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Despite improvements in awareness and treatment of type II diabetes mellitus (TIIDM), this disease remains a major source of
morbidity and mortality worldwide, and prevalence continues to rise. Oxidative damage caused by free radicals has long been
known to contribute to the pathogenesis and progression of TIIDM and its complications. Only recently, however, has the role
of the Nrf2/Keap1/ARE master antioxidant pathway in diabetic dysfunction begun to be elucidated. There is accumulating
evidence that this pathway is implicated in diabetic damage to the pancreas, heart, and skin, among other cell types and tissues.
Animal studies and clinical trials have shown promising results suggesting that activation of this pathway can delay or reverse
some of these impairments in TIIDM. In this review, we outline the role of oxidative damage and the Nrf2/Keap1/ARE pathway
in TIIDM, focusing on current and future efforts to utilize this relationship as a therapeutic target for prevention, prognosis, and
treatment of TIID.

1. Introduction

The worldwide prevalence of diabetes mellitus (DM) was
estimated at 8.5% in 2014, and the morbidity resulting from
the microvascular and macrovascular complications of this
disease is enormous [1]. Costs attributable to DM in 2013
were $101.4 billion in the United States alone, making it the
most expensive medical condition by a significant margin
[2–4]. The chronic hyperglycemia and impairments in insu-
lin secretion and action that characterize type II diabetes
mellitus (TIIDM) are associated with long-term damage,
dysfunction, and failure of many organs, including the eyes,
kidneys, nerves, heart, and blood vessels [5]. Decades of
scientific research, randomized human trials, and clinical
experience have demonstrated that a combination of lifestyle
modifications and pharmaceutical interventions has the
capacity to prevent or delay the onset of TIIDM and many
of its devastating complications [6]. Consequently, major
therapeutic advances, coupled with increased diabetes aware-
ness and the implementation of national programs and
guidelines for diabetes prevention, have helped alleviate
disease-related morbidity and mortality [7]. Despite these

improvements, this disease continues to pose a tremendous
burden in the US, and the prevalence, deaths, and costs
attributable to TIIDM are expected to continue increasing
drastically [8]. As we gain further insight into the molecular
underpinnings of this disease and its destructive sequelae,
we advance the opportunity to develop novel, targeted
approaches for diabetes treatment, prognosis, and, ulti-
mately, prevention. In recent years, the Nrf2/Keap1/ARE
antioxidant pathway has emerged as one such promising
avenue of research. In this review, we summarize the roles
of oxidative stress and the Nrf2/Keap1/ARE pathway in
TIIDM, as well as the current state of efforts aimed at exploit-
ing this relationship in order to minimize the devastating
impact of this disease across the globe.

2. Oxidative Stress and Diabetes Mellitus

Oxidative stress occurs when free radical production over-
whelms the endogenous antioxidant ability to neutralize
these highly reactive chemical compounds. The ensuing
cellular damage, such as DNA cross-linking and apoptosis,
is a hallmark of oxidative stress and is a fundamental
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pathological process in cancer, aging, and a variety of chronic
diseases [9–12]. In TIIDM, dysfunctional redox homeostasis
has long been known to play a role in the pathogenesis of the
disease and its complications through a variety of mecha-
nisms, and diabetic patients have been shown to possess
increased cellular levels of reactive oxygen species (ROS)
and ROS-induced DNA damage [13–15]. Landmark studies
by Giacco and Brownlee showed that the increased glycemic
load in diabetes overwhelms the Krebs cycle, resulting in the
inhibition of election transfer within the mitochondrial
membrane and the accumulation of free radicals [14]. In
particular, these free radicals include the highly reactive
superoxide and hydroxyl compounds [16]. As ROS produc-
tion increases, upregulation of four biochemical pathways
occurs: polyol flux, intracellular advanced glycosylation end
product (AGE) formation, protein kinase C activation, and
hexosamine pathway flux [14]. These perturbations result
in a variety of downstream effects known to underlie the
pathogenesis and progression of TIIDM, including the deple-
tion of natural antioxidant molecules and damage to vascular
cells, as well as alterations in gene and protein expression,
blood flow, and endothelial cell permeability [13, 17, 18].

3. The Nrf2/Keap1/ARE Pathway

Knowledge of the relationship between oxidative stress and
TIIDM has precipitated intense investigation into the failure
of the diabetic system to appropriately respond to increased
oxidative loads. Regulation of cellular redox homeostasis
under both stressed and nonstressed conditions occurs pri-
marily at the transcriptional level, and the Nrf2/Keap1/ARE
pathway is the primary mediator of this response. This sig-
naling pathway regulates the expression of over 100 genes
and functions related to oxidative stress and cell survival,
including direct antioxidant proteins, phase I and II electro-
phile detoxification enzymes, the transport of toxic solutes,
free radical metabolism, inhibition of inflammation, glutathi-
one homeostasis, proteasome function, and the recognition
of DNA damage, as well as the expression of various related
growth factors and transcription factors [19] (Figure 1).

