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Abstract

Motivation: Heritability, the proportion of variation in a trait that can be explained by genetic vari-

ation, is an important parameter in efforts to understand the genetic architecture of complex phe-

notypes as well as in the design and interpretation of genome-wide association studies. Attempts

to understand the heritability of complex phenotypes attributable to genome-wide single nucleo-

tide polymorphism (SNP) variation data has motivated the analysis of large datasets as well as the

development of sophisticated tools to estimate heritability in these datasets. Linear mixed models

(LMMs) have emerged as a key tool for heritability estimation where the parameters of the LMMs,

i.e. the variance components, are related to the heritability attributable to the SNPs analyzed.

Likelihood-based inference in LMMs, however, poses serious computational burdens.

Results: We propose a scalable randomized algorithm for estimating variance components in

LMMs. Our method is based on a method-of-moment estimator that has a runtime complexity

OðNMBÞ for N individuals and M SNPs (where B is a parameter that controls the number of random

matrix-vector multiplications). Further, by leveraging the structure of the genotype matrix, we can

reduce the time complexity to O NMB
maxð log3N; log3MÞ

� �
.

We demonstrate the scalability and accuracy of our method on simulated as well as on empirical

data. On standard hardware, our method computes heritability on a dataset of 500 000 individuals

and 100 000 SNPs in 38 min.

Availability and implementation: The RHE-reg software is made freely available to the research

community at: https://github.com/sriramlab/RHE-reg.

Contact: sriram@cs.ucla.edu

1 Introduction

A central question in biology is to understand how much of the vari-

ation in a trait (phenotype) can be explained by genetics as opposed to

environmental factors. The heritability of a trait is a central notion in

quantifying the contribution of genetics to the variation in a trait. The

heritability of a trait refers to the proportion of variation in the trait

that can be explained by genetic variation (Visscher et al., 2008). The

narrow-sense heritability (h2) refers to the proportion of trait variation

that can be explained by a linear function of genetic variation (Almasy

and Blangero, 1998). Beyond understanding the genetic basis of a

phenotype, heritability determines the power of genetic association

studies to detect genetic variants associated with a phenotype, the ac-

curacy of using genetic data to predict phenotypes, as well as the re-

sponse of a phenotype to natural and artificial selection (Houle, 1992).

While family-based studies enabled the estimation of heritability

of a wide variety of traits, the availability of genome-wide genetic

variation data has enabled a direct estimation of the heritability asso-

ciated with genotyped single nucleotide polymorphisms (SNPs),

termed SNP heritability. Initial attempts to estimate heritability from

genomic data focused on the variation in a trait could be explained by

SNPs that were discovered to be significantly associated with the trait

in a genome-wide association study (GWAS). These estimates were

found to severely under-estimate the narrow-sense heritability, a phe-

nomenon known as missing heritability. A major insight into the mys-

tery of missing heritability emerged in Yang et al. (2010) who showed

that using all genotyped SNPs jointly to explain variation in a trait led

to a substantially larger estimate of heritability than from SNPs that

were found to be associated in GWAS. Subsequent analyses suggest

that much of missing heritability could be explained by the presence

of a large number of SNPs of weak effects that has, in turn, motivated

analyses of larger datasets.

Linear mixed models (LMMs) has emerged as a key analytically

technique for estimating the heritability of complex traits using
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genome-wide SNP variation data. Beyond their application in esti-

mating SNP heritability, LMMs are widely used in association tests

where they are used to control for population stratification (Kang

et al., 2008a; Lippert et al., 2011; Loh et al., 2015b; Yu et al., 2006;

Zhou and Stephens, 2014), in phenotype and disease risk prediction

(Makowsky et al., 2011; Speed et al., 2012; Wray et al., 2013; Yang

et al., 2010; Zhou et al., 2013), and in understanding the relative

contribution of genomic regions to variation in a trait of interest

(Makowsky et al., 2011; Wray et al., 2013; Yang et al., 2010).

A key step in the application of LMMs is the estimation of

their parameters, i.e. often referred to as variance components.

Estimation of variance components is a computationally challenging

problem on genomic datasets containing large numbers of

individuals and SNPs. The most commonly used method for

variance components estimation in LMMs relies on maximizing the

likelihood of the parameters. Often, a related estimator, known as

the restricted maximum likelihood (REML) estimator, is preferred

due to a reduced bias relative to maximum likelihood estimators.

