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Abstract: Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused
by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is
clinically characterized by a constellation of motor and non-motor manifestations. The latter include
hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia.
The main pathological features of PD are neuronal loss and consequent accumulation of Lewy
bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and
α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn
gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA
mutations present early-onset parkinsonism with severe and early non-motor symptoms, including
cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed
association with non-motor manifestations. The functional role of these polymorphisms is only
partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in
predisposing to the non-motor manifestations of PD.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease,
and its prevalence tends to increase in an age-dependent manner [1]. With a general
increase in life expectancy, PD is one of the world’s fastest growing neurological disorders,
currently affecting about 1% of the population above 65 years [2]. PD causes severe
disability in patients and a consequent psychological burden in caregivers [3]. Moreover,
the concurrence of high prevalence and disability impacts on the cost of care, contributing
to a significant economic burden [4]. Most PD cases are sporadic, while only 5% of PD
patients present a genetic form, and mutations in LRRK2 gene are the most frequently
detected [5]. The disease is clinically defined by the presence of bradykinesia, rest tremor
and muscular rigidity, which, at the beginning, are unilateral, but subsequently spread
contralaterally during the disease course [6]. In addition, patients complain of several
non-motor symptoms (NMS) that may even precede for years the onset of the motor
phenotype [7]. These include, among others, hyposmia, constipation, depression, pain and,
in later stages, cognitive decline and dysautonomia [4]. Recent studies have shown that
NMS have an even greater impact on patients’ disability and caregivers’ distress compared
to the motor counterpart [8]. For such reasons, the spectrum of NMS has recently gained
immense attention, and the last generation of clinical trials have incorporated NMS as
important endpoints [9]. Furthermore, NMS take part in the fluctuations affecting patients
in the intermediate-advanced disease phases, when the pharmacological regimen does
not cover the daily functional requests and complex therapy modifications or advanced
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strategies are required [10]. It is therefore important for clinicians to recognize and monitor
these symptoms using the already validated clinical scales [11].

PD pathology is characterized by loss of dopaminergic neurons in the midbrain
substantia nigra with consequent accumulation of Lewy bodies (LB) in the surviving
neurons [12]. The main component of LB is represented by the protein alpha-synuclein
(α-syn), whose aggregation and accumulation perpetuates neuronal degeneration [13].
A-syn is expressed not only in the central nervous system, where it represents about 1%
of all cytosolic proteins, but also in peripheral regions, contributing to the great variety of
non-motor symptoms commonly seen in PD patients [14].

There is great interest regarding the roles of α-syn both in physiological and patho-
logical conditions, especially considering that current treatment of PD relies only on
symptomatic therapies, essentially aimed at restoring dopamine transmission, while the
search for disease modifying strategies so far has been elusive.

A-syn is composed of 140 amino acids and has three different regions: the amino-
terminal portion, which is important for the α-sheet structure, the central hydrophobic
structure (called NAC), which confers the potential ability to assume a β-sheet conforma-
tion and the carboxy terminal part [15].

The diverse functions of α-syn are not yet completely understood. A-syn is detectable
in the pre-synaptic area, near the synaptic vesicles, and may be involved in synaptic
plasticity. Moreover, α-syn can be released in the synaptic space in part through the
exosomes. This extracellular component plays an important role in neuronal homeostasis
and may be involved in cell death [16]. The toxic effect of α-syn is due to its fibrillation
and consequent accumulation. This is a multistep and exponential process determined by
the formation of intermediates, in which the protein assumes a beta sheet conformation,
which is enhanced by several factors such as oxidative stress, lipids, membranes, certain
pesticides and metals [17]. Furthermore, some point mutations of the SNCA gene confer
a higher fibrillation tendency, accounting for a younger age at onset with a more severe
clinical phenotype [18].

Recent evidence indicates that α-syn is recognized by immune cells, and such inter-
action may have important pathogenic implications. T lymphocytes specific for α-syn
epitopes were detected, and their frequency was higher in PD patients compared to con-
trols [10,19]. In addition, an association between PD risk alleles at the HLA locus and anti-
α-syn T cells was reported [19]. Such findings suggest that α-syn may drive the immune
system towards a pro-inflammatory response [20], which may, in turn, impact PD motor
and-non motor features [21–24].

Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identi-
fied [25]. Several point mutations, as well as gene multiplications (duplication and tripli-
cation), have been described. Generally, patients carrying SNCA mutations present early
onset PD with severe and early non-motor symptoms, including cognitive decline [26].
Moreover, SNCA presents interactions with other known PD causative genes (such as
LRRK2, DJ1, PINK1 and Parkin). In particular, α-syn and LRRK2 co-localize in the LB. This
phenomenon is already detectable in the early disease phases in the midbrain region, and
tends to extend to the cortical regions as disease progresses [27]. DJ1 interacts with soluble
monomeric and oligomeric forms of α-syn. Overexpression of DJ1 reduces α-syn dimer-
ization, whereas mutant DJ1 causes an impairment of this process [28]. PINK1 interacts
with α-syn, inducing its degradation and preventing its association with the mitochondria,
which leads to cell death. Mutations or deletions of PINK1 contrast these actions, increasing
α-syn toxicity [29]. Parkin activates phosphatase A2, which in turn de-phosphorylates
α-syn, thus attenuating cell death and inflammation. Conversely, α-syn counteracts this
molecular pathway, enhancing cell loss [30].

In this review, we discuss the contribution of SNCA and its product, α-syn, in the
non-motor manifestations of PD.
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2. Genetic Variation of SNCA and Non-Motor Features

SNCA has six exons and encodes for α-syn, a protein of 140 amino acids. Due to
alternative splicing, different transcripts can be generated and one of these, which is
composed of 112 amino acids, and therefore called SNCA112, is particularly found in Lewy
bodies [31].

2.1. SNCA Mutations

Pathogenic point mutations, few of which have been described, account for slightly
different clinical phenotypes. Particularly, PD patients carrying the A53T and the E46K
mutations have an early-onset disease with severe parkinsonism and dementia, while those
carrying the A30P mutation have a less severe phenotype [32]. Tambasco et al. compared
clinical presentations of patients with gene multiplications: triplications implied a more
severe burden of non-motor symptoms compared to duplications, including higher preva-
lence of depression, psychosis, gastrointestinal and urinary dysfunctions and postural
hypotension. On the contrary, anxiety and sleep disturbances were equally represented in
the two groups, as well as in point mutation carriers [33]. The higher frequency of dysau-
tonomia among triplication carriers was also confirmed by Singleton and colleagues, who
demonstrated the presence of postural hypotension and cardiac sympathetic denervation
after a few years of disease. Furthermore, some of these patients presented urinary or fecal
incontinence [34]. Gene duplication also causes severe and rapid cognitive decline. Kielb
et al. recently described a patient with an SNCA duplication who presented an initial im-
pairment in executive and frontal/subcortical functions, which deteriorated more rapidly
than the motor symptoms, ultimately leading to a Lewy bodies dementia phenotype with
cognitive fluctuations, visual hallucinations and REM sleep behavior disorder [35].

SNCA mutations were also studied for their ability to modulate the immune re-
sponse, especially considering that detrimental immune activation may influence PD
features and progression [36]. Interestingly, SNCA mutations preferentially drive pro-
inflammatory pathways. Carriers of the A53T mutation display higher production of
the pro-inflammatory cytokine IL1α [37]. A subsequent study confirmed the role of the
A53T mutation, but also showed that A30P and E46K mutations had an even more robust
capacity in inducing a pro-inflammatory response in microglia [38].

Single nucleotide polymorphisms (SNPs) consist of a nucleotide change in the gene
sequence that can occur both in intronic or coding regions [39]. Small polymorphic repeats
represent the repetition of subsequent motifs, which can be classified as short tandem
repeats (STR) if the repeating unit is composed of up to six base pairs, or variable number
tandem repeats (VNTR) if the unit has more than six base pairs [40]. All these variations
may influence protein expression and therefore be implicated in disease pathogenesis [39].
Several SNCA SNPs and polymorphic repeats have been examined, both in terms of disease
predisposition and progression, but data are still controversial [41].

