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An atomic Fabry–Perot 
interferometer using a pulsed 
interacting Bose–Einstein 
condensate
P. Manju, K. S. Hardman, P. B. Wigley, J. D. Close, N. P. Robins & S. S. Szigeti*

We numerically demonstrate atomic Fabry–Perot resonances for a pulsed interacting Bose–Einstein 
condensate (BEC) source transmitting through double Gaussian barriers. These resonances are 
observable for an experimentally-feasible parameter choice, which we determined using a previously-
developed analytical model for a plane matter-wave incident on a double rectangular barrier system. 
Through numerical simulations using the non-polynomial Schödinger equation—an effective one-
dimensional Gross–Pitaevskii equation—we investigate the effect of atom number, scattering length, 
and BEC momentum width on the resonant transmission peaks. For 85 Rb atomic sources with the 
current experimentally-achievable momentum width of 0.02�k

0
 [ k

0
= 2π/(780 nm) ], we show that 

reasonably high contrast Fabry–Perot resonant transmission peaks can be observed using (a) non-
interacting BECs, (b) interacting BECs of 5× 10

4 atoms with s-wave scattering lengths a
s
= ±0.1a

0
 

( a
0
 is the Bohr radius), and (c) interacting BECs of 103 atoms with a

s
= ±1.0a

0
 . Our theoretical 

investigation impacts any future experimental realization of an atomic Fabry–Perot interferometer 
with an ultracold atomic source.

Understanding the different and complementary properties of atoms compared with photons has advanced 
both fundamental and applied physics. In direct analogy to optical systems, atomic matter-waves can be coher-
ently focussed1, reflected2, diffracted3 and interfered4. These basic atom-optical elements have been com-
bined to construct more sophisticated analogue systems such as atomic waveguides5, atom lasers6,7 and atom 
interferometers8,9. Atomic properties such as mass, tunable dispersion and differing degrees of freedom make 
these analogue systems versatile measurement tools. Atom interferometers, for example, have enabled state-of-
the-art measurements of the fine structure constant10,11 and inertial fields such as gravity12–14 and rotations15,16.

In this paper, we consider the atomic analogue of a Fabry–Perot interferometer. Optical Fabry–Perot interfer-
ometry is used for many fundamental scientific and industrial applications, including linewidth measurements 
of continuous wave (CW) and pulsed lasers17, laser phase and frequency stabilisation18 and precision sensing19,20. 
An atomic Fabry–Perot interferometer could offer new sensing capabilities by exploiting the atomic mass and 
tunable dispersion. Furthermore, the analogous mirrors, formed using optical potentials, allow for real-time and 
versatile control of the system. Previous theoretical work has investigated the resonance properties of Fabry–Perot 
interferometry using matter-waves21 and their potential use in velocity selection22–24 and in the identification of 
bosonic and fermionic isotopes of an element25,26. In order to fully exploit the benefits of this atomic analogue, 
the transmission characteristics of an atomic Fabry–Perot interferometer in an experimentally-realisable regime 
must be understood.

Much like the optical Fabry–Perot interferometer, the atomic analogue requires a narrow linewidth source 
to fully exploit the interference effects of the system. The properties of an optical laser make it a superior source 
for a Fabry–Perot interferometer compared with a broad-band light source. Bose–Einstein condensates (BECs) 
display many properties analogous to a laser, including high coherence and narrow momentum width, which 
have proven advantageous for precision atom interferometry27–29. Although many theoretical proposals have 
shown that atomic Fabry–Perot interferometers can be developed using CW atom laser beams constructed 
from interacting and non-interacting BEC sources23,30–34, a true CW atom laser has yet to be experimentally 
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realised35. In contrast, a pulsed atom laser, formed by releasing and propagating a BEC, is readily achievable in 
ultracold-atom laboratories.