The principal mediator of this response is nuclear factor
E2-related factor 2 (Nrf2), a master transcription factor.
Upon binding the upstream cis-regulatory antioxidant
response element (ARE) sequence located in the promoter
regions of cytoprotective genes, Nrf2 triggers the transcrip-
tional induction of multiple detoxifying enzymes [20]. Under
nonstressed conditions, Nrf2 activity is suppressed by its
native repressor Kelch-like ECH-associated protein 1
(Keap1), through interactions with a hairpin motif in the C
terminus of the Nrf2-ECH homologous domain (Neh2)
phosphorylation site on Nrf2. Keap1 is a cytoplasmic, actin
cytoskeleton-associated adapter protein of the Cullin3-
(Cul3-) based E3-ligase complex, which tags Nrf2 for ubiqui-
tination and subsequent proteosomal degradation within the
cytoplasm [21]. This signaling pathway has been established
as the major mechanism of cellular defense against oxidative
stress both physiologically and in a wide array of disease
models [19]. First isolated in cloning studies in 1994 [22],
the critical role of Nrf2, a member of the cap’n’collar family

of basic leucine zipper transcription factors, in both constitu-
tive and inducible ARE gene expression was soon elucidated
both in vitro [23] and in vivo [20, 21, 24]. The precise molec-
ular mechanisms of Nrf2 and Keap1 interaction are a topic of
debate, particularly given the distinct subcellular locations of
these two molecules [25]. It is nonetheless understood that
modification of cysteine residues in the primary structure of
Keap1, which act as cellular sensors for inducers of environ-
mental stress, by thiol-reactive chemical species during states
of excess oxidative or electrophilic stress results in the disrup-
tion of the Nrf2-Keap1 dimer and stabilization of Nrf2 [26].
Nrf2, once stabilized, is no longer repressed by Keap1 and
becomes free to heterodimerize with members of the Maf
family of transcription factors. With the assistance of a
nuclear localization sequence, the Nrf2 heterodimer can rap-
idly translocate into the nucleus and bind to the ARE, result-
ing in the recruitment of elements required for the
transcriptional activation of a variety of genes such as gluta-
thione S-transferase A2 (GSTA2), NADPH quinone oxidore-
ductase (NQO-1), superoxide dismutase (SOD1), and heme
oxygenase-1 (Ho-1) [19, 20, 27]. These antioxidant enzymes
function to transform free radicals into less toxic substances
through four primary mechanisms: (1) oxidation and reduc-
tion reactions, in which functional groups on hydrophobic
molecules are exposed, (2) nucleophilic trapping processes,
(3) transporter efflux of toxic metabolites, and (4) mainte-
nance of reduced conditions by thiol-containing molecules
[19, 28]. This protective stress recognition mechanism by
Keap1 dually ensures suppression of Nrf2 during nonstressed
conditions and an appropriate antioxidant response during
periods of excessive cellular stress.

Given the intimate relationship between TIIDM and oxi-
dative damage, the involvement of the Nrf2/Keap1/ARE
pathway in this unsolved clinical problem has become a topic
of great interest. We now know that dysfunction of this mas-
ter antioxidant pathway is associated with the pathophysiol-
ogy of diabetes and a wide range of its complications, such as
diabetic nephropathy and impaired cutaneous wound heal-
ing, in both animal and human models [29–31] (Figure 2).

While the mechanism or mechanisms of this dysfunction
in diabetes have only begun to be elucidated, therapies target-
ing the Nrf2/Keap1/ARE pathway represent a promising ave-
nue in current research. As a critical upstream mediator of
not only the global antioxidant response but also of anti-
inflammatory genes and transcription factors involved in
mitochondrial function, the Nrf2/Keap1/ARE pathway rep-
resents an ideal target in treating the widespread oxidative
damage implicated in pancreatic damage, insulin resistance
and sensitivity, and the progression of a broad spectrum of
diabetic complications. Additionally, the inducible nature of
this signaling pathway allows Keap1 to uniquely both sense
the cellular redox state and responsively modify the degree
of Nrf2 degradation via ubiquitination in response to this
oxidative stress. This allows for modulation of cellular redox
homeostasis via highly specific transcriptional activation of
only those genes containing an ARE in the promoter region
[32]. Furthermore, the Nrf2-mediated oxidative response
may also possess aspects that are specific to diabetes. The
activation of the aforementioned pathways underlying the
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pathogenesis of diabetic complications has been tied to a
singular hyperglycemia-induced event in the mitochondria,
overproduction of superoxide by the electron-transport
chain [13]. Furthermore, studies have shown that the
absence of Nrf2 may exacerbate both type I and type II
diabetes [33, 34]. This hyperglycemia-specific increase in
ROS overproduction by the mitochondria may explain why
classic antioxidants, low molecular-weight compounds that
can scavenge reactive oxygen intermediates, have not been
proven beneficial in the treatment of diabetic complications.
In contrast to these classic or direct antioxidants, the battery
of cytoprotective agents that are upregulated by the Nrf2/
Keap1/ARE pathway have been termed “ultimate antioxi-
dants,” which possess long half-lives, are not depleted
throughout the course of their wide range of chemical

detoxification reactions, and can even accelerate regeneration
of other antioxidants, such as glutathione [35]. Lastly, the
ability to target this pathway at a variety of locations, as will
be discussed later, grants an incredibly rich degree of flexibil-
ity and diversity as the search for rational and clinically rele-
vant therapeutics evolves.