Both maximum likelihood as well as REML estimation, however,

rely on computationally intensive optimization problems. While a

number of methods have been proposed to improve the computa-

tional efficiency of REML estimators (Kang et al., 2008b; Lippert

et al., 2011; Loh et al., 2015a, b; Pirinen et al., 2013; Yang et al.,

2011), all of these methods rely on iterative optimization algorithms

that do not scale well to biobank-scale datasets consisting of mil-

lions of individuals genotyped at tens of millions of SNPs. Further,

REML has been shown to yield biased estimates of heritability in

ascertained case-control studies (Chen, 2014; Golan et al., 2014).

1.1 Our contributions
We propose a scalable randomized algorithm to estimate variance

components of a LMM. Our method is based on Haseman–Elston

(HE) regression (Bulik-Sullivan, 2015; Chen et al., 2004; Elston

et al., 2000; Haseman and Elston, 1972), a method-of-moment

(MoM) estimator of the heritability of a phenotype. The HE-regres-

sion estimator, like other MoM estimators, tends to be statistically

less efficient compared to REML. On the other hand, HE-regression

is computationally attractive as it leads to a set of linear equations in

the variance components that can be solved analytically. While this

property of HE-regression is appealing, a key computational bottle-

neck in the application of HE-regression is the computation of an

N�N matrix that summarizes the relationship between all N pairs

of individuals in the dataset. As a result, the computation and mem-

ory requirements of HE scale quadratically with the number of

individuals.

Our randomized HE-regression (RHE-reg) estimator relies on

the observation that the key bottleneck in HE-regression can be

replaced by multiplying the N � M (individuals � SNPs) matrix of

genotypes with a small number, B, of random vectors. This leads to

a randomized estimator with runtime OðNMBÞ and memory

requirements OðNMÞ. Further, we leverage the observation that

the genotype matrix has entries in a finite set, i.e. f0;1;2g so that

the time complexity of matrix-vector multiplication reduces to

O NMB
maxð log3ðNÞ; log3ðMÞÞ

� �
(Liberty and Zucker, 2009). This additional

gain in efficiency can be substantial when the number of SNPs or

individuals is large. For example, in the UK Biobank, N is of the

order of 105 while M is of the order of 106. Thus, we propose an es-

timator of variance components with runtime O NMB
maxð log3ðNÞ; log3ðMÞÞ

þ
�

NMÞ and memory requirement OðNMÞ.

We apply the RHE-reg estimator to the problem of estimating

SNP heritability. We show that our method yields unbiased SNP

heritability estimates. While our method is statistically inefficient

compared to REML (both because it is moment-based as well as the

added randomization), we show in practice that the statistical ineffi-

ciency is minimal, particularly for large sample sizes. Further, our

method is substantially more computationally efficient so that it can

be effectively applied to whole-genome genotype data from hun-

dreds of thousands of individuals. REML has been shown to yield

biased estimates of heritability in ascertained case-control studies

(Chen et al., 2004; Golan et al., 2014) while the RHE-reg estimator

can also be applied in this setting.

Finally, since variance component analysis is of interest beyond her-

itability estimation, the RHE-reg estimator can enable rapid estimation

of variance components in all of the settings in which LMMs are used.

2 Materials and methods

We observe genotypes from N individuals at M SNPs. The genotype

vector for individual i is a length M vector denoted by

gi 2 f0;1; 2g
M. The jth entry of gi denotes the number of minor al-

lele carried by individual i at SNP j. Let G be the N � M genotype

matrix where G ¼ ½gT
1 . . . gT

N �. X is a N � M matrix of standardized

genotypes obtained by centering and scaling each column of G so

that
P

n gn;m ¼ 0 and
P

n g2
n;m ¼ 1 for all n 2 f1; . . . ;Ng. Let y is an

N-vector of phenotypes and b be an M-vector of SNP effect sizes.

2.1 Linear mixed model
We assume the vector of phenotypes y is related to the genotypes by

a LMM:

yj�; b ¼ Xbþ � (1)

�jr2
e � Nð0; r2

e INÞ (2)

bjr2
g � N

r2
g

M
IM

 !
: (3)

Here y is centered so that
P

n yn ¼ 0. r2
e is the residual variance

while r2
g is the variance component corresponding to the M SNPs.

The SNP heritability is defined as h2 ¼ r2
g

r2
gþr2

e
.