This paper investigates the properties of an atomic Fabry–Perot interferometer in an experimentally-realisable 
parameter regime36,37. We use a simple analytic model38 for rectangular barrier potentials to study the dependence 
of cavity finesse and transmission coefficient on barrier width, barrier height, cavity length, initial momentum of 
the atoms, and the momentum width of the atomic cloud. This allows us to identify a parameter regime where 
high contrast, narrow peaks are observable in the transmission spectrum. Using these established parameters, 
we numerically simulate the propagation of a pulsed 85 Rb BEC through a cavity formed via double Gaussian 
barriers. 85 Rb is ideal for this study since its inter-atomic interactions are tunable via a Feshbach resonance39–41. 
We investigate the resonant transmission process for an interacting and non-interacting BEC and study the effect 
of the condensate’s momentum width and inter-atomic interactions on resonant transport through the double 
barrier system. Using the experimentally feasible parameters we have determined, we demonstrate resonant 
transmission, requiring a momentum width achievable using delta-kick cooling37,42,43. We show that the trans-
mission coefficient and finesse can be improved by reducing the cloud’s initial momentum width, allowing for 
high contrast resonant transmission in the weakly-interacting regime.

Fabry–Perot interferometry
In order to build an understanding of the parameter dependencies, we initially consider an idealised optical 
Fabry–Perot cavity, extending this to an analytic model describing the atomic analogue. Using this analytic 
model in tandem with known experimental limitations, we determine a feasible parameter regime for realising 
an atomic Fabry–Perot interferometer. These parameters are then used to simulate the more complex model 
involving barriers described by Gaussian potentials and a finite momentum width BEC, including inter-atomic 
interactions. This progression is illustrated in Fig. 1.

An ideal optical Fabry–Perot interferometer is made of two parallel mirrors separated by a distance, d (cav-
ity length), as shown in Fig. 1a. The light entering the cavity undergoes multiple reflections from the mirrors 
and interferes with itself. Constructive interference enhances the light inside the cavity, leading to resonant 
transmission out of the cavity. Here we consider the ideal case where the mirror reflectivity is independent of 
the wavelength of light. Resonant transmission peaks, illustrated in Fig. 1d, are obtained by scanning the wave 
number (k) of the incident light. These peaks have a linewidth44

and are separated by the free spectral range
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Figure 1.   Schematic diagrams of Fabry–Perot interferometers and their respective transmission spectra. 
The top row depicts the transmission and reflection of (a) narrow band light through an optical Fabry–Perot 
interferometer, (b) a narrow-band matter-wave through a rectangular double barrier, and (c) a broad-band 
Gaussian wavepacket (i.e. a non-interacting BEC with finite momentum width) through double Gaussian 
barriers. Outside the cavity, the black arrow represents the incident wave, whilst blue and red denote the 
reflected and transmitted parts of the wave, respectively. (d), (e) and (f) show corresponding transmission 
resonance peaks. Here d is the cavity length, w is the barrier width, T is the transmission coefficient, FSR is the 
free spectral range of the resonance spectrum, and Ŵ is the cavity linewidth.
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where R1 and R2 describe the reflectivity of each mirror forming the cavity, and c is the velocity of light in vacuum. 
These quantities, along with the finesse

are the figures of merit for an optical Fabry-Perot interferometer44.
In an atomic Fabry-Perot interferometer, the incoming light is replaced by atomic matter-waves and the 

mirrors are replaced by laser-induced potential barriers. The atomic system provides key differences including 
atomic mass, inter-atomic interactions, and mirrors where the key parameters can be tuned. This results in 
changes to the transmission characteristics of the atomic system compared with that of the optical system. This 
is qualitatively illustrated by Fig. 1e, f. In contrast to the ideal optical Fabry-Perot interferometer, the atomic 
system displays changes in the FSR and Ŵ as the wave number of the incoming particles changes. To analyse the 
characteristics of a matter-wave Fabry–Perot interferometer, we use a previously developed analytical model38. 
This model assumes a plane wave of non-interacting particles, with energy E, transmitting through two sym-
metric rectangular barriers of width w, height V0 , and separation distance d (see Fig. 1b).

