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Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in
cancer. The recent identification of alternative programmed cell death pathways opens
up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and
eliminate malignant cells. Indeed, we have recently shown that programmed necrosis,
termed necroptosis, could be triggered to induce cell death in a subgroup of primary
acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this
review we focus on molecular mechanisms that drive drug resistance in ALL of childhood
and discuss the potential of necroptosis activation to eradicate resistant disease.
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INTRODUCTION

Acute leukemia is a hematological malignancy that perturbs the normal function of the
hematopoietic system with fatal outcome if left untreated. Substantial improvement in the
treatment of patients with childhood acute lymphoblastic leukemia (ALL) has been achieved over
the last decades (Pui et al., 2015). Despite this success that is based on intensive chemotherapy
protocols established in international collaborative studies (Schrappe et al., 2013), relapsed
leukemia still ranks among the most common diagnoses of childhood malignancies, and survival
rates of relapsed ALL remain low (Bhojwani and Pui, 2013). Thus, new treatment approaches
have to be developed, in particular for relapsed ALL patients. In addition to immunotherapy,
most current treatment approaches focus on targeting oncogenic lesions to induce cell death
(Muschen, 2018). Enormous efforts over the recent years have identified and characterized the
genomic lesions that occur in ALL (Mullighan et al., 2007; Fischer et al., 2015; Richter-Pechanska
et al., 2018). Chromosomal translocations frequently affecting transcription factors combine with
deletions in genes that regulate B- and T-cell development and mutations in genes that drive
proliferation (e.g., CRLF2, RAS, ILR7, STAT5, Notch) (Mullighan et al., 2007; Fischer et al., 2015;
Richter-Pechanska et al., 2018). The latter frequently occur at subclonal level. This heterogeneity
and diversity of molecular lesions in ALL (Mullighan et al., 2007; Liu et al., 2017) has rendered
the development of targeted therapies very challenging. In particular, chimeric translocations
remain largely undruggable, and direct targeting of deletions is obviously not possible. Many
of these alterations lead to reprogramming of hematopoietic differentiation and deregulation of
molecular mechanisms that balance cell death and survival, providing the basis for poor response
to chemotherapy and failure to undergo apoptosis. At the same time, this deregulation of signaling
pathways also identifies nodes that could be targeted using small molecules and novel approaches.
Among these, exploiting cell death mechanisms independent on classical apoptosis and caspases
activation represents a particularly attractive alternative, with the potential to activate cell death
responses under circumstances that prevent caspase-dependent cell death. Indeed, activation of
necroptosis using the small molecule SMAC mimetic birinapant eliminated refractory leukemia
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cells in samples from highly resistant ALL patients (McComb
et al., 2016). Corroborating these results, several compounds
such as other SMAC mimetics or natural products are able to
trigger the necroptotic pathway in leukemia but also in different
carcinomas (Han et al., 2007; Fu et al., 2013; McCabe et al., 2014;
Brumatti et al., 2016; Hannes et al., 2016; He et al., 2017; Safferthal
et al., 2017). The possibility to develop and use drugs to induce
necroptosis render this cell death mechanism very attractive for
therapeutic approaches to eradicate malignant cells.