In this model, we have E½y� ¼ 0 while the population covariance

of the phenotype vector y is:

covðyÞ ¼ E yyT
� �

� E y½ �E y½ �T

¼ r2
g

XXT

M
þ r2

e IN

(4)

¼ r2
gK þ r2

e IN : (5)

Here K ¼ 1
M XXT is the genetic relatedness matrix (GRM) com-

puted from all SNPs. One approach to estimate the SNP heritability is

HE-regression (Haseman and Elston, 1972) which is a MoM estima-

tor obtained by equating the population covariance to the empirical

covariance [several variants of HE-regression have been proposed;

what we consider here is HE-CP (Sham and Purcell, 2001)]. The em-

pirical covariance of the phenotype vector y is estimated by yyT. The

MoM estimator is obtained by solving the following ordinary least

squares (OLS) problem (see Appendix A1 for details):

ðcr2
g ;
cr2

e Þ ¼ argminr2
g ;r

2
e
jjyyT � ðr2

gK þ r2
e IÞjjF2: (6)
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The MoM estimator satisfies the normal equations:

tr K2
� �

tr K½ �

tr K½ � N

" # cr2
gcr2
e

24 35 ¼ yTKy

yTy

" #
: (7)

Solving the normal equations requires computing tr½K2� ¼
P

i;j

K2
i;j; tr½K� ¼

P
i Ki;i; yTKy ¼

P
i;j Ki;jyiyj and yTy ¼

PN
n¼1 y2

n. The

GRM K can be computed in time OðMN2Þ and requires OðN2Þ
memory. Given the GRM, computing each of the coefficients for the

normal equation requires OðN2Þ time. Finally, given each of the

coefficients, we can solve analytically solve for the cr2
g and cr2

e .

Indeed, we can write

cr2
g ¼

yTðK � IÞy
tr K2½ � �N

: (8)

Thus, the key bottleneck in solving the HE-regression lies in

computing the GRM.

2.2 RHE-reg: a randomized estimator of heritability
Given that K ¼ 1

M XXT, we can compute the quantities

tr K½ � ¼ 1
M

P
i;j X2

i;j; w ¼ XTy; tr yTKy
� �

¼ 1
m

PM
m¼1 w2

m. For standar-

dized genotypes, tr½K� ¼ N while tr½yTKy� can be computed in

OðMNÞ time.

The one remaining quantity that we need to compute efficiently

is tr½K2�. Given a N � N matrix A and a random vector z with mean

zero and covariance IN, we use the following identity to construct a

randomized estimator of the trace of matrix A (see Appendix A2 for

a proof):

E½zTAz� ¼ tr½A�: (9)

Equation (9) leads to the following unbiased estimator of the

trace of K2 given B random vectors, z1; . . . ; zB, drawn independently

from a distribution with zero mean and identity covariance matrix

IN:

LB � dtr K2
� �

¼ 1

B

X
b

zT
b KKzb

¼ 1

B

1

M2

X
b

zT
b XXTXXTzb

¼ 1

B

1

M2

X
b

jjXXTzbjj22

: (10)

In practice, we draw each entry of z independently from a standard

normal distribution. We note that the estimator LB involves two

matrix-vector multiplications of N �M matrix repeated B times for

a total runtime of OðNMBÞ.
The RHE-reg estimator (fr2

g ;
fr2

e ) is obtained by solving the

Normal equations [Equation (7)] by replacing tr½K2� with LB.

LB tr K½ �

tr K½ � N

" # fr2
gfr2
e

24 35 ¼ yTKy

yTy

" #
: (11)

The RHE-reg estimator of the SNP heritability is then obtained

by h2
rhe ¼

er2

s2
y

where s2
y ¼

yTy
N�1 is the unbiased estimator of the pheno-

typic variance.

2.3 Sub-linear computations
The key bottleneck in the RHE-reg is the computation of LB which

involves repeated multiplication of the normalized genotype matrix

X by a real-valued vector. Leveraging the fact that each element of

the genotype matrix G takes values in the set {0, 1, 2}, we

can improve the complexity of these multiplication operations from

OðNMÞ to O NM
maxð log3N; log3MÞ

� �
using the Mailman algorithm (Liberty

and Zucker, 2009).

2.3.1 The Mailman algorithm

Consider a M � N matrix AT whose entries take values in {0, 1, 2}.

Assume that the number of SNPs M ¼ log3ðNÞ. The naive way

to compute the product ATb for any real-valued vector b takes Oðlo
g3ðNÞ �NÞ time.

The Mailman algorithm decomposes the matrix A as AT ¼ UnP.