The transmission coefficient, T, can be described using the dimensionless parameters dκ , wκ , k/κ , where 
k =

√
2mE/� and κ =

√
2mV0/� are the wave vectors of particles and barriers, respectively. Specifically,

where

Here F and R are interpreted as the cavity’s finesse and mirror (rectangular barrier) reflectivity, respectively. The 
relationship of the transmission coefficient to wκ and k/κ is illustrated for two different values of dκ in Fig. 2. 
The three plots on the right-hand side show cross sections from the left plot for dκ = 4 with wκ = 4 (top) and 
wκ = 1 (middle) in addition to dκ = 100 with wκ = 1 (bottom). The first two cross sections show that the cavity 
linewidth decreases with increasing barrier width, for a fixed barrier height and cavity length. The second and 
third cross sections show that both FSR and linewidth decrease with increasing cavity length, for a fixed barrier 
height and width. In contrast to the ideal optical Fabry–Perot interferometer, the linewidth increases with increas-
ing k for fixed barrier height and barrier width. This behaviour is due to the strong wavelength-dependence of 
the mirror reflectivity in the atomic Fabry–Perot interferometer. Similar effects would be seen when considering 
an optical cavity with strong wavelength-dependent reflectivities.

Now we consider the finesse of the cavity, which is given by Eq. (5). The finesse only depends upon the 
dimensionless parameters wκ and k/κ . As shown in Fig. 3, the finesse decreases with increasing k/κ and increases 
with increasing wκ . Therefore, for a fixed barrier height, an increase in particle momentum causes a decrease in 
finesse, whereas an increase in barrier width causes an increase in finesse. Again, this behaviour is different to 
the ideal optical Fabry–Perot interferometer, and is due to the mirror reflectivity’s dependence on barrier height, 
barrier width, and the energy of the incoming atoms.

The above analysis reveals the parameter regimes needed to make an atomic Fabry–Perot interferometer with 
desirable qualities such as high finesse and narrow linewidth. However, we do not have complete freedom in our 
parameter choice, as the limitations of current cold-atom technology impose additional constraints. We discuss 
these additional constraints below, and combine them with the results of the above analytic model to determine 
an experimentally-feasible parameter regime for realising an atomic Fabry–Perot interferometer. The operation 
of an atomic Fabry–Perot interferometer depends sensitively on the following parameters:

•	 Momentum width of the atomic cloud. The above analytical study assumes a plane matter-wave with infi-
nitely narrow momentum width. In reality, all atomic clouds have finite momentum widths. In order to 
observe Fabry–Perot resonances, ideally the momentum spread of the atomic source needs to be much 
less than the FSR and linewidth of the cavity. To date, the smallest experimentally-achieved momentum 
width for an atomic cloud is 0.02�k037, which was obtained by delta-kick cooling a rubidium BEC (here 
k0 = 2π/(780 nm) = 8.06× 106m−1 is the wave vector of the light used to impart momentum through Bragg 
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Figure 2.   Transmission coefficient of a narrow-band beam of particles passing through a double rectangular 
barrier system [Eq. (4)—see also Fig. 1b, d] for (top left) dκ = 4 and (bottom left) dκ = 100 . The three plots on 
the right-hand side show cross sections from the left plot at (top) wκ = 4, dκ = 4 , (middle) wκ = 1, dκ = 4 , 
and (bottom) wκ = 1, dκ = 100 . For a fixed barrier height (fixed κ ), the cavity linewidth decreases with 
increasing barrier width and/or cavity length, whereas the FSR decreases with increasing cavity length. Here 
w, d, k and κ are the barrier width, cavity length, and wave vectors of the particles and barriers, respectively.

Figure 3.   For a beam of particles transmitting through a double rectangular barrier system, finesse is plotted as 
a function of dimensionless particle wave vector ( k/κ ) and barrier width wκ , where κ =

√
2mV0/� is the wave 

vector corresponding to the barrier. For a fixed barrier height, finesse decreases with increasing momentum of 
the particle, but increases with increasing barrier width.
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spectroscopy on the 85 Rb D2 transition45–47). Hence, we aim to select parameters that give a cavity linewidth 
and FSR larger than this value.