ALTERATION OF CELL DEATH AND
SURVIVAL SIGNALING AS MECHANISMS
OF DRUG RESISTANCE IN ALL

Comparison of ALL samples at diagnosis and relapse identified
genomic and cytogenetic changes (Raimondi et al., 1993;
Mullighan et al., 2008; Muschen, 2018; Richter-Pechanska et al.,
2018) that are disease-driving and contribute to occurrence of
relapse. Indeed, refractory ALL samples frequently present with
secondary genetic alterations that arise from a minor subclone
at diagnosis, which becomes predominant at relapse conferring
drug resistance. Many of these alterations induce deregulation
of pro- and anti-survival signaling pathways. Aberrant activation
of the PI3K/AKT/mTOR axis is associated with poor clinical
outcome in ALL, and its dysregulation can induce cell survival
and resistance to cytotoxic drugs (Batista et al., 2011; Gomes
et al., 2014; Khanna et al., 2018). Inhibition of this key pro-
survival pathway, for instance using arsenic trioxide treatment,
can resensitize steroid poor responder patients to glucocorticoids,
key components of first-line ALL therapy. Arsenic trioxide
increases protein levels of the BH3-only protein BAD, a pro-
apoptotic member of BCL2 family and decreases the levels
of the caspase inhibitor XIAP (Bornhauser et al., 2007). As
shown in a case report of a refractory T-ALL patient, treatment
with arsenic trioxide could induce complete remission without
minimal residual disease (Wu et al., 2016). More direct inhibitors
of this pathway, such as PI3K inhibitors or dual PI3K/mTOR
inhibitors have shown promising activity in preclinical ALL
models (Fruman et al., 2017). ALL refractory to glucocorticoids
presented with high expression levels of the anti-apoptotic
BCL2 family protein MCL1, due to a hyper activation of
the PI3K/AKT/mTOR network (Wei et al., 2006), and specific
MCL1 inhibitors are currently under evaluation for anti-
leukemia activity (Ramsey et al., 2018). In refractory ALL, other
possible dysregulation may more directly involve the apoptotic
pathway and mitochondrial activity, which is controlled by the
BCL2 family members. Indeed, correlation of drug resistance
and alterations of BCL2 family proteins has been extensively
described in leukemia (Letai et al., 2004; Campbell et al., 2010).
Next to association of BCL2 family protein expression and
drug resistance, these anti-apoptotic proteins also contribute to
leukemogenesis. A transgenic mouse model showed a synergistic
effect between BCL2 and c-MYC in malignant transformation
of B-cells (Strasser et al., 1990). Moreover, an adaptation of
the same mouse model demonstrated that presence of BCL-XL
(anti-apoptotic BCL2 member) accelerates the development of

MYC-driven leukemia (Swanson et al., 2004). Increased leukemia
development was observed also in Eµ-Myc transgenic mice upon
genetic disruption of one BIM (BCL2 pro-apoptotic protein)
allele (Egle et al., 2004). Thus, dysregulation of pro- or anti-
apoptotic BCL2 proteins can support malignant cell maintenance
and survival also once the tumor is established. Recently
developed diagnostic procedures with functional analysis of
BCL2 family protein dependence using BH3 profiling (Ryan
and Letai, 2013; Ryan et al., 2016; Touzeau et al., 2016) can be
used to predict chemotherapeutic sensitivity in several cancer
types (Ni Chonghaile et al., 2011). It has become clear from
these approaches that a subset of ALL cases heavily depend on
specific BCL2 family members. In order to target the interaction
between pro- and anti-apoptotic BCL2 proteins in cancer, a new
class of compounds, the BH3-mimetics, has been developed.
In particular the BCL2-specific BH3-mimetic venetoclax (ABT-
199) has shown high activity ex vivo and in vivo in a subset
of B-cell precursor ALL (Fischer et al., 2015) and in some
T-cell leukemia samples (Chonghaile et al., 2014; Peirs et al.,
2014; Frismantas et al., 2017). Moreover, venetoclax has shown
promising results also in clinical trials for other hematologic
malignancies (Konopleva et al., 2016). However, high expression
of MCL1 (Choudhary et al., 2015) or low expression ratio of BCL2
vs. BCL-XL may underlie a potential resistance to venetoclax. To
overcome this, it is possible to combine MCL1 inhibitors with
BCL2 inhibitors, which was shown to have a synergistic effect
in preclinical studies (Leverson et al., 2015). While representing
an important factor for drug resistance, dysregulation of BCL2
proteins is not the only cause for apoptotic rescue in malignant
cells. Alterations in genes that drive metabolism have also been
described to underlie drug resistance in ALL. Mutations in
the nucleotidase NT5C that are recurrent in T-ALL (Tzoneva
et al., 2013, 2018) may confer resistance to mercaptopurine, a
key element in ALL therapy, representing a typical example of
gain-of-function mutations that are difficult to target, which is
in addition also associated with occurrence of relapse. Recent
discoveries have highlighted the occurrence of the deletion of
the B-cell transcription factor IKZF1 together with CDKN2A,
CDKN2B, PAX5, or PAR1 to identify a subgroup of B-cell
precursor ALL patients with exceedingly bad outcome (Stanulla
et al., 2018). We are only at the beginning of understanding the
consequences of such deletions on drug resistance. In addition to
drive B-cell development, IKZF1 controls a metabolic program
that includes regulation of responses to steroids (Marke et al.,
2016; Chan et al., 2017), and its loss may be directly linked
to steroid resistance. Next to metabolic alterations, a second
group of pro-survival proteins, the inhibitor of apoptosis proteins
(IAPs), are frequently highly expressed in leukemia (Tamm
et al., 2004; Hundsdoerfer et al., 2010) and constitute relevant
targets for intervention. The pro-survival activity of cIAP1/2
is linked with their ubiquitination activity and the ability to
interact with and promote the survival activity of receptor-
interacting protein kinase 1 (RIPK1) (Peltzer et al., 2016; Lalaoui
and Vaux, 2018). Ubiquitination of RIPK1 enables its Nuclear
Factor kappa B (NF-kB) activating potential, supporting survival
also in cancer cells (Bertrand et al., 2008; Varfolomeev et al.,
2008). Small molecules SMAC mimetics can target and inhibit
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FIGURE 1 | Treatment of leukemia cells with traditional chemotherapies can
select for apoptotic-resistance. SMAC mimetics such as birinapant induce
concurrent apoptosis and necroptosis in ALL and are thus active against
apoptosis-resistant cells. This may contribute to eradication of resistant and
refractory leukemia.