Un is a log3ðNÞ �N matrix whose column contains all possible vec-

tors over {0, 1, 2} of length log3ðNÞ. And P is an indicator matrix,

where entry Pi;j ¼ 1 if the ith column is the same as jth column

in matrix A : AðjÞ ¼ U ðiÞn . The decomposition of matrix A takes OðN
log3ðNÞÞ time. The desired product ATb is computed in two steps as

c ¼ Pb followed by Unc, each of which can be computed in only

OðNÞ operations (Liberty and Zucker, 2009).

For a matrix AT with M > d log3ðNÞe, we partition AT into

d M
d log3ðNÞe

e sub-matrices each of size dlog3ðNÞ �Ne each of which

can be multiplied in time OðNÞ for a total computational cost of

O NM
log3ðNÞ

� �
.

2.3.2 Application of the Mailman algorithm to RHE-reg

Now consider the standardized genotype X , which could be written

as X ¼ ðG�MÞR, where M is a matrix where the ith column con-

tains the sample mean of the ith SNP (M ¼ 1N �gT), and R is an

M �M diagonal matrix, with the inverse of variance of each SNP as

the diagonal entries.

Thus, when we compute yTKy ¼ 1
M yTXXTy ¼ 1

M jjRðG
Ty�MTyÞjj22

in Equation (11), computing GTy using the Mailman algorithm takes

O NM
maxðlog3M;log3 NÞ
� �

operations. Similarly, to compute each term in the

sum of the randomized estimator of tr½K2� [Equation (10)], XTzb, we

can substitute XTzb with RGTzb � RMTzb. The first term RGTzb can

again be computed using O NM
maxðlog3M;log3NÞ

� �
using the Mailman algo-

rithm, and the second term RMTzb is equivalent to scaling the N-vector

zb which can be computed in timeOðN þMÞ.

2.4 Computing the standard error
We show in Appendix A4 that the variance of the RHE-reg estima-

tor of r2
g can be approximated by the variance of the exact HE-

regression estimator with an additional contribution due to the

randomization:

Var fr2
g

h i
� Var cr2

g

h i
þ 1

B tr K2½ � �Nð Þ2
r4

g

� �
tr K2
� �

:

Here B is the number of samples used and z is a random vector

with mean zero and identity covariance matrix. For samples with

low-levels of relatedness, we can assume K � I and our estimates of

r2
g and tr½K2� to estimate the variance. Further, we show in

Appendix A4 that we can estimate the variance (and hence, the

standard error) of the RHE-reg estimator in sub-linear time without

assuming that K � I.

2.5 Some remarks on the RHE-reg estimator
1. The RHE-reg is biased as we show in Appendix A3 with a bias

that decreases with B. In practice, the bias appears to be small

(see Fig. 1).
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2. Equation (3) assumes an infinitesimal model for the phenotype.

However, all our results only depend on the second moment of

the SNP effect sizes. Thus, the RHE-reg estimator can yield valid

estimates for non-infinitesimal architectures.

3. In a number of settings, it is desirable to include covariates, such

as age or sex, in the analysis. This changes the model in

Equation (3) to:

yj�; b ¼Waþ Xbþ �: (12)

Here W is a N � C matrix of covariates while a is a C-vector of

coefficients. In this setting, we transform Equation (12) by multi-

plying by the projection matrix V ¼ IN �WðWTWÞ�1WT:

Vy ¼ VXbþ V�: (13)

The RHE-regression estimator applied to Equation (13) then

must satisfy the following moment conditions:

JB tr VK½ �

tr VK½ � N � C

" # fr2
gfr2
e

24 35 ¼ yTVKVy

yTVy

" #
: (14)

Here JB is a randomized estimator of tr½VKVK� analogous to

Equation (10). The cost of computing the RHE-reg estimator

now includes the cost of computing the inverse of WWT as well

as multiplying W by a real-valued vector for an added computa-

tional cost of OðC3 þNCÞ. Typically, the number of covariates

C is small (tens to hundreds) so that the presence of covariance

does not greatly increase the computational burden.

4. The variance components model [Equations (3) and (5)] can be

extended in a straightforward manner to more than two vari-

ance components. A number of recent studies have explored the

utility of these models to partition heritability based on func-

tional annotations as well as other categories.

5. The accuracy and the runtime of RHE-reg depends on the choice

of the number of random vectors B. In practice, we find that the

estimator is highly accurate with a small B � 100 even for moder-

ate sample sizes N � 5 000 as we show empirically (Fig. 2).