4. Nrf2/Keap1/ARE and the β-Cell

Pancreatic β-cell dysfunction and the resulting impairments
in insulin sensitivity and production are a critical component
in the development and progression of both type I and type II
DM [36], and oxidative stress is one important mechanism
whereby this damage occurs [37]. Despite overexpression of
Nrf2 downstream endogenous antioxidant genes by the
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Figure 1: The Nrf2/Keap1/ARE pathway in type II diabetes mellitus. (A) Under nonstressed conditions, the Nrf2 transcription factor is
covalently bound to cysteine residues on its native repressor Keap1 in the cytoplasm. This results in the constitutive ubiquitination and
degradation of Nrf2 in the proteasome and inhibition of the anti-oxidant response. (B) Under conditions of electrophilic or oxidative
stress, cysteine residues on Keap1 are modified, resulting in the stabilization and translocation of Nrf2 into the nucleus, where it can bind
to the promoter region of the ARE and initiate the transcription of various cytoprotective enzymes which function to promote cellular
survival through a variety of mechanisms, including the upregulation of antioxidant function, inflammatory inhibition, and the transport
of toxic metabolites. These cellular adaptations have been shown to improve a wide array of tissue damage underlying the pathogenesis and
progression of diabetes. (B) There are three major mechanisms of Nrf2 induction by small molecule activators. (I) Upstream kinases such
as Akt and Erk phosphorylate Nrf2 at specific sites, favoring its release by Keap1 and nuclear translocation. (II) Modification of Keap1
cysteine residues disrupts the Nrf2-Keap1 complex, favoring dissociation of Nrf2 and subsequent nuclear translocation. (III) Inhibition of
Nrf2 ubiquitination by Keap1 and degradation by the proteasome augments Nrf2 availability, thus favoring nuclear translocation of Nrf2.
Ub: ubiquitination; P: phosphorylation.
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pancreas in order to curtail cellular damage and salvage
insulin-secreting ability, oxidative damage ultimately over-
loads this protective response in TIIDM [38–40]. In humans,
these deleterious effects manifest as reduced β-cell mass and
DNA damage in the pancreatic islets of patients with
TIIDM [41]. Reversing the decline and eventual failure
of pancreatic β-cells is critical for preventing TIIDM and
its progression [42].

Animal studies have shown that the Nrf2/Keap1/ARE
system is a crucial defensive pathway in the physiological
and pathological protection of pancreatic β-cells. In β-cell-
specific transgenic mice, Nrf2 depletion depressed the
expression of cytoprotective antioxidant genes in pancreatic
islets and exacerbated oxidative β-cell damage, while Nrf2
induction suppressed the accumulation of intracellular
ROS, the formation of ROS-induced DNA adducts, and pan-
creatic β-cell apoptosis within the islets [43]. Further studies
showed the preservation of β-cell mass and function in dia-
betic mice with genetically modified upregulation of Nrf2
via Keap1 knockout [44]. Pancreatic β-cell protection by
the Nrf2/Keap1/ARE system is not limited to free radical
scavenge but includes reduction of inflammation via the
NF-kappaB pathway [45] and maintenance of critical cellular
degradation systems such as apoptosis, autophagy, and pro-
teosomal degradation [46, 47].

In addition to β-cell injury, oxidative stress also affects
pancreatic insulin secretion, although this relationship is less
clear. While some studies show that ROS impairs insulin
release through mechanisms such as a reduction in ATP pro-
duction [48] and increased glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) activity [49], there is a growing
body of evidence indicating that oxidative and electrophilic
stress can actually augment, and may even be necessary for,
insulin release [50, 51]. The role of the Nrf2/Keap1/ARE
pathway in insulin secretion is similarly controversial. While
insulin content and secretion are decreased in the pancreatic
islets of Nrf2 knockout mice and upregulation of Nrf2
appears to improve the insulin-releasing potential of β-cells
[44, 52, 53], Nrf2 deficiency has also been associated with

decreased blood glucose, enhanced insulin signaling, and
decreased fat and body weight in Nrf2 knockout mouse
models [54–57]. Clearly, a great deal of work remains before
we completely understand the role of oxidative stress and
Nrf2 with regard to glucose and insulin homeostasis. Of note,
while most studies have focused on the role of Nrf2/Keap1/
ARE on glucose and insulin handling within β-cells, emerg-
ing evidence suggests that this pathway may also play a
dynamic role in other pancreatic islet cells (α-cells, δ-cells,
and PP-cells), possibly by preventing differentiation of β-
cells into these insulin-negative cell types under conditions
of oxidative stress [58].