2.2. Rep1

Rep1 is a polymorphic dinucleotide repeat sequence located about 10 kb upstream of
the SNCA transcription start site. This repeat is triallelic (259, 261 and 263 base pairs in
length) and the 263 bp allele has a higher frequency in patients than in controls [42]. The
length of this polymorphism directly correlates with protein expression. In particular, the
261 bp risk allele enhances gene transcription increasing protein levels, and its presence
is therefore associated with a higher risk of developing PD. By contrast, the 259 bp risk
allele lowers protein expression, exerting a protective role [43]. Moreover, Rep1 may
act indirectly through the interposition of other transcription factors. Particularly, Poly
(ADP-ribose) polymerase-1 (PARP-1) is a DNA binding protein able to modulate gene
transcription and mediate several cellular pathways involving DNA duplication and repair,
cancer and apoptosis. PARP-1 can bind Rep1 and, through a molecular mechanism not yet
fully understood, actively modulate SNCA expression [44]. To further support the notion
that Rep 1 length influences disease susceptibility, Shu et al. reported that Rep 1 alleles 265,
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269 and 271 conferred an increased risk whereas allele 267 conferred a reduced risk of PD
development [45].

As regards the influence of Rep 1 on non-motor features, evidence is rapidly growing.
In a large cohort of 1134 Chinese PD patients, the prevalence of depression, assessed
with the Hamilton Rating Scale for Depression (HADS), was significantly lower in carriers
homozygous for the (CA)12 allele of the copy number variation of the SNCA Rep1 allele [46].
Results were later confirmed in a group of 171 patients from Singapore, where Rep1 longer
allele (263 bp) carriers had a higher burden of non-motor symptoms investigated with
the total score on the Non-Motor Symptoms Scale (NMSS) [47]. Furthermore, the authors
showed that 263 bp allele carriers had a higher frequency of depression and fatigue,
according to the Fatigue Severity Score [47].

Longer Rep 1 alleles were also associated with cognitive decline. In a cohort of 426
Italian PD patients, 263 bp genotype carriers displayed a significantly increased 5-year
cumulative risk of dementia and visual hallucinations [48]. Findings were later confirmed
in a Singapore cohort of 172 PD patients, where significantly lower scores on the Mini
Mental State Examination (MMSE) in long versus short allele carriers were detected [49].
In both cohorts, Rep1 263 carriers also displayed a worse motor phenotype, but findings
were robust only in the Singapore cohort, where both UPDRS part III and Hoehn and Yahr
scores differed significantly in longer versus shorter allele carriers. Most studies found that
patients carrying longer Rep1 alleles had an earlier age at onset, suggesting that the effect of
the repeat on cognitive performance is independent from age [45]. On the other hand, there
are also a few studies that failed to detect an association between Rep1 alleles and cognitive
deterioration. In a large cohort of more than 900 patients, Markopoulou and colleagues
found that patients carrying longer alleles did not display worse cognitive outcomes than
patients with shorter Rep1 alleles [50]. These results are in line with a previous study
performed by the same group in a Greek family showing that the 259-bp Rep 1 allele had
a severe phenotype with a poor clinical outcome in terms of both motor and non-motor
symptoms [51]. Nonetheless, significant methodological differences between the reported
studies should be considered. First, clinical data included in the Italian study were collected
through direct patient examinations, whereas data in the report by Markopoulou et al. were
obtained through telephonic interviews [50]. Second, the way findings were displayed in
the two studies makes the results difficult to compare. The report by Markopoulou et al.
did not directly assess the impact of the 263 bp allele, but aggregated patients with 261–261
and 259–263 genotypes into the same group [50].