Further, for larger sample sizes, even smaller values of B should

be adequate. It is also possible to choose increasing values of B

and to terminate when the estimate of tr½K2� does not change con-

siderably. We have not explored this option in detail in this work.

3 Results

3.1 Simulations
We performed simulations to measure the performance of RHE-reg

to other methods for heritability estimation in terms of accuracy,

(a) (b) (c)

(d) (e) (f)

Fig. 1. RHE-reg accurately estimates heritability: in the first series of (a–c), we simulated genotypes with varying sample size while fixing the number of SNPs to

10 000. The phenotype in each of the (a), (b) and (c) is simulated with true heritability of 0.2, 0.5 and 0.8, respectively. The second series of (d–f) considers geno-

type data with varying number of SNPs while the number of samples is fixed at 10 000. All three methods that we evaluated (GCTA, HE-reg and RHE-reg) have

similar accuracies. GCTA which estimates the REML has smaller standard errors when the heritability is large (h2 ¼ 0:80). For lower values of true heritability

(h2 ¼ 0:20;h2 ¼ 0:50), the estimates from REML, HE-regression and RHE-reg are comparable. HE and RHE-reg have similar variance suggesting that randomiza-

tion only makes a minor contribution to the statistical accuracy
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running time and memory usage. We compared RHE-reg to two

methods for computing REML estimates: GCTA (Yang et al., 2011)

(which implements an exact numerical optimization algorithm to

compute the REML) as well as implementations of HE-regression.

3.2 Accuracy
In our first set of simulations, we compared the accuracy of RHE-

reg to our implementation of exact HE-regression as well as GCTA,

an implementation that computes the REML. We simulated geno-

types assuming each SNP is drawn independently from a Binomial

distribution with allele frequency that is sampled uniformly from

the interval (0, 1). Given the genotypes, we simulated phenotypes

under an infinitesimal model, i.e. with effect size at each SNP drawn

independently from a normal distribution with mean zero and vari-

ance equal to the heritability divided by the number of SNPs. We

considered different values for the true SNP heritability of the

phenotype to be 0.2, 0.5 and 0.8.

In our first series of experiments, we fixed the number of

SNPs at M ¼ 10 000 and varied the number of individuals

N ¼ 1k; 2k . . . 10k. In the second series of experiments, we varied

the number of SNPs M ¼ 1k; 2k . . . 10k while fixing the number of

individuals to be N ¼ 10 000. We repeated each experiment 100

times in order to assess the variance of each of the estimators. We

estimated heritability using RHE-reg with B ¼ 100 random vectors.

Figure 1 compares the estimates of each of the three methods

(RHE-reg, HE-regression and GCTA) to the true heritability. First,

we observe that all three methods obtain estimates of heritability

that are quite close to each other as well as to the true heritability

across the range of parameters explored. Second, RHE-reg and HE-

regression are virtually indistinguishable in the variance of their esti-

mates in each configuration. This suggests that the randomization

makes a negligible contribution to the statistical accuracy of the

MoM estimators. In some cases, RHE-reg even has a smaller vari-

ance than HE-regression. Third, as expected, REML obtains estima-

tors that are closer to the true heritability compared to either of the

MoM estimators for a high value of true heritability. For lower val-

ues of true heritability (h2 ¼ 0:20; h2 ¼ 0:50), the estimates from

REML, HE-regression and RHE-reg are comparable. This result is

also expected given that REML is asymptotically equivalent to

MoM when the phenotypic correlation between individuals is small

(Sham et al., 2000; Sham and Purcell, 2001). Finally, the sample size

has a bigger effect than the number of SNPs on the accuracy of each

of the methods, consistent with theory (Visscher et al., 2014).

3.3 Computational efficiency
In the second set of simulations, we compared the runtime and

memory usage of different methods. We compared RHE-reg to two

REML methods, GCTA (Yang et al., 2011) and BOLT-REML (Loh

et al., 2015a) (a computationally efficient approximate method to

compute the REML) as well as an exact MoM method MMHE (Ge

et al., 2017). In this experiment, we simulated genotype data con-

sisting of 100 000 SNPs over sample sizes of N ¼ 10k; 20k; 30k;50k

;100k and 500 k and then simulated phenotypes corresponding to

the genotype data. For each dataset, we ran RHE-reg with B ¼ 100

random vectors. We performed all comparisons on an Intel(R)

Xeon(R) CPU 2.10 GHz server with 128 GB RAM. All computa-

tions were restricted to a single core, capped to a maximum runtime

of 12 h and a maximum memory of 128 GB.