5. Nrf2 and Insulin Resistance

In addition to β-cell dysfunction, insulin resistance in a wide
range of tissues is a hallmark of TIIDM, resulting in elevated
blood glucose levels and exacerbation of pancreatic damage
as it attempts to compensate for perceived hypoglycemia.
Studies by Uruno et al. in murine models of Nrf2 over-
expression via both genetic Keap1 knockdown and pharma-
cological induction suggest that Nrf2 activation can improve
insulin sensitivity in diabetes and abrogate diabetes and obe-
sity in mice [44]. Body weight and blood glucose levels were
decreased in diabetic mice with Keap1 knockout. These find-
ings were attributed to Nrf2-mediated stimulation of energy
consumption in skeletal muscle and brown adipose tissue.
Further studies showed that Nrf2 induction in mice also sup-
pressed gluconeogenesis, owing to transcriptional repression
of a variety of enzymes including the gluconeogenic enzyme
glucose-6-phosphatase (G-6-P). In vitro studies using murine
hepatocytes confirmed that Nrf2 attenuates G-6-P expression
in these cells, despite stimulation of gluconeogenesis using a
cAMP analog. In addition to its inhibitory effect on G-6-P,
Nrf2 was shown to decrease expression of other genes related
to gluconeogenesis, as well as augment insulin sensitivity in
an insulin tolerance test. A more recent study in a murine
model suggests that increased Nrf2 signaling may also
improve insulin resistance via suppression of oxidative stress
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Figure 2: The Nrf2/Keap1/ARE pathway is involved in multiple tissue types.
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in the hypothalamus, a phenomenon that may affect sys-
temic metabolic regulation [59]. Furthermore, obesity is
associated with an increased risk of developing insulin
resistance and TIIDM, and murine studies have likewise
shown that Nrf2 induction can suppress weight gain and
increase skeletal muscle oxygen consumption, mitochondrial
redox homeostasis, and ATP production, as well as augment
cellular glucose uptake [44, 60, 61].

6. Diabetic Complications (Table 1)

6.1. Cardiovascular Disease. The absolute risk of cardiovascu-
lar disease (CVD) is 2-fold greater in patients with TIIDM
versus those without, and at least 65% of people with DM
die of heart disease or stroke [3, 62]. Given this close link
between TIIDM and CVD, it is not surprising that oxidative
stress has been implicated in the pathogenesis of many CVD
disorders, including hypertension [63], heart failure (HF)
[64], atherosclerosis [65], and ischemia-reperfusion injury
[66]. Free radical-induced endothelial damage is thought to
be the initiating step in CVD [67], and hyperglycemia-
induced ROS in TIIDM exacerbates impairments in angio-
genesis and neovascularization through means such as
disruption of endothelial progenitor cell function and vascu-
lar homeostasis [68, 69]. The importance of Nrf2 and its
downstream elements to vascular integrity has also become
increasingly apparent, and studies have illuminated their role
in functions such as augmentation of blood vessel branching
[70], preservation of endothelial cell function [71], blood
pressure regulation [72], and protection of the myocardium
following ischemia [73, 74]. In particular, evidence of Ho-1,
the Nrf2 downstream enzyme that catalyzes the degradation
of heme into biliverdin, ferrous iron, and carbon monoxide,
as an important mediator against vascular dysfunction in
diabetes has recently emerged. Upregulation of Ho-1 levels
was shown to improve left ventricular ejection fraction and

inhibit remodeling in diabetic rats with myocardial infarc-
tion, and in vivo and in vitro studies demonstrated that Ho-
1 overexpression attenuated angiotensin II-mediated cardiac
hypertrophy in these mice [74]. Studies in streptozotocin-
induced diabetic mice suggest that these effects are due to
reductions in oxidative stress, inflammation, and apoptosis
[75]. Therefore, the likely link among ROS and the Nrf2/
Keap1/ARE pathway to the plethora of CVD-related compli-
cations that afflict diabetic patients has emerged as a subject
of intense investigation.

6.2. Atherosclerosis. Nrf2 has been implicated in a variety of
processes intrinsic to the formation of atherosclerotic plaque.
As an indispensable component of the antioxidant response
within macrophages [76], Nrf2 protects these phagocytic
cells from oxidized low-density lipoproteins (oxLDL) and
foam cell transformation, fundamental steps in atheroma
formation [77, 78]. Additionally, Nrf2 appears to inhibit the
proinflammatory response in endothelial cells located at
atherosusceptible sites, conferring them a protective advan-
tage in response to diabetic hyperglycemia [71, 79]. The sig-
nificance of these effects is largely attributed to the
downstream activation of the Nrf2 downstream antioxidant
enzyme HO-1, which has been independently found to play
a significant defensive role against atherosclerosis [80]. How-
ever, there are also studies suggesting that Nrf2 can promote
atheroma formation, possibly due to interactions with a vari-
ety of well-described proatherogenic factors such as vascular
cell adhesion molecule 1 (VCAM-1) and interleukin-1 (IL-1)
[81–83]. For instance, overexpression of Ho-1 was found to
be associated with worsening coronary atherosclerosis in an
autopsy study of Japanese patients with diabetes mellitus
[84]. This seeming contradiction might be explained by a dif-
ferential response of Nrf2 to laminar versus oscillatory blood
flow, as atheroma formation is not uniform throughout the
vascular system but rather disposed to bifurcation and
branch points [85]. Regardless, mounting evidence of the

Table 1: Nrf2/Keap1/ARE and diabetic complications.