the cIAPs, which induces deubiquitination of RIPK1 in the
TNF receptor 1 (TNFR1) complex and subsequent activation of
RIPK1-dependent death. These agents have shown anti-cancer
activity in different solid tumor cell line models (Fulda, 2015).
Moreover, primary ALL and acute myeloid leukemia (AML)
samples undergo RIPK1-dependent death upon SMAC mimetics
treatment (Brumatti et al., 2016; Lalaoui et al., 2016; McComb
et al., 2016; Richmond et al., 2016). The tumor suppressor role
of RIPK3 for AML development in mice (Hockendorf et al.,
2016) further underscores the importance of this pathway in
hematological malignancies. Interestingly, treatment with SMAC
mimetics induced RIPK1-dependent concurrent apoptosis and
necroptosis in primary ALL samples, both in vitro and in vivo
in the xenograft model (McComb et al., 2016). The high anti-
leukemic activity of SMAC mimetics is thus based on their
potential to trigger necroptosis, to eradicate also refractory
ALL cells that are unable to mount an apoptotic response
(Figure 1). To further characterize and understand the potential
of necroptosis activation for anti-leukemia therapy, it will be
important to develop biomarkers that brand a response and to
determine strategies to identify those patients who may benefit
from such an approach.

ACTIVATION OF NECROPTOSIS AS
ANTI-LEUKEMIA THERAPY

Despite its relatively recent description (Degterev et al., 2005),
necroptosis ranks among the best described non-apoptotic
and caspase-independent forms of cell death. It is a caspase-
independent cell death mechanism, which presents necrotic
features that are highly regulated (Wang et al., 2018). The signal
transduction steps that govern necroptosis induce initiation and
execution of this cell death pathway controlled by the RIP
Kinases, ending with cell swelling and rupture of the cellular
membrane, leading to the release of cellular content into the
extracellular space (Kaczmarek et al., 2013). The main regulating
players of this programmed cell death are RIPK1, RIPK3, and
the mixed lineage kinase domain-like protein (MLKL) (Vanden
Berghe et al., 2014). Experimentally, necroptosis is frequently