2.3. SNCA SNPs

Other SNPs of SNCA were evaluated with respect to cognitive function in PD. In a
population of about 100 PD patients and 100 healthy controls from Brazil who were tested
with MMSE and Frontal Assessment Battery (FAB) and genotyped for SNCA rs356219
and rs2736990, it was found that variations of both SNPs were associated with the risk
of dementia. The most striking effect was seen in carriers of G allele of rs356219 in both
homozygosis (GG) and heterozygosis (GA), who showed an odds ratio of 4.47 and 5.74 of
developing dementia, whereas a weaker though significant impact on cognitive decline
was displayed by CT and CC carriers at rs2736990, who had an odds ratio of 3.87 and 3.84,
respectively [52]. Dementia development was also investigated in a cohort of European or
North American ancestry composed of 1492 PD patients, 922 Lewy body dementia patients
and 971 healthy controls. Assessing cognitive abilities with the Movement Disorders
Society criteria and the MOCA, authors found that the C haplotype of rs62306323 and T
haplotype of rs7689942 predicted dementia in PD patients [53]. More recently, carriers of G
allele at rs356219 were also found to display cognitive impairment combined with faster
motor progression compared to non-carriers [54]. Finally, a robust association between
rs894280 and cognitive decline, particularly affecting attention and visuospatial functions,
was detected in a group of 101 PD patients from Canada. Intriguingly, the authors used
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a computer-based approach, consisting of an informatics algorithm combining imaging,
genetic and clinical features to identify the determinants of global cognition [55].

SNCA expression is also influenced by post-transcriptional modifications, such as
methylation, consisting of the attachment of cytosine in a CpG dinucleotide site, mostly
located in the promoter region of genes [56]. Generally, hypermethylated sites determine a
lower gene expression by reducing the DNA polymerase binding, therefore interfering with
the transcriptional process. SNCA presents these sites in the promoter region and in intron
1, and it has been suggested that modifications in the methylation process may influence
SNCA levels and consequently have an important impact on disease susceptibility [56].
In this regard, Iakovenko et al. analyzed the methylation status of SNCA in a group of
460 PD patients and controls. Authors found a significant correlation between intron 1 site
methylation and Rep1 allele length, with longer alleles correlating with hypomethylations.
In contrast, no correlations were detected with promoter sites and in controls [57].

As regards other non-motor manifestations, depression, hyposmia and REM sleep
behavior disorder (RBD) are particularly interesting for their frequent presence in the
prodromal phase of the disease. Prevalence of depression was found inversely correlated
with the TT genotype of SNCA rs2583988 in Brazilian PD patients [52]. Hyposmia and RBD
were studied in a murine model of PD, characterized by the concomitant presence of SNCA
A53T mutation, rs11931074, rs3857059 and Rep1 (259 to 261 alleles). Authors showed that
in experimental mice, loss of dopaminergic neurons, hyposmia and RBD preceded the
onset of the classical motor features of PD [58].

3. Alpha-Synuclein Production, Deposition and Non-Motor Features

The mechanisms through which common SNCA polymorphisms participate in PD
pathogenesis still need to be completely elucidated [15]. Common genetic variations can
modulate the alternative splicing process that leads to the generation of different SNCA
transcripts and interfere with protein expression in central and peripheral tissues [59].

SNCA transcripts were investigated in a group of nine PD patients and six controls,
and transcripts 112 and 98 were found increased in the cerebellum of patients compared to
controls [60]. SNCA112 lacks exon 5, and that structural difference may enhance protein
aggregation due to a significant shortening of the unstructured C-terminus [61]. G alleles
of rs356219, rs365165 and rs2736990 have an important impact on SNCA112 production,
possibly playing a detrimental role in PD [61]. On the other hand, studies showed that Rep1
genotype 259/259 causes lower expression of α-syn in both central nervous system, namely
midbrain and temporal lobe [62], and peripheral blood mononuclear cells (PBMCs) [63].

3′ UTR SNPs influence central protein expression. For example, rs356219 may alter
the generation of alternative splicing isoforms [64]. Moreover, AA and CT genotypes of
rs356219 are associated with higher levels of SNCA mRNA in human substantia nigra
and temporal lobe, respectively [62,63]. Linnertz and colleagues detected higher α-syn
levels in midbrain in carriers of A haplotype of rs365165 [62]. A study of the gastric and
colonic mucosa performed in 38 PD patients and 46 controls showed that patients who
carry the G allele of rs11931074, but not Rep1, display α-syn deposition in the enteric
nervous system [65]. The results are summarized in Table 1.
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Table 1. Effects of SNCA SNPs on non-motor symptoms and gene expression.