Diabetic complication Pathogenesis Nrf2- (or downstream-) mediated effects

Atherosclerosis
(i) oxLDL formation

(i) Protection from oxLDL transformation of phagocytic
cells [77, 78]

(ii) Proinflammatory response in
endothelial cells

(ii) Inhibition of proinflammatory response at
atherosusceptible sites [71, 79]

Heart failure

(i) Aberrant cardiac and ECM remodeling (i) Blood pressure regulation [72]

(ii) Insulin resistance of myocytes (ii) Protection of myocardium following ischemia

(iii) Impaired regulation of intracellular
calcium

(iii) Diminishes ROS and myocardial hypertrophy [99]

(iv) Accumulation of AGE products

Diabetic nephropathy
(i) Renal oxidative and nitrosative stress

(i) Improvement of metabolic indices (e.g., polydipsia and
polyuria) [110]

(ii) Mesangial cell proliferation, inflammation,
fibrosis

(ii) Reversal in dysfunction of key growth factors and
ECM proteins [111–113]

Wound healing

(i) Keap1 overexpression

(i) Impairments in angiogenesis and reepithelialization [120]
(ii) Loss of wound redox homeostasis

(iii) Chronic inflammatory
microenvironment
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importance of Nrf2 for vascular integrity and long-term
endothelial function suggests that the Nrf2/Keap1/ARE path-
way is influential in atherosclerotic resistance and may be a
useful target for protection against coronary artery disease
(CAD), peripheral vascular disease, and cerebrovascular dis-
ease in diabetic populations.

6.3. Heart Failure. Not only is there a well-established associ-
ation between TIIDM and the development of HF, but this
relationship also persists even in the absence of other risk fac-
tors such as CAD or hypertension, suggesting that TIIDM
may mediate an exclusive form of cardiomyopathy [86].
Multiple mechanisms, such as impaired regulation of intra-
cellular calcium and accumulation of AGE products, have
been suggested to underlie this dysfunction, all of which ulti-
mately result in oxidative stress and myocardial toxicity [87].
Not surprisingly, ROS and mitochondrial dysfunction are
increased in the diabetic heart [64]. The resulting cardiac cel-
lular necrosis and apoptosis impair contractile and electrical
function, two contributing features of HF [88–90]. In addi-
tion to causing cellular damage, ROS can modify proteins
essential in excitation-contraction coupling [91], activate
hypertrophy-signaling kinases [92], and stimulate cardiac
extracellular matrix (ECM) remodeling [93]. Furthermore,
ROS exacerbates insulin resistance of myocytes, a key ele-
ment of diabetes-induced cardiac dysfunction [94].

Evidence that aberrant cardiac remodeling is attenuatedby
a variety ofNrf2 target genes such as SOD [95],HO-1 [96] and
glutathioneperoxidase (GPx) [97]hasmotivated investigation
into apossible protective role of theNrf2/Keap1/AREpathway
against cardiomyopathy in DM. In murine models of HF and
TIIDM, oxidative stress attenuates the expression of Nrf2 in
cardiomyocytes and downregulates glucose utilization,
resulting in insulin resistance [98]. Furthermore, Nrf2 overex-
pression diminishes ROS and myocardial hypertrophy, an
effect that was facilitated by extracellular signal-related kinase
(Erk), which normally acts to activate Nrf2 during oxidative
stress [99]. It has therefore may be that Erk-mediated Nrf2
downregulation may underlie individual susceptibilities to
CVD-related diabetic complications.

A number of studies utilizing pharmacologic Nrf2
activators have implicated the antioxidant properties of the
Nrf2/Keap1/ARE pathway in cardioprotection [100, 101].
Consequently, there is a great deal of interest in therapeuti-
cally targeting this pathway as a means of preventing or
reversing pathological cardiac remodeling [102] or delaying
ventricular failure, the hemodynamic hallmark of HF in
TIIDM [103, 104]. However, chronic overactivation of the
Nrf2/Keap1/ARE signaling pathway may actually contribute
to cardiomyopathy, which undermines the encouraging
results of acute Nrf2 induction [105]. A long-term phase III
clinical study in TIID patients with stage 4 chronic kidney
disease (CKD) (BEACON trial) was terminated early due to
a higher rate of cardiovascular events in the treatment group
[106]. It is unclear as to why these adverse events were
observed in this study and not in an earlier clinical trial in
patients with stage 3 CKD (BEAM trial), but possibilities
include significantly longer length of drug exposure or the
use of a 20mg fixed dose as opposed to an adjustable dosage

[107]. However, whether this truly reflects a cardiomyopathic
tendency of Nrf2 or is alternatively the result of other factors,
such as an inherently increased rate of cardiovascular events
in patients with more severe CKD, remains unknown.

6.4. Diabetic Nephropathy. Diabetic nephropathy is a well-
knownmicrovascular complicationof chronichyperglycemia,
and both oxidative stress and an impaired response by the
Nrf2/Keap1/ARE system have been implicated in its progres-
sion via renal cell apoptosis, fibrosis, and deficiencies in
cellular regeneration [11, 108, 109]. In a streptozocin- (STZ-)
induced mouse diabetes model, Nrf2 activation with sulfo-
raphane suppressed nephropathy and significantly improved
metabolic indices associated with TIIDM, such as hyperglyce-
mia, polydipsia, polyuria, andweight loss [110]. These benefits
can be largely attributed to decreases in renal oxidative and
nitrosative stress, which act to reverse dysfunction inmultiple
knownmediators of diabetic nephropathy such as transform-
ing growth factor beta (TGF-B), ECM proteins such as
fibronectin and collagen IV, and p21, a cell-cycle regulator
[111]. Similar findings with other known activators of the
Nrf2/Keap1/ARE pathway, such as resveratrol and MG-132,
support the therapeutic targeting of this system to ameliorate
the oxidative damage and glucose-inducedmesangial cell pro-
liferation, inflammation, and fibrosis which underlies diabetic
nephropathy [112, 113]. In humans, decreased levels of
Nrf2 and expression of target genes in the peripheral
blood of patients with CKD further support the contribu-
tion of an impaired Nrf2 antioxidant signaling pathway to
systemic oxidative overload and inflammation in diabetic
nephropathy [114].

