Hill and Nusastum transects were also identified in

the longitudinal analysis (E34T45_51, E43T37_215;

Table 2) or by multiple algorithms in the Hill transect

alone (E38T37_105; Table 2). Two of these loci

(E38T37_105 and E24T45_51) also showed a significant

association with at least one environmental variable along

the Hill transect. As these loci were generally not detected

in the longitudinal transect (except E43T37_215), they

may signify cases of convergent evolution across the mul-

tiple elevational transects, representing promising targets

for further study.

Environmental drivers of adaptive
population divergence

Use of environmental–allele association approaches to out-

lier detection offer the added benefit of pinpointing puta-

tive mechanisms underlying divergence. Here, the SAM

(Joost et al. 2008) identified loci that were significantly

correlated with several environmental variables along the

longitudinal gradient. Of eleven loci that showed signifi-

cant association, 10 were correlated with MAP, seven with

PAS, and three with Tmax and Tmin. The amount of precip-

itation is thus considered as the main driver of population

adaptive divergence across this 70 km longitudinal gradi-

ent ranging from the wet coast to the drier interior Coast

Mountains. For example, locus E31T37_104 displayed a

negative association with mean annual precipitation

(Fig. 3A) and was entirely absent from populations experi-

encing high amounts of precipitation. While a direct

impact of precipitation on pikas may be difficult to infer,

we hypothesize that taken as a proxy for the quality of

snowpack, MAP and PAS could potentially explain varia-

tion for traits related to cold tolerance, and could shed

light on populations better adapted to acute cold stresses.

Within the Hill transect, seven loci were found to be

correlated with environmental variables. Tmax was associ-

ated with four outliers, followed by Tmin (three loci),

MAP (two loci), and PAS (one locus). Along this eleva-

tional gradient, the mean maximum temperature of the

summer months was found to be the main driver of

adaptive population divergence. When analyzed sepa-

rately, two loci (E43T43_80 and E38T32_136) showed sig-

nificant and strong correlation with Tmax, PAS, and MAP.

Interestingly, E43T43_80 displayed a negative relationship

with Tmax, and E33T39_91 displayed a positive relation-

ship with Tmin, representing promising candidates for

further studying a potential association with adaptation to

cold tolerance in pikas. In contrast, E38T32_136 showed

the opposite trend (Fig. 3B), potentially representing a

variant associated with adaptation to warmer environ-

mental conditions. In a conservation context, these loci
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could be screened in other populations and their relative

frequencies used to calculate a population adaptive index,

which may help prioritize populations for conservation

action with regard to anticipated climate changes (Bonin

et al. 2007b; Sgr�o et al. 2011). This information could be

then be used to guide-assisted migration efforts.

Although AFLP-based genomic scans are a repeatable

and cost-effective way to screen the genome of nonmodel

organisms, the anonymity of these markers precludes the

identification of genes responsible for the observed adap-

tive divergence. Additional work is necessary to isolate,

clone, and sequence these fragments with the aim to iden-

tify candidate genes associated with local adaptation,

although this approach has not proven fruitful in our sys-

tem and has been a challenge in others (Nunes et al.

2012). Thus, the present genomic scan represents a first

broad attempt at characterizing adaptive population

divergence in O. princeps. Follow-up studies will target

recently developed SNP markers (Lemay et al. 2013).

These efforts will bridge the gap between the anonymous

candidates identified here and the chromosomal location

and biochemical pathways associated with local adapta-

tion in this system.

Conclusion

The present study represents one of the first parallel uses

of population and landscape genomic approaches to

detect candidate loci under positive selection in a wildlife

species potentially threatened by climate change. We illus-

trate the complementary nature of both approaches in

identifying candidate loci responsible for local adaptation.

Because these algorithms are prone to false positives, we

opted to use multiple approaches and only identified out-

liers as loci detected by at least two independent tests or

independent elevation transects. Based on this rationale,

4.5% of the genomic scan was detected as outlier loci,

which lies at the low level of what has been reported in

previous studies. Two main environmental variables,

mean annual precipitation and summer mean maximum

temperatures, were identified as forces associated with

adaptive divergence in this system. Further exploration of

candidate loci that demonstrated strong correlation with

these environmental variables may represent important

targets for predicting pika responses to climate change

and informing novel approaches to wildlife conservation

in a changing world.
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