triggered by exogenous tumor necrosis factor alpha (TNFα)
in combination with pharmacological caspase inhibition using,
e.g., zVAD, QVD, or emricasan. Other death receptors that
can activate necroptosis in presence of their respective ligands
include FAS (also known as CD95 or APO-1), DR3, TRAILR1,
TRAILR2, and DR6 (Wilson et al., 2009). Mechanistically,
TNFα binding induces oligomerization of TNFR1 and the
formation of complex-I at the plasma membrane. Complex-
I is a multiprotein complex that includes TNFRI, TNFR-
associated death domain protein (TRADD), TNFR-associated
factor-2 and 5 (TRAF2/TRAF5), the cIAPs1/2 and RIPK1
(Vanden Berghe et al., 2014). At this level, cell fate decisions
are taken, with RIPK1 having multiple functions. Depending on
its post-translational modifications, in particular ubiquitination
status, RIPK1 controls cell survival or can activate cell death
trough apoptosis and necroptosis. Poly-ubiquitination of RIPK1
driven by cIAPs1/2 and LUBAC triggers survival through
NF-kB signaling, which leads to mitogen-activated protein
kinase (MAPK) activation (Pasparakis and Vandenabeele, 2015).
Simultaneously, ubiquitination of RIPK1 prevents necroptosis
and RIPK1-dependent apoptosis activation. Deubiquitination of
RIPK1 can induce the formation of the cytosolic complex-IIb,
which comes in two different flavors. Under caspase-8 proficient
conditions, deubiquitination of RIPK1 leads to formation of the
ripoptosome leading to apoptosis through caspase-8 dependent
mechanisms, while the necrosome is formed if caspase-8 is
non-active (Wegner et al., 2017) (Figure 2). In the necrosome,
RIPK1 associates with and phosphorylates RIPK3 leading to
the oligomerization and translocation of MLKL to the plasma
membrane (Zhao et al., 2012; Huang et al., 2017). It is worth
noting that in particular the ripoptosome is fairly short lived
and can usually only be detected under experimental caspase
blockade using zVAD. The deubiquitination of RIPK1 may occur
through activity of the deubiquitinases CYLD and A20 (Wright
et al., 2007; Bonapace et al., 2010; Wegner et al., 2017) or
through depletion of cIAP1/2 by SMAC mimetics treatment.
To guide decisions between RIPK1-dependent apoptosis or
necroptosis, autophagy genes were shown to play an important
scaffolding role (Goodall et al., 2016). MLKL can be considered
the executor of necroptosis as it induces formation of pores
on the plasma membrane, which becomes permeable releasing
damage-associated molecular patterns (DAMPs), thus ending
into necroptosis (Dondelinger et al., 2014; Wang et al., 2014; Xia
et al., 2016). The identification of RIPK1-dependent necroptosis
to underlie the extraordinary sensitivity to SMAC mimetics in
a subgroup of pediatric ALL represents an example in which
experimental inhibition of caspase-8 is not required. Rather, we
hypothesize that this may be due to the existence of specific
but varying RIPK1-associated protein complexes within the cells.
We could not identify any association of protein expression
of either caspase-8, RIPK3, MLKL, cIAP1/2, or RIPK1 with
sensitivity to SMAC mimetics in ALL (McComb et al., 2016),
suggesting that the regulation and sensitivity will be more
complicated than mere expression levels. Interestingly, our own
data (McComb et al., 2016) demonstrated a TNFα-independent
effect of SMAC mimetics, suggesting that auto- or para-crine
regulation of TNFα by RIPK1 does not seem to play a major
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FIGURE 2 | The binding of TNFα to TNFR1 induces the formation of complex-I, which contains also ubiquitinated RIPK1. Deubiquitination of RIPK1, upon inhibition
of cIAPs by SMAC mimetics, can trigger formation of pro-death signaling complexes, either via apoptosis and/or necroptosis.

role for sensitivity. Comparative gene expression analyses suggest
association of the Philadelphia-like ALL subgroup with sensitivity
to SMAC mimetics, with TNFR1 expression correlating with
response, while cFLIP did not appear amongst the most highly
regulated genes (Richmond et al., 2016). Mutations in caspase-
8 or epigenetic silencing has not been described in ALL so far
(Mullighan et al., 2007; Liu et al., 2017), indicating that the
underlying molecular mechanisms that determine sensitivity will
be more complex than anticipated.

POTENTIAL OF
NECROPTOSIS-INDUCING
COMPOUNDS IN ALL

Triggering necroptotic cell death should be considered as a
new therapeutic approach in cancer treatment in order to