6.5. Wound Healing. Impairedwoundhealing is awell-known
and devastating complication of TIIDM and represents the
leading cause of chronicwounds and lower extremity amputa-
tions in the US [115]. However, despite adherence to tight
control of blood glucose levels and advances in synthetic and
biologic healingmodalities, chronicwounds persist in diabetic
patients, suggesting amore fundamental pathology in the dia-
betic regenerativemilieu [116]. As in other diabetic complica-
tions, oxidative stress is important for the development of
chronic wounds, and AGE in the diabetic wound microenvi-
ronment appear to impair wound contraction and remodel-
ing, the inflammatory response, and ECM proliferation.
[117] Several natural Nrf2 activators have shown a promise
in treating diabetic wounds, and early induction of the Nrf2
pathway through the rhomboid familyproteinRHBDF2accel-
erated cutaneous wound healing in mice [118, 119]. Interest-
ingly, recent work in tissue regeneration models has
demonstrated that hyperglycemia in diabetes is associated
with Keap1 dysfunction, which prevents nuclear localization
ofNrf2 and thus is an appropriate stress response [120].Utiliz-
ing a cutaneous gene therapymodel, these studies showed that
small-interfering RNA (siRNA) targeted at Keap1 restored
wound redox homeostasis, accelerated healing, and counter-
acted impairments in angiogenesis and reepithelialization,
two critical functions of wound healing disrupted in diabetes,
by restoring Nrf2 localization. This seems to support the
notion that aberrant overexpression of Keap1 and resulting
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Nrf2 repression is a possible mechanism of the redox homeo-
stasis dysfunction and impaired wound healing in diabetes.
Whether this relationship extends to other aspects of the dis-
ease, and the relative contribution of Nrf2 to specific wound
healing functions, remains to be seen.

7. The Nrf2/Keap1/ARE Pathway as a
Therapeutic Target

Given the broad accountability of oxidative stress for many
pathological processes, the Nrf2/Keap1/ARE system has
emerged as a logical therapeutic target for the prevention or
treatment of disease. This pathway has been studied most
intensively in cancer [19] but also in chronic obstructive pul-
monary disease (COPD) [121], neurodegenerative disorders
[122], and autoimmune diseases such as inflammatory bowel
disease (IBD) [123] and rheumatoid arthritis [124]. A multi-
tude of clinical trials has also been pursued in order to assess
the efficacy of targeting or modifying elements of the path-
way in order to diminish ROS-induced damage in human
disease [125–128]. As a critical upstream mediator of the
pathway, Nrf2 induction has formed the basis of most of this
research. There are three primary mechanisms by which cur-
rent pharmacological activators increase Nrf2 expression
(Figure 2). These consist of (1) activation of upstream kinases
such as protein kinase B (Akt) and extracellular signal-
regulated kinases (Erk), which phosphorylate specific sites
favoring the release of Nrf2 from Keap1; (2) modification of
Keap1 cysteine residues, which disrupts the Nrf2-Keap1
complex and favors Nrf2 dissociation; and (3) blockage of
ubiquitination and/or proteosomal degradation of Nrf2
[129]. The end result of all of these mechanisms is Nrf2 sta-
bilization and subsequent translocation into the nucleus,
where it can exert its transcriptional effects and commence
an antioxidant cascade. Of note, Nrf2 activators have already
made their way into clinical practice; in 2013, dimethyl fuma-
rate (BG-12, brand name Tecfidera®) was approved by the
FDA for the treatment of multiple sclerosis and is thought
to exert its therapeutic effects via augmentation of Nrf2’s
downstream cytoprotective, anti-inflammatory, and antioxi-
dant properties [130, 131]. These achievements represent a
promise that the Nrf2 pathway can be effectively used in
other diseases in which oxidative stress plays a major role,
such as TIIDM.

With regard to TIIDM, knowledge of the pivotal role of
oxidative stress in the pathogenesis and progression of the
disease originally precipitated investigation into natural anti-
oxidants, such as vitamin E, vitamin C, and coenzyme Q10, as
logical initial approaches [132–134]. However, results of these
studies have generally been disappointing, and human clinical
trials have not shown any benefit of organic molecules as
adjunct therapies in preventing or treating diabetic complica-
tions [135–137]. Therefore, over the past decade, a significant
amount of research, predominantly utilizing high throughput
cell-based screening assays, has been devoted to identifying
clinically applicable small molecule activators or inducers of
endogenous antioxidant mechanisms, such as the Nrf2/
Keap1/ARE pathway [138]. These “new mechanism-based

antioxidants” have emerged as the new frontier of defense
against oxidative stress and inflammation in TIIDM.

An array of Nrf2 small molecule activators, both natural
and synthetic, has been identified and studied extensively
(Table 2).