•	 Barrier width. Although narrow resonances and a high finesse are desirable, the lower bound on experi-
mentally-achievable BEC momentum width requires us to operate in a regime where the cavity linewidth is 
relatively broad. We find that selecting wκ = 1 is a good compromise, since it gives resonance peaks that are 
wide enough to be observable yet still narrow enough to be potentially useful. Additionally, the minimum 
achievable barrier width is restricted by the diffraction limit of the laser, which for our system is on the order 
of 1 µ m. We fix the barrier width to this minimum, i.e. w = 1 µ m; a significantly larger choice for w would 
require a smaller κ , resulting in a cavity spectrum that could only be observed by scanning unachievably 
small values of k.

•	 Barrier height. Fixing w and wκ completely determines the barrier height. Explicitly, κ = 1µm−1 = 0.12414k0 , 
corresponding to a barrier height of V0 = �

2κ2/(2m) = 3.944× 10−32 J.
•	 Cavity length. The finesse of the cavity does not depend on the cavity length. However, in order to reduce the 

overlap between the two laser-induced barriers experimentally, we need a cavity length that is larger than the 
barrier width. Additionally, momentum width considerations require a regime where the cavity linewidth is 
relatively broad (see above). Figure 2 shows that as dκ decreases, both FSR and linewidth increase. Therefore, 
in order to observe at least two broad linewidth transmission peaks, we choose dκ = 4 . This gives a cavity 
length of d = 4µm , which is larger than the chosen barrier width ( d = 4w).

•	 Momentum imparted to the atoms. Finally, in order to observe resonance peaks, we must be able to scan the 
incident energy of the atoms. This can be done by imparting momentum to the atoms through, for example, 
Bragg transitions13,46. For the above parameter choices, at least two peaks are observable by scanning k/κ 
from 0.01 to 1.2 (see Fig. 2). This corresponds to a k range of k = 0.0013k0 to k = 0.15k0.

Based on the above experimentally-feasible parameter choice, our simple analytic model predicts that resonant 
peaks should be observable with FSR = 0.0687�k0 (which is greater than the cloud momentum width, 0.02�k0 ) 
and linewidth Ŵ = 0.0097�k0 . This linewidth is about a factor of two smaller than the momentum width of the 
cloud, which is not ideal. Nevertheless, as we show below with more detailed theoretical modelling, Fabry-Perot 
resonances are observable in this regime. Indeed, the experimental system includes much more complexity than 
the simple analytical model considered above. For example, the barriers are created experimentally using blue-
detuned lasers, which are more accurately modelled as Gaussian barriers, in contrast to the rectangular barriers 
used in the analytical model. Furthermore, BECs are finite momentum width sources that typically have non-
negligible inter-atomic interactions. These inter-atomic interactions couple different momentum components of 
the cloud and also have a non-trivial effect on the transmission dynamics48–51. Therefore, although the analytic 
study can guide our parameter choice, it cannot provide detailed modelling of an interacting BEC’s transmission 
dynamics through double Gaussian barriers. This demands a numerical investigation.

Theoretical model for numerical simulation
The mean-field dynamics of a weakly-interacting BEC in a quasi-1D geometry (e.g. a waveguide potential with 
tight radial confinement) are well-described by the non-polynomial Schrödinger equation (NPSE)36,52–54. This is 
an effective 1D model of the Gross–Pitaevskii equation that incorporates spatial and temporal variations in the 
BEC’s width in the tight radial direction (see Supplementary Information). It assumes a cylindrically-symmetric 
tight harmonic radial confinement of frequency ω⊥ . Specifically,

where σ(z, t)2 =
√

1+ 2as|ψ(z, t)|2  , ψ(z, t) is the effective 1D macroscopic condensate wave function nor-
malised to the total particle number, N(t) =

∫

dz |ψ(z, t)|2 , V(z) is the external potential (a double Gaussian 
barrier potential during evolution), m is the atomic mass, a⊥ =

√
�/(mω⊥) , g = 4π�2as/m is the two-body 

interaction strength, determined via the s-wave scattering length, as , and K3 is the three-body recombination loss 
rate coefficient. In the case of an atomic Fabry-Perot interferometer, the three-body recombination loss rate can 
become significant due to the high density formed by the multiple reflections of the atoms between barriers. We 
set the three-body recombination loss rate coefficient to K3 = 4× 10−41m6/s , which is the value determined 
from our previous experiments with 85 Rb BEC36,55. All our simulations of Eq. (9) were performed for condensates 
of 85 Rb atoms using the open-source software package XMDS256 with an adaptive 4th-5th order Runge-Kutta 
interaction picture algorithm.