Figure 3 shows that both GCTA and MMHE do not scale to large

sample sizes due to the requirement of computing and operating on a

GRM that scales quadratically with N. GCTA could not complete its

computation when running on N ¼ 100K individuals while MMHE

did not complete its computation on N ¼ 50K. BOLT-REML and

RHE-reg scale linearly with sample size. However, RHE-reg is an

order of magnitude faster than BOLT-REML. For example, on a data-

set of a size of 500 K individuals, RHE-reg computed the heritability

in about 30 min compared to 400 min for BOLT-REML. Figure 3

shows that RHE-reg is memory efficient as well.

3.4 Application to real data
We compared the statistical accuracy and runtime of BOLT-REML,

GCTA and RHE-reg on the Northern Finland Birth Cohort (NFBC)

dataset. The NFBC dataset contains 315 529 SNPs and 5326 indi-

viduals after applying standard filters (minor allele frequency>0.05

and Hardy–Weinberg equilibrium P-value<0.01) (Sabatti et al.,

2009). We applied these methods to estimate the heritability of three

phenotypes that were assayed in this dataset: triglycerides (TGs),

high-density lipoprotein (HDL) and body mass index (BMI).

We compared the runtime, point estimates of the heritability as

well as standard errors for each of the three methods. We computed

RHE-reg with B ¼ 100 random vectors. As shown in Table 1, the her-

itability estimates of RHE-reg are concordant with the other methods

while being an order of magnitude faster to compute. We note that

the NFBC dataset has a sample size N � 5000 so that we expect

RHE-reg to be more accurate on larger datasets. The standard error

estimates can also be computed in sub-linear time (see Appendix A4).

3.5 Understanding the computational efficiency of

RHE-reg
Our implementation of RHE-reg relies on two ideas to obtain com-

putational efficiency: (i) the use of a randomized estimator of the

trace, and (ii) the Mailman algorithm for fast matrix-vector multipli-

cation. To explore the contribution of each of these ideas, we com-

pared the runtimes of a MoM estimator with no randomization

(HE-reg), RHE-reg using standard matrix-vector multiplication and

RHE-reg using the Mailman algorithm. Table 2 shows the runtimes

of each of these variants on the NFBC data. We see that the biggest

runtime gain arises from applying the randomized estimator (faster

by a factor of 10–12 relative to HE-reg) while the application of the

Mailman algorithm reduces the runtime further by a factor of 2

(Table 1).

# of random vectors
10 20 30 40 50 60 70 80 90 100

he
rit

ab
ili

ty

0
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0.1
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heritability estimate of TG

GCTA estimate
GCTA SE
RHE-reg estimate
RHE-reg SE

Fig. 2. Impact of the number of random vectors on the accuracy of RHE-reg:

we ran RHE-reg with a different number of random vectors B, and compared

the point estimate and standard error to GCTA. The gray area indicates the

standard error computed by GCTA. As RHE-reg use more random vectors,

the estimate converges. In fact, even with 10 random vectors, the point esti-

mation is accurate

Scalable heritability i191

Deleted Text: Haseman-Elston
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: , 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: , 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: ly
Deleted Text: ,
Deleted Text: E
Deleted Text: , 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text:  
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text:  
Deleted Text: genetic relatedness matrix (
Deleted Text: )
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: utes
Deleted Text: &hx2009;
Deleted Text: utes
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: &hx2009;
Deleted Text: -
Deleted Text: E
Deleted Text: p
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: the 
Deleted Text: -


3.6 Accuracy of RHE-reg as a function of the number of

random vectors B
To explore the impact of the choice of the number of random vec-

tors B on the accuracy of RHE-reg, we compared the heritability

estimates of RHE-reg to those obtained from GCTA for the TG

phenotype as a function of B. We find good concordance between

the estimates from RHE-reg and GCTA even for values of B as low

as 10 suggesting that RHE-reg could be even faster in practice with

little loss in accuracy (see Fig. 2).

4 Discussion

We proposed a scalable estimator of heritability which is a random-

ized version of the Haseman–Elston regression (RHE-reg) estimator.