These include sulforaphane, curcumin, cinnamalde-
hyde, pterostilbene, oltipraz, and resveratrol. Some of the
most encouraging candidates fall under the category of
synthetic triterpenoids; triterpenoid, 2-cyano-3,12-dioxoo-
leane-,1,9(11)-dien-28-oic acid (CDDO), and its deriva-
tives have yielded highly promising results in animal
models of heart failure [102], insulin resistance [52], and
obesity [155]. Bardoxolone methyl (CDDO-Me), one such
derivative originally developed as an anticancer drug, was
incidentally found to exhibit renoprotective effects and
has made its way into human trials. A phase II clinical
trial (BEAM) in adults with TIIDM and advanced CKD
showed significant improvements in glomerular filtration
rate (GFR) with only mild side effects such as muscle
spasms, hypomagnesemia, and gastrointestinal distress
[107]. Unfortunately, a subsequent phase III trial (BEA-
CON) in patients with TIIDM and stage IV CKD was
terminated early due to serious adverse events [106].

In addition to systemic administration, targeted delivery
systems represent a potential approach to treatment of local-
ized diabetes complications. For example, an engineered
lipid-protein system (lipoproteoplex) demonstrated safe
and efficient delivery of siKeap1 to diabetic wounds and
resulted in accelerated wound healing [156]. Such novel
delivery systems could also potentially circumvent the known
toxicities resulting from covalent modifications (e.g., alkyl-
ation) of Keap1 cysteine residues that form the basis of
function for many reported Nrf2 stabilizers [157]. Therefore,
Nrf2 pathway modulation via direct, noncovalent inhibition
of Nrf2-Keap1 protein-protein complexes is emphasized in
current research. Additionally, strategies aimed at adjacent
or downstream elements in the Nrf2 pathway have also
gained traction as an alternative or combinatorial approaches
to treatment. For instance, repression of BTB domain and
CNC homolog (Bach1), a nuclear inhibitor of Nrf2, in
combination with traditional Nrf2 activators, has shown
promising results in neurodegenerative disease models for
safely increasing the efficiency and biological activity of these
agents [158].

In addition to the pathogenesis of TIIDM and its major
complications, treatment of the metabolic alterations in
TIIDM has also become a focus of intense investigation. Shin
et al. found that Nrf2 regulates fibroblast growth factor 21
(FGF21), a key mediator of glucose and lipid metabolism,
in mice [159]. This may have implications in guiding treat-
ment of obesity in TIIDM, which is itself regulated, at least
in part, by Nrf2 action on lipogenic gene expression and fatty
acid synthesis [156]. Studies have shown that Nrf2/Keap1/
ARE activators can exert potent reductions in body weight
and hepatic fat accumulation in mice with an excellent safety
profile and tolerance, representing potential novel, noninva-
sive options for managing obesogenesis in TIIDM [156, 160].

As we learn more about the protective aspects of the Nrf2
pathway, we must also appreciate the potential hazards of
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targeting Nrf2 as a therapeutic means. Accruing evidence
points to a “dark side” of Nrf2, which also regulates cell
proliferation [161]. Nrf2 and its downstream genes are over-
expressed in many cancer cell lines and human cancer
tissues, and ove-activation of this pathway appears to
contribute to the evolution of cancer and chemoresistance
of cancer cells [162, 163]. Furthermore, mutations in Nrf2
and Keap1 have been found in a large percentage of malig-
nancies [164, 165]. These findings should not impede our
pursuit of targeting the Nrf2/Keap1/ARE pathway in the
treatment of diabetes but should rather encourage a cautious
and vigilant approach.

8. Nrf2 as a Potential Biomarker

Although biomarkers as a means of noninvasive disease
prediction or prevention have been a topic of intense investi-
gation for many years, very few have made their way into the
clinical setting, and utility is largely limited to ad hoc corrob-
oration of pathologic events, such as myocardial ischemia
and heart failure. An increasing number of studies have been
published on biomarkers of oxidative stress in a wide
array of human disease [166], and AGE [167], nitrotyro-
sine [168], preoxiredoxin [169], and 8-hydroxy-2′-deoxygua-
nosine (8-OhdG) [170] levels in the skin, plasma, and urine

Table 2: Small molecule activators of Nrf2 in TIIDM.

Molecule Source
Mechanism of Nrf2

activation
Evidence

Sulforaphane (SFN)
Natural (cruciferous vegetables

such as broccoli, brussel
sprouts, and cabbage)

Modification of Keap1
cysteine residues

(i) Pancreatic β-cell protection [45]

(ii) Prevented cardiac oxidative damage, inflammation,
and hyperglycemic-induced fibrosis [139]

(iii) Renal protection in db mice [110]

Curcumin (CUR) Natural (turmeric)
Modification of Keap1

cysteine residues

(i) Reduced number of prediabetic individuals who
progressed to type II DM [140]

(ii) Activates liver enzymes involved in glycolysis,
gluconeogenesis, and lipid metabolism [141]

Bardoxolone
methyl (CDDO-
Me/RTA 402)

Synthetic (derivative of
oleanolic acid)

Modification of Keap1
cysteine residues

(i) Efficacy in short-term clinical trials in patients with
type II DM and CKD [107]

(ii) Did not reduce risk of end-stage renal disease
(ESRD) or death from cardiovascular failure in
patients with DM and stage IV CKD and was
terminated early due to side effects [106]

Tert-butylhydro-
quinone (tBHQ)