The initial wave function for the simulations is a Gaussian,

where z0 is the initial position of the atomic cloud, σc/
√
2 is the standard deviation of the density profile, 

corresponding to a k-space density standard deviation of 1/(
√
2σc) (full width at half maximum (FWHM) of 

�k = 2
√
ln 2/σc) , and �k is the condensate’s initial mean momentum. A Gaussian wave packet of this func-

tional form could be engineered experimentally by delta-kick cooling37,42,43 the cloud after turning off the axial 
confinement, and then imparting a momentum kick �k to the atoms via a shallow angle Bragg transition29,46,47.

The laser barriers that form the Fabry-Perot cavity are modelled as two Gaussian potentials:
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where σb is the standard deviation of each barrier and z01 and z02 are the position of first and second barriers, 
respectively. We choose z01 = z0 + 3(σc + σb)+ 15µ m and z02 = z01 + 3σb + d + 3σb so that introducing the 
barrier potentials does not perturb the initial atomic cloud. Guided by our previous analytic analysis, we choose 
cavity length d = 4µ m, barrier height V0 = 3.944× 10−32 J, and barrier width σb = 1µm/

√
2π  (this gives a 

Gaussian barrier with equal area to a square barrier of height V0 and width 1µm).
Our simulations allow us to determine the number of atoms transmitted ( NT ) and reflected ( NR ) through 

the double barrier system via

where z > zT = (z02 + 3σb) and z < zR = (z01 − 3σb) are the transmitted and reflected regions, respec-
tively. The stopping time, tend , for the simulation is chosen such that there are no atoms left in the cavity (i.e. 
N − NT − NR < 1 ) and both NT and NR have reached a constant value (more precisely, do not change by more 
than 0.1 in a given time step). For the non-interacting case g = 0 and K3 = 0 , N is simply a normalisation fac-
tor that no longer influences the dynamics. In this case, tend is chosen such that (NT + NR)/N < 10−5 and both 
NT/N and NR/N do not change by more than 10−6 in a given time step. We investigate the resonant transmission 
by computing the total transmission coefficient

Analysis of resonant transmission
Non‑interacting case.  Using the parameters determined above, we first simulate the resonant transmis-
sion of a non-interacting BEC ( g = 0 and K3 = 0 ) passing through the double Gaussian barrier system described 
previously. We choose an initial cloud with a FWHM momentum width close to the smallest experimentally-
realised value of �k = 0.02k0

37, which corresponds to a spatial width of 2σc ≈ 21µ m. The propagation of this 
non-interacting BEC after momentum kick �k = 0.1855�k0 is schematically shown in Fig. 4a–c, where (a), (b) 
and (c) correspond to three snap shots in time: prior to interaction ( t = 0s), during interaction ( t = 0.07s), and 
after interaction ( t = 0.15 s) with the barrier, respectively. The interference caused from the overlapping incident 
and reflected cloud components is clearly seen in Fig. 4b. As expected, this behaviour is present both after the 
initial reflection, outside of the cavity, and through multiple reflections inside the cavity. Resonant transmission 
is observed for the k values which are resonant with the cavity. The transmission coefficient as a function of 
momentum kick given to the cloud is plotted in Fig. 4d. This confirms that Fabry–Perot resonances can indeed 
be observed for our parameter choice.

In contrast to the incident plane-wave source case, where the Fabry–Perot resonance peaks occur at a maxi-
mum of Tmax = 138,57, the transmission peaks observed here are suppressed, i.e, Tmax < 1 , reducing the contrast 
of the resonance peaks. A previous theoretical investigation observed this behaviour for the resonance of a non-
interacting CW atom laser beam23. The reduction in resonant transmission arises due to the finite momentum 
width of the source BEC. This also causes broadening of the peaks, which reduces finesse. As the peaks are sup-
pressed due to the momentum spread of the cloud, we expect them to improve by reducing the BEC’s momen-
tum width. To investigate this further, we study the transmission profile for a range of initial cloud momentum 
widths. Fig. 5 shows the height, finesse and linewidth of the first resonant peak for a non-interacting BEC with 
momentum width ranging from �k = 2× 10−4k0 to 0.02 k0 . The resonance peaks are improved (peak height 
and finesse increase and linewidth decrease) by reducing the cloud momentum width, as one would expect.