The RHE-reg estimator is based on performing a small number of

multiplications of the genotype matrix with random vectors with

mean zero and identity covariance. Using the properties of the

genotype matrix, we can compute this estimator using the Mailman

algorithm in O NMB
maxð log3N; log3MÞ

� �
time on a dataset containing N indi-

viduals, M SNPs and with a small number of B random vectors. We

show that this estimator achieves similar accuracy as REML-based

methods on both simulated and real data. RHE-reg can be effective-

ly applied to whole-genome genotype data of hundreds of thousands

of individuals for rapid variance components estimation.

Furthermore, RHE-reg is an unbiased estimator and thus can also be

applied to ascertained case-control studies.
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Appendix

A1. Method-of-Moments
The MoM principle obtains estimates of the model parameters

such that the theoretical moments match the sample moments.

In our model, the first theoretical moment, E½y�, is 0 by definition

while the corresponding sample moment is also zero since we

standardized the phenotypes. The second sample moment is yyT

and the second theoretical moment is covðyÞ ¼ r2
gK þ r2

e IN.

Thus, the MoM estimator of ðr2
g ; r2

e Þ is obtained by searching

for values of r2
g ; r2

e such that the sample and theoretical moments

are close, i.e. by solving an ordinary least squares (OLS) problem:

ðcr2
g ;
cr2

e Þ ¼ argminr2
g ;r

2
e
jjyyT � ðr2

gK þ r2
e IÞjj2F:

Since the Frobenius norm of a matrix A; jjAjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½AAT �

q
, the OLS

problem can be re-written as:

ðcr2
g ;
cr2

e Þ ¼ argminr2
g ;r

2
e
tr½ðyyT � ðr2

gK þ r2
e IÞÞðyyT � ðr2

gK þ r2
e IÞÞT �

which leads to Equation (6).

A2. Randomized estimator of trace of a matrix
For a N � N matrix, A, a randomized estimator of tr½A� isdtr A½ � � 1

B

P
b zbTAzb, where zb are i.i.d. random vectors with each

entry drawn from a standard normal distribution. To see this:

E½zTAz� ¼ E½trðzTAzÞ� zTAz is a scalar

¼ E½tr½zzTA�� cyclic property of the trace

¼ tr½E½zzTA�� trace and expectation are linear

¼ tr½E½zzT �A�A is fixed

¼ tr½A� using the distributional assumptions on z:

A3. Bias of the RHE-reg estimator

Our estimator of tr K2
� �

is LB � dtr K2½ � ¼ 1
B

P
B zT

b KKzb. The RHE-

reg estimators for r2
g ;r

2
e

� �
are given by:

fr2
gfr2
e

" #
¼ A�1 yTKy

yTy

� �
where A ¼ LB N

N N

� �
.

We first compute the expectation of this estimator:

E

fr2
gfr2
e

24 35 ¼ E A�1
yTKy

yTy

" #" #

¼ E A�1
� �

E

yTKy

yTy

" #
since random vectors zb and

y are independent
:

We know that E½yyT � ¼ covðyÞ ¼ r2
gK þ r2

e I. We can compute

E½yTKy�:

E yTKy
� �

¼ E tr yTKy
� �� �

yTKy is a scalar

¼ E tr yyTK
� �� �

cyclic property of the trace

¼ tr E yyTK
� �� �

expectation and trace are
linear

¼ tr E yyT
� �

K
� �

as K is constant

¼ tr r2
gK2 þ r2

e K
h i

¼ r2
gtr K2
� �

þNr2
e using tr K½ � ¼ N:

And for E½yTy�, we have;

E½yTy� ¼ E½tr½yTy�� yTy is a scalar
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¼ Eðtr½yyT �� cyclic property of the trace

¼ tr½E½yyT �� expectation and trace are linear

¼ tr½K�r2
g þNr2

e

¼ Nr2
g þNr2

e :

Defining b � E
1

LB�N

h i
and computing A�1 ¼

1

LB �N

�1

LB �N
�1

LB �N

LB

N LB �Nð Þ

2664
3775,

we have

E

fr2
g

fr2
e

264
375 ¼ E A�1

� �
E

yTKy

yTy

24 3524 35

¼
b �b

�b
1

N
þ b

264
375 tr K2

� �
þNr2

e

Nr2
g þNr2

e

24 35

¼
b tr K2

� �
�N

	 

r2

g

b N � tr K2
� �	 �

r2
g þ r2

g þ r2
e

264
375:

We approximate b ¼ E
1

LB�N

h i
using Taylor expansion. As we have:

f yð Þ � f xð Þ þ f 0 xð Þ y� xð Þ þ 1
2 f 00 xð Þ y� xð Þ2. Let X � LB �N, and

thus lx ¼ E LB �N½ � ¼ tr K2
� �

�N. We have f xð Þ ¼ 1
x ; f

0 xð Þ ¼
� 1

x2 ; f
00 xð Þ ¼ 2

x3.