Synthetic (preservative in
unsaturated vegetable oils and

edible animal fats)

Modification of Keap1
cysteine residues/activation

of upstream kinases

(i) Prevented glucose-induced impairments in diabetic
retinopathy [142]

Cinnamic aldehyde
(CA)

Natural (found in bark of
cinnamon tree)

Activation of upstream
kinases

(i) Lowered blood glucose, total cholesterol,
triglycerides, and increased HDL∗ in diabetic
rats and mice [143]

(ii) Prevented development of hypertension in
conditions of insulin resistance [144]

(iii) Improved renal and glomerular function [110]

Resveratrol (RES)
Natural (polyphenol, found in
the skin of red grapes, peanuts,

and berries)

Activation of upstream
kinases

(i) Reduced blood glucose and HbA1c∗∗ levels [145]

(ii) Restored secretory function of β-cells in response to
toxicity [146]

(iii) Renoprotective effects in DM [147]

Magnesium
lithospermate B
(MLB)

Natural (active polyphenol
acid of Radix Salviae
miltiorrhizae herb)

Activation of upstream
kinases

(i) Suppressed progression of renal injury in diabetic
rats [148]

(ii) Protection againstDM-related atherosclerosis [149]

MG132 Synthetic peptide aldehyde Proteosome inhibitor
(i) Renoprotective against DM-induced oxidative

damage, inflammation, and fibrosis [113]

Pterostilbene Natural (blueberries, grapes) Mechanism unclear (i) Protective against β-cell apoptosis [150]

Catechins
Natural (flavenols, found in
red wine, berries, grapes)

Likely activation of
upstream kinases

(i) Reduced hepatic glucose production and enhanced
pancreatic function [151, 152]

(ii) Decreased cytokine-induced β-cell damage in vitro
[153]

(iii) Prevented reduction in islet mass in vivo [154]

(iv) Protected against nephrotoxicity [155]
∗HDL: high-density lipoprotein; ∗∗HbA1c: a marker of chronic hyperglycemia.
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samples have been investigated for both type I and type II
DM. However, lack of validation for these markers remains
a major obstacle to clinical utility [171]. The adoption of
Nrf2, or elements of the Nrf2/Keap1/ARE pathway, as poten-
tial biomarkers has been proposed for prognostic purposes in
cancer and neurodegeneration [172, 173]. The pursuit of
using the Nrf2 pathway as a biomarker for TIIDM and its
complications remains in its infancy, but existing evidence
suggests that there may indeed be utility in prediabetic and
diabetic patients, and research is likely to accelerate in this
field as the medical landscape continues to shift towards a
front-end, preventative approach with regard to chronic dis-
ease management [31, 174].

9. Conclusion

We have answered many questions regarding the role of the
Nrf2/Keap1/ARE pathway and oxidative stress in TIIDM,
but more remain before we can capitalize on this relationship
to attain widespread, clinical significance in humans. For
instance, much of what we know is derived from animal
studies, and it is unclear as to what extent the murine antiox-
idant system reflects that of humans. Additionally, despite
clear evidence of dysfunction in the Nrf2/Keap1/ARE antiox-
idant response across a wide range of tissue types and disease
stages in TIIDM, the specific mechanisms underlying Nrf2
dysfunction have yet to be fully elucidated. We must also be
cognizant of alternative, potentially confounding effects that
independent players within Nrf2/Keap1/ARE pathway may
exert. For instance, in addition to its cytoprotective role
against oxidative stress as part of the Nrf2/Keap1/ARE path-
way, accumulating research indicates that the Nrf2 molecule
can also independently control the expression of genes
responsible for many aspects of cellular metabolism. These
studies, largely dependent on transgenic diabetic and Nrf2
knockout murine models, have implicated this molecule in
TIIDM pathogenesis, prevention, and progression, via means
that are wholly distinct from its role in oxidative protection.
For instance, Nrf2 regulates blood glucose homeostasis and
metabolic reprogramming by redirecting anabolic pathways
[175], inhibiting lipogenesis [176], and promoting insulin
sensitization, thereby ameliorating insulin resistance [177].
A more robust understanding of these varied roles may help
explain seeming paradoxes in the role of the Nrf2/Keap1/
ARE pathway such as what we see in insulin homeostasis
and atheroma formation. These examples highlight not only
the pleotropic effects of Nrf2 throughout tissues but also the
variety of ways in which it responds and interacts, often
contradictorily, with different types of stress.

Looking towards the future, we must continue to vali-
date the Nrf2/Keap1/ARE pathway as a mediator of the
oxidative stress underlying TIIDM and further explore this
role in less morbid complications such as retinopathy and
neuropathy. As we continue to screen for and develop
ways to target the Nrf2/Keap1/ARE pathway, the impor-
tance of identifying novel delivery systems and nontoxic
mechanisms of Nrf2 activation will accelerate translation
of these therapeutics into human trials. Finally, encourag-
ing evidence for the use of the Nrf2/Keap1/ARE as a

biomarker should catalyze efforts to validate its use in
the clinical setting. The intertwining roles of Nrf2, oxida-
tive stress, and TIIDM will continue to provoke interest
for a time to come, but it is becoming increasingly clear
that further understanding this intimate relationship has
preventative, prognostic, and therapeutic value in combat-
ting this devastating disease.
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