SNP Population Results Citation

Effects on non-motor symptoms

rs356219
rs2736990

100 PD patients and
100 controls

Carriers of G allele of rs356219 had
higher probability of developing

dementia
[52]

rs2583988 100 PD patients and
100 controls

TT genotype inversely correlated with
depression [52]

rs62306323
rs7689942

1492 PD patients
922 Lewy body

dementia and 971
controls

G allele of rs62306323 and T allele of
rs7689942 were predictors of dementia

development
[53]

rs356219 50 PD patients
G allele carriers presented a cognitive
impairment along with a faster motor

decline
[54]

rs894280 101 PD patients CC genotype of this SNP was associated
with cognitive decline [55]

Effects on gene expression

rs356219
rs365165

rs2736990

117 healthy subjects
(brain samples)

Important impact on SCNA112
production [61]

rs365165 144 healthy subjects
(brain samples)

Carriers of A allele had higher
alpha-synuclein levels in midbrain [62]

rs356219 144 healthy subjects
(brain samples)

Carriers of AA genotype had higher
mRNA SNCA levels in substantia nigra [62]

rs356219 17 PD patients and 24
controls

Carriers of CT genotype had higher
mRNA SNCA levels in temporal lobe [63]

rs11931074 38 PD patients and 46
controls

Carriers G allele of rs11931074 had
enteric deposition of alpha-synuclein [65]

A-syn is also expressed in erythroid cells, both in bone marrow and in peripheral
circulating cells [66]. Locascio and colleagues analyzed the expression of SNCA transcripts
in circulating blood in a cohort of about 200 PD patients and controls. Expression of SNCA
transcripts was significantly lower in patients than in controls, showing a 17% decrease.
In particular, de novo patients displayed the most abundant transcript reduction. SNCA
undergoes alternative splicing, generating different isoforms that can be detected in periph-
eral blood [67]. Accordingly, Marsal-Garcìa et al. studied the expression of five different
SNCA transcripts in patients with PD and Lewy body dementia (LBD). Peripheral blood
mRNA expression of transcripts 1 and 2 was reduced in patients with disease onset before
70 years while transcript 3 was increased in early PD. Furthermore, their concentration
increased with disease duration [68]. Considering that LBD is a synucleinopathy character-
ized by early cognitive deterioration, a significant difference in SNCA transcripts between
PD and LBD patients may represent a candidate marker of faster cognitive decline [68].

4. Peripheral Accumulation of α-Synuclein and Non-Motor Symptoms

SNCA undergoes several post-translational modifications, such as phosphorylation,
ubiquitination and nitration, which may impact tissue protein expression and ability in
aggregating, contributing to cell death [69]. According to the Braak hypothesis, pathological
α-syn gradually reaches the CNS, particularly the basal ganglia, from the olfactory bulb
and the vagus dorsal nucleus, and follows a subsequent diffuse cortical spreading. At the
same time, α-syn is expressed in several peripheral tissues [70]. Such peripheral α-syn
deposition was recently studied in a cohort of PD patients compared to matched healthy
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controls. Protein concentrations were analyzed in samples from skin, colon (particularly
the sigma portion) and submandibular gland along with serum and CSF. About 25% of
skin biopsies of PD patients and no controls were positive for phosphorylated α-syn, thus
suggesting that the skin is an accessible and specific tissue for α-syn detection and therefore
a support for PD diagnosis [71].

4.1. Gastrointestinal Symptoms

Constipation represents one of the most frequent, and often disabling, non-motor
symptoms that can precede for years the onset of the clinical symptoms [72]. Accordingly,
α-syn can be detected in the colon submucosal tissue and in the submucosal plexus in both
ascending and descending colon [71].

Furthermore, patients may complain of sialorrhea and dry mouth, which often may
coexist. In these disabling conditions, conventional medical treatment often is not sufficient
and botulinum toxin injections are necessary with good results [73]. Pathophysiologically,
α-syn can accumulate both in the submandibular gland and minor glands [71]. Inter-
estingly, α-syn accumulation in the submandibular gland tends to increase with disease
progression [74].

Dysphagia represents a life-threatening symptom because of the risk of aspiration,
and therefore pneumonia, which mainly involves PD patients in the advanced phases of
the disease [75]. Accordingly, α-syn has been detected in the cervical portion of vagus
nerve and pharyngeal plexus [76].