Thus:

b ¼ E f Xð Þ½ � � E f lxð Þ þ f 0 lxð Þ X� lxð Þ þ 1

2
f 00 lxð Þ X� lxð Þ2

� �
¼ f lxð Þ þ

1

�l2
x

E X� lx½ � þ 1

2

2

l3
x

E

�
X� lxð Þ2

¼ 1

lx

þ 1

lx

r2
x

l2
x

�
where r2

x ¼ var Xð Þ.
Thus E

lx

x

� �
¼ 1þ r2

x

l2
x
. Thus E fr2

g

h i
¼ r2

g þ
r2

x

l2
x
r2

g ; E r2
e

� �
¼ r2

e �
r2

x

l2
x
r2

g ;

E
fr2

g þfr2
e

h i
¼ r2

g þ r2
e .

For r2
x, we have:

r2
x ¼ E LB � tr K2

� �	 
2
h i

¼ var LBð Þ

¼ var
1

B

X
B

zT
b K2zb

 !
zb are independent

¼ 1

B2

X
B

var zT
b K2zb

	 

zb are identically distributed

¼ 1

B

X
i;j

KT
i K jzizj elements of z are independent

¼ 1

B

X
i

K2
i ¼

1

B
tr K2
� �

:

Here K i is the ith column of K.

Thus, substituting lx and r2
x, we get E fr2

g

h i
¼ r2

g þ 1
B

tr K2½ �
tr K2½ ��Nð Þ2 r2

g ¼
r2

g þ 1
B

1

tr K2½ ��2Nþ N2

tr K2½ �
r2

g . The bias of the estimator decreases with

larger number of random vectors B.

A4. Standard error estimate for the RHE-reg estimator

We define var yð Þ � R ¼ r2
gK þ r2

e I. As we know fr2
g ¼

yT K�Ið Þy
LB�N . Letfr2

g � A
B where A � yT K� Ið Þy and B � LB �N. Define lA � E A½ �;

lB � E B½ �; r2
A � var Að Þ and r2

B � var Bð Þ. From Lemma 2

(Appendix A5), we have

var fr2
g

� �
¼ var

A

B

� �

¼ 1

lBð Þ2
r2

A � 2
lA

lBð Þ3
cov A;Bð Þ þ lAð Þ2

lBð Þ4
r2

B

¼ 1

lBð Þ2
r2

A þ
lAð Þ2

lBð Þ4
r2

B

as A, B are independent. By using Lemma 1 (Appendix A5), we have:

lA ¼ E yT K � Ið Þy
� �

¼ tr K2
� �

�N
	 


r2
g

r2
A ¼ var yT K � Ið Þy

	 

¼ 2tr R K � Ið ÞR K � Ið Þ½ �

lB ¼ tr K2
� �

�N

r2
B ¼

tr K2
� �
B

:

Thus we have:

SE fr2
g

� �
¼ 1

tr K2
� �

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr R K � Ið ÞR K � Ið Þ½ � þ 1

B
r2

g

� �2
tr K2
� �r

:

In order to estimate the standard error of fr2
g , we use the plug-in

estimator:

d
SE fr2

g

� �
¼ 1

LB �N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr yyT K � Ið ÞR K � Ið Þ½ � þ 1

B
fr2

g

� �2
LB

r
: (15)

Each term in this estimator could be efficiently computed in

O NMB
max log3N; log3Mð Þ

� �
:

A5. Useful identities

Lemma 1. For a random vector z that is distributed according to

a multivariate normal distribution: z � N 0;Cð Þ and for symmetric

matrices A and B.

cov zTAz; zTBz
	 


¼ 2tr CACB½ �:

Thus

E zTAz
	 


zTBz
	 
� �

¼ 2tr CACB½ � þ E zTAz
	 
� �

E zTBz
	 
� �

¼ 2tr CACB½ � þ tr AC½ �tr BC½ �:

Lemma 2. For two random variables, A and B, where B is either

discrete or has support (0,1), and E A½ � ¼ �A; E B½ � ¼ �B.

var
A

B

� �
� 1

lBð Þ2
var Að Þ þ 2

�lA

lBð Þ3
cov A;Bð Þ þ lAð Þ2

lBð Þ4
var Bð Þ:
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