Interacting case.  In the presence of inter-atomic interactions, the effect of three-body recombination losses 
become crucial. Due to the repeated reflections of the atoms between the two barriers, the density becomes very 
high inside the cavity, increasing the three-body recombination loss of atoms from the condensate. The overall 
atom loss due to three-body recombination depends non-trivially on the transmission dynamics, and so will 
vary with scattering length, the initial momentum kick, and spatial width of the BEC. Specifically, as the scat-
tering length goes from positive to negative, the three-body recombination loss increases due to the difference 
in the propagation dynamics of the BEC as it approaches the barrier. Condensates with positive and negative 
scattering lengths undergo expanding or focussing, respectively, under free propagation50,58,59. These dynamics 
modify the cloud density and therefore the overall three-body loss as well. The momentum kick imparted to 
the BEC further modifies the atom loss by changing the total interaction time. For larger momentum kicks, the 
atomic cloud propagates faster and spends less time in the high density region inside the cavity. This reduces the 
possibility of three-body recombination loss. Hence, as the average momentum of the cloud increases the loss 
rate decreases. Finally, for a fixed initial atom number, increasing the spatial width of the cloud (i.e. decreasing 
the momentum width) decreases the overall three-body loss due to the reduction in initial density.
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Figure 4.   (a)–(c) show the propagation of a non-interacting BEC having mean momentum �k = 0.182�k0 and 
FWHM momentum width ��k = 0.02�k0 through two Gaussian barriers, in three snapshots in time, simulated 
using the 1D Schrödinger equation (i.e. NPSE Eq. (9) with g = 0 and K3 = 0 ). The red curves indicate the 
Gaussian barriers and the black curves represent the density profile of the Gaussian cloud. (a) The BEC starts on 
the left side of the barriers, (b) propagates towards the barriers, and enters the cavity. The dynamics around the 
cavity region is expanded and illustrated in the inset plot. (c) Some parts of the cloud are transmitted through 
the barriers, whereas other parts are reflected, depending on the momentum of the cloud. (d) The transmission 
coefficient as a function of the mean momentum of the wave packet [here k0 = 2π/(780nm)].

Figure 5.   The influence of a non-interacting BEC’s momentum width on the (a) height, (b) finesse, and (c) 
linewidth of the first resonance peak. The FWHM of the initial momentum distribution, ��k = 2

√
ln 2�/σc , 

and linewidth are given in units of k0 = 2π/(780nm). Peak height and finesse increase and Ŵ decreases with 
decreasing �k.
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The transmission resonances corresponding to clouds having as = −1a0 and as = +1a0 and a momentum 
width of �k = 0.02k0 are illustrated by the blue dashed curves in Fig. 6a, b. In the presence of inter-atomic inter-
actions the peaks are either further suppressed or not well-defined, as compared to the non-interacting cloud. 
This reduction in contrast is caused by the additional interaction-induced expansion of the BEC’s momentum 
distribution, scattering-length-dependent distortions in the momentum distribution that occur during inter-
action with barriers50, and non-trivial intra-cavity dynamics due to the presence of inter-atomic interactions.

In order to mitigate the loss of contrast caused by inter-atomic interactions, we can either decrease the 
interactions or reduce the initial momentum width. Both approaches effectively reduce the initial interaction 
energy of the cloud. Figure 6 shows the effects of two methods to reduce interactions, firstly by reducing initial 
atom number and secondly by reducing the magnitude of the scattering length. Figure 6a, b show the resonance 
peaks for as = −1a0 and +1a0 , respectively, for initial atom numbers N = 105, 104 and 103 . Resonance peak 
contrast increases substantially by reducing initial atom number for both attractive and repulsive clouds. For 
comparison, Fig. 6c, d illustrates the effect of reducing the magnitude of the scattering length on the resonance 
peaks for attractive and repulsive clouds, respectively. Similar to the effect seen from the reduction in initial atom 
number, reducing the magnitude of the scattering length also improves the resonant peaks for both attractive 
and repulsive clouds.