4.2. Hyposmia

Hyposmia is a frequent non-motor symptom that precedes by several years the onset
of the motor phenotype [77]. It is related to the accumulation of α-syn in the olfactory
system; it has been detected not only in the olfactory bulb and tract but also in the cortex
and specifically in the anterior olfactory nucleus and olfactory cortex [78]. Interestingly
α-syn was present not only in neurons but also in non-neuronal cells (in decrementing
order, microglia, pericytes and astrocytes) but not in the oligodendrocytes [79].

4.3. Cardiovascular Symptoms

About 30–40% of PD patients present orthostatic hypotension, defined as a fall in
systolic blood pressure of at least 20 mm Hg or diastolic blood pressure of at least 10 mm
Hg within 3 min when changing position from supine to standing [80]. The exact patho-
physiology of cardiovascular involvement in synucleinopathies is complex and not fully
understood. Cardiovascular symptoms are mainly expressed as myocardial noradrenergic
deficiency due to denervation [81] and impairment of catecholamine turnover, which may
cause the accumulation of toxic metabolites, leading to cell death [82]. Aggregates of α-syn
have been detected in the sympathetic cardiac fibers [83], as also demonstrated by Isonaka
and colleagues who studied a colocalization index of α-syn and tyrosine hydroxylase (TH)
as an indicator of innervation. The authors found that all LB patients had an index > 1.5, in-
dicating an accumulation of α-syn along with a neuronal denervation [84]. Cardiovascular
symptoms may also be related to baroreflex failure, which may determine an exaggerated
response to vasoactive therapies [85]. Last but not le least, orthostatic hypotension may
also be related to anti-parkinsonian therapy [86].

4.4. Visual Impairment

Most PD patients present visual deficits (such as decreased visual acuity, abnormal
spatial contrast sensitivity and color vision defects) along with retinal abnormalities [87]. α-
syn aggregates have been identified in retina, particularly in the inner nuclear and ganglion
layers where also dopaminergic receptors (particularly D1 receptors) are expressed. These
aggregates can be found in both the axon and soma [88]. Furthermore, the increased latency
detectable through the visual evoked potentials revealed that visual impairment is not only
limited to the retina but involves the visual pathway [88].
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4.5. Peripheral Neuropathy

PD patients may present a peripheral neuropathy, with both an acute/subacute
and chronic onset [89]. It is still controversial whether PD may itself represent a risk
factor or neuropathies may be correlated with the pharmacological treatment; accordingly,
patients treated with continuous LD intestinal infusion have a higher incidence probably
because of vitamin malabsorption (vitamin B12 and folate) with consequent accumulation
of metabolites (such as methylmalonic acid) that may damage peripheral nerves [90]. In this
context, α-syn aggregates and a higher α-syn ratio, which indicates the protein deposition in
relation to nerve density, have been identified within pilomotor and sudomotor fibers [91]
and in the unmyelinated fibers of the dermis [92]. These findings seem quite specific
for PD because they have been detected in a small percentage of patients with atypical
parkinsonism and in no controls.

All these data suggest that peripheral α-syn aggregates may represent a key factor
leading to NMS development in PD. Nevertheless, the precise mechanisms through which
such aggregates cause tissue damage and consequent NMS have not yet been demon-
strated [93].

5. α-Syn in Other Neurodegenerative Diseases

Even though the main neurodegenerative diseases, including Alzheimer’s disease
(AD), Huntington disease (HD) and amyotrophic lateral sclerosis (ALS) present very differ-
ent clinical phenotypes, they may share some similarities in terms of the pathophysiological
pathways involved. Working on such a hypothesis, the role of α-syn has been investigated
in all of these conditions. The presence of α-syn and therefore Lewy bodies was detected
in more than 50% of brains of AD patients [94]. Generally, α-syn has a higher tendency
to co-localize with tau rather than with β amyloid. Particularly, α-syn may increase tau
phosphorylation, which may in turn contribute to amyloid aggregation and accumulation,
perpetuating a vicious cycle. Furthermore, higher levels of α-syn in the cerebrospinal fluid
(CSF) of patients with mild cognitive impairment correlated with higher probability of pro-
gression to AD [95]. HD is caused by a trinucleotide expansion in huntingtin (HTT) gene.
A-syn can promote the accumulation of mutated htt, both when expressed in wild-type
form or in the presence of pathogenic mutations such as A53T and A39P, by increasing the
aggregation rate of a part of HTT exon 1, which contains the expanded region [96]. Further-
more, α-syn may also influence disease features; in a murine model, symptoms such as
tremor and weight loss were strictly correlated with α-syn levels [97]. Finally, ALS consists
of a progressive, often rapid, degeneration of first and second motor neurons. Though rare,
some cases are genetic, and the first mutated gene detected was the superoxide dismutase
1 gene (SOD1) [98]. Both in vitro and in vivo experiments showed that SOD1 presented
a higher oligomerization rate in the presence of α-syn. Moreover, α-syn can act both on
wild-type and mutated SOD1 [99]. All these data corroborate the need to further investigate
α-syn involvement, not only in PD, but also in other neurodegenerative diseases, and to
explore whether this protein might be a target for disease-modifying therapy.