eradicate malignant cells that are refractory to apoptotic drugs.
Several agents, including natural and targeted compounds, have
been shown to induce necroptosis in ALL, frequently also in
combinatorial approaches. In particular combination of SMAC
mimetics with the steroid dexamethasone (Rohde et al., 2017)
and with demethylating agents (DAC) (Gerges et al., 2016),
as well as inhibition of NF-kB (Meng et al., 2010) activate
necroptosis in ALL cells, while hypertonicity enhanced activity
of SMAC mimetics by combination of apoptosis and necroptosis
(Bittner et al., 2017). The best well-known drugs that can induce
necroptotic cell death are indeed the SMAC mimetics combined
with caspase-8 inhibition (McCabe et al., 2014; Brumatti et al.,
2016; Hannes et al., 2016). This type of treatment can push the
cells to necroptosis due to inhibition of cIAPs, thereby inhibiting
the pro-survival function of RIPK1, and on the other hand
caspase inhibition confers a block in apoptosis. Interestingly,
we have observed that refractory ALL samples could undergo
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necroptosis cell death also in absence of caspases inhibition
upon the SMAC mimetic compound birinapant as single agent
(McComb et al., 2016). Several SMAC mimetic compounds are
already in phases I or II of clinical trials to treat leukemia and
solid tumors (NCT02098161, NCT01188499, NCT01486784). It
will be interesting to see if necroptosis contributes to a potential
anti-tumor effect in these trials. Still, the most promising anti-
tumor activity of SMAC mimetics may be achieved if combined
with other anti-cancer agents. For instance, the SMAC mimetic
compound BV6 synergizes with DAC, cytarabine, or HDAC
inhibitors in acute myeloid leukemia (AML) (Steinhart et al.,
2013; Chromik et al., 2014; Steinwascher et al., 2015). This activity
required necroptosis for full efficacy. Antagonism of cIAPs may
boost both innate and adaptive immune responses and increase
tumor cell killing (Beug et al., 2017; Dougan and Dougan, 2018;
Michie et al., 2019). In addition to SMAC mimetics, other
agents are able to trigger a necroptosis response. Activation
of necroptosis using drugs as 5-fluorouracil or staurosporine
(Dunai et al., 2012; Grassilli et al., 2013; Oliver Metzig et al.,
2016), again if caspases are inhibited, showed high anti-cancer
potential. Moreover, necroptosis could be activated by shikonin,
a natural compound derived from a plant extract, in leukemia
and in multiple myeloma (Han et al., 2007; Wada et al.,
2015). This compound and other analogs may overcome drug
resistance due to expression of MRP1, BCRP1, P-glycoprotein,
BCL2 and BCL-XL through necroptotic cell death (Han et al.,
2007; Xuan and Hu, 2009). Furthermore, necroptosis has been
described in some cases to depend on autophagy. In fact, the
pan-BCL2 inhibitor obatoclax triggered autophagy-dependent
necroptosis, thus restoring the response to the glucocorticoid
dexamethasone in steroid-resistant ALL (Bonapace et al.,
2010). Moreover, bypassing chemoresistance through autophagy-
mediated necroptosis is possible upon chalcone treatment or
using the tyrosine kinase inhibitor sorafenib (He et al., 2014;
Kharaziha et al., 2015). One important aspect to be taken
into account when considering necroptosis activation in cancer
therapy is its potential immunogenicity. Disruption of the
cellular membrane and release of DAMPs may activate immune

responses that potentially can also act on the malignant cells.
Indeed, vaccination with necroptotic cancer cells induces an
adaptive immune response through cytotoxic CD8a+ T cells
in vivo, which mediates efficient anti-tumor immunity (Aaes
et al., 2016). Sometimes though, the release of DAMPs may
not be sufficient for CD8+ T cell cross-priming, and RIPK1
signaling and activation of NF-κB within dying cells is in
addition required to boost the response (Yatim et al., 2015).
The question to what extent activation of necroptosis in ALL
in particular, but also in other hematological malignancies
such as AML (Brumatti et al., 2016) is immunogenic remains
open. Some data from solid tumors suggest that necroptosis
does not necessarily always have to be pro-inflammatory and
immunogenic (Brouckaert et al., 2004; Lohmann et al., 2009).
Still, while TNFα-induced necroptosis may even shut down
inflammatory responses (Kearney et al., 2015), data with respect
to cytokine release and inflammatory responses on necroptosis
induced by SMAC mimetics are lacking, in particular also in the
context of refractory ALL. Clearly, susceptibility to necroptosis-
mediated cell death does represent a specific vulnerability
of lymphoid cells, even without necessity to experimentally
inhibit caspases. In the future, potential immunogenicity and
inflammatory responses of necroptosis induction will have to
be investigated carefully, in order to evaluate the therapeutic
anti-leukemia potential of necroptosis induction.
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