Although reducing the initial momentum width pushes the cloud outside of the current experimentally-
realisable regime, it is important to understand the system dynamics in this narrow momentum width regime. 
The effect of reducing momentum width on the Fabry-Perot transmission spectrum for clouds having scattering 
length as = −1a0 and +1a0 are shown in Fig. 7a, b, respectively. Figure 7c is produced by selecting the maximum 
transmission of the middle resonance. Here, the general trend towards Tmax = 1 is evident as the momentum 
width of the cloud approaches zero.

This numerical analysis shows that an atomic Fabry–Perot interferometer with a pulsed BEC source can 
be experimentally achieved using current technology. Since the inter-atomic interactions reduce the resonant 
transmission, it is ideal to use a non-interacting cloud or a very weakly-interacting cloud with small to moder-
ate atom numbers. Additionally, as current cooling techniques improve, allowing narrower momentum width 

Figure 6.   Plots showing that reducing inter-atomic interactions improves the resonant transmission peaks. 
Inter-atomic interactions are reduced by reducing peak density (by reducing initial atom number) in plots 
(a) and (b) for as = −1a0 and as = +1a0 , respectively. In (c) and (d), the interaction strength is reduced by 
reducing the magnitude of the negative and positive scattering lengths, respectively, for BECs with an initial 
atom number of N = 5× 104.
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sources, it may be possible to operate a ‘good’ quality atomic Fabry–Perot interferometer with more strongly-
interacting cloud.

Conclusion
We have compared the properties of optical and atomic Fabry–Perot interferometers. By analysing the depend-
ence of finesse and transmission coefficient on barrier height, barrier width, cavity length, incident atomic energy 
and cloud momentum width, we have determined an experimentally-feasible parameter regime for observing 
atomic Fabry–Perot resonances. Using these parameters, we numerically simulated the transmission dynamics 
of a 85 Rb BEC through two Gaussian barriers. The simulations showed that the Fabry-Perot resonances can be 
achieved for a non-interacting BEC with a momentum width around 0.02�k0 . Due to the finite momentum width 
of the BEC, the transmission peaks are suppressed ( Tmax < 1 ) leading to wider peaks and reduced finesse. Conse-
quently, reducing momentum width can increase finesse and improve resonance peaks in the atomic Fabry–Perot 
spectrum. The introduction of inter-atomic interactions further modify and suppress the resonance peaks. We 
have investigated different possibilities for improving the quality of the resonant peaks of an interacting BEC, 
which includes reducing the interactions (by reducing initial atom number and/or the magnitude of the scattering 
length) and reducing the initial momentum width of the BEC. We have shown that both methods can improve 
the quality of resonances and we have illustrated that almost complete transmission ( Tmax ≈ 1 ) is achievable for 
BECs having weak attractive and repulsive interactions. Our investigation shows that Fabry-Perot resonances can 
be observed only for atomic species with very low interactions or with tunable interactions, such as 85Rb. This 
study paves the way to experimentally realise an atomic Fabry–Perot interferometer using a weakly-interacting 
and non-interacting pulsed BEC, that could potentially be used for many applications including velocity filtering, 
accelerometry and for identifying bosonic and fermionic isotopes of an element.

Received: 20 December 2019; Accepted: 24 August 2020

Figure 7.   Plots illustrating that reducing the initial momentum width of the cloud improves the transmission 
resonance peaks. (a) and (b) show the resonant peaks for as = −1a0 and as = +1a0 , respectively, for three 
values of cloud momentum width. (c) Plots the height of the second peak in the transmission spectrum ( Tmax ) 
as a function of BEC momentum width, for scattering lengths as = −1a0 and as = +1a0 . It shows that peak 
height increases with decreasing momentum width. In all plots the initial atom number is N = 5× 104.
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