6. Conclusions

Current evidence indicates that α-syn is of paramount importance in PD pathogenesis.
Gene mutations are very rare but represent the first proof of the central role of this protein
in PD. SNCA genetic polymorphisms certainly have a role in both modifying the risk of
disease development and predisposing to peculiar phenotypic features, especially in the
non-motor domain. Whatever lies beneath the variable degree of α-syn aggregation and
accumulation in both CNS and peripheral tissues, it is clear that there is a solid correlation
between such phenomena and clinical features of PD, especially regarding non-motor
symptoms. Furthermore, α-syn spreading may drive the immune system toward a pro-
inflammatory status, perpetuating the neurodegenerative process. (See Figure 1).
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Figure 1. The impact of SNCA variation in the development of non-motor symptoms in Parkinson’s disease. Gene mutations
and polymorphisms generate different SNCA transcripts. A-syn accumulates in the Lewy bodies or circulates in body fluids.
Its interaction with immune cells drives a pro-inflammatory response ultimately favoring cell death. A-syn overproduction,
spreading and deposition contribute to motor and non-motor manifestations.

For such reasons, α-syn represents a promising therapeutic target for disease-modifying
approaches in PD. Starting from the gene level, where SNCA multiplications increase
α-syn production, promising results were obtained with RNA interference, providing a
significant decrease in α-syn deposition in murine hippocampal neurons [100]. The major
argument lies in the ideal target reduction, considering that a decrease of more than 90%
of α-syn expression led to nigrostriatal degeneration [101]. A-syn decrease can also be
achieved by acting on SNCA transcription. Recently, beta2 adrenoceptor agonists have
been investigated as possible treatment strategies in PD [102] because they can modu-
late histone deacetylase action in gene promoter and enhancer regions, with consequent
neuroprotective activity both in vitro and in murine PD models [103]. Particularly, clen-
buterol was able to reduce α-syn mRNA and protein levels in mice in a dose-dependent
manner. Moreover, clenbuterol administration in SK-N-MC human cells decreased α-syn
levels previously boosted by propranolol administration. The neuroprotective action of
clenbuterol may be ascribed to its ability in reducing acetylation of histone 3 lysine 27
(H3K27), a promoter of SNCA transcription [103]. Furthermore, several lines of research
have studied the inhibition of α-syn aggregation by enhancing the heat shock protein
functions [104] or by using oligomer modulators that can inhibit α-syn oligomer formation
and accumulation, without reducing protein levels [105]. Levin et al. demonstrated that
one of these modulators was able to slow the disease course in a PD murine model carrying
the A30P mutation [106]. Last but not least, immunotherapy may be exploited to remove
α-syn oligomers and deposits in PD, using an approach analogous to that already tested
with beta-amyloid in Alzheimer’s disease [107]. Both active and passive immunization
protocols provided encouraging though very preliminary results in PD. In particular, the
administration of monoclonal antibodies provided a decrease in plasma α-syn concentra-
tions and counteracted the cortical spreading of the protein [108]. Because phase I trials
revealed that these drugs are safe and well tolerated, phase II and III are still ongoing.
Furthermore, other molecules are under investigation; four studies are now targeting α-syn
reduction both with immunotherapy and with small molecules that inhibit protein aggrega-
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tion. Memantine, an NMDA receptor antagonist commonly used for dyskinesia treatment,
is now being evaluated for its ability in counteracting α-syn cell-to-cell transmission [9].
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