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Abstract

Background and Objective: PSEN1-H163Y carriers, at the presymptomatic

stage, have reduced 18FDG-PET binding in the cerebrum of the brain (Scholl

et al., Neurobiol Aging 32:1388–1399, 2011). This could imply dysfunctional

energy metabolism in the brain. In this study, plasma of presymptomatic

PSEN1 mutation carriers was analyzed to understand associated metabolic

changes. Methods: We analyzed plasma from noncarriers (NC, n = 8) and

presymptomatic PSEN1-H163Y mutation carriers (MC, n = 6) via untargeted

metabolomics using gas and liquid chromatography coupled with mass spec-

trometry, which identified 1199 metabolites. All the metabolites were compared

between MC and NC using univariate analysis, as well as correlated with the

ratio of Ab1–42/Ab1–40, using Spearman’s correlation. Altered metabolites were

subjected to Ingenuity Pathway Analysis (IPA). Results: Based on principal

component analysis the plasma metabolite profiles were divided into dataset A

and dataset B. In dataset A, when comparing between presymptomatic MC and

NC, the levels of 79 different metabolites were altered. Out of 79, only 14 were

annotated metabolites. In dataset B, 37 metabolites were significantly altered

between presymptomatic MC and NC and nine metabolites were annotated. In

both datasets, annotated metabolites represent amino acids, fatty acyls, bile

acids, hexoses, purine nucleosides, carboxylic acids, and glycerophosphatidyl-

choline species. 1-docosapentaenoyl-GPC was positively correlated, uric acid

and glucose were negatively correlated with the ratio of plasma Ab1–42/Ab1–40
(P < 0.05). Interpretation: This study finds dysregulated metabolite classes,

which are changed before the disease symptom onset. Also, it provides an

opportunity to compare with sporadic Alzheimer’s Disease. Observed findings

in this study need to be validated in a larger and independent Familial Alzhei-

mer’s Disease (FAD) cohort.

Introduction

Alzheimer’s disease (AD) is a growing health concern esti-

mated to affect 136 million people worldwide by 2050.1

The autosomal dominant mutations found in the APP,

PSEN1, and PSEN22 genes cause early-onset Familial

Alzheimer’s Disease (FAD), with the high penetrance

PSEN1 mutations (https://www.alzforum.org/mutations/

psen-1) being the most frequent.3 PSEN1 is a part of the

gamma-secretase protein complex, which cleaves the

Amyloid precursor protein (APP) that leads to the pro-

duction of a mixture of amyloid peptides Ab1–40 (90%)
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and Ab1–42 (10%) in the amyloidogenic pathway.3 These

peptides are known to be part of the pathobiology of

FAD. The PSEN1 mutation p.His163Tyr (PSEN1-H163Y)

results in higher ratios of Ab1–42/Ab1–40
4 in in vitro

assays.

Previously, several studies have described the plasma

metabolic profile of sporadic mild cognitive impairment

(MCI) and AD cases.1,5–10 A targeted plasma lipid profil-

ing was performed in PSEN1 mutation carriers.11 How-

ever, no untargeted plasma metabolome has yet been

reported for presymptomatic PSEN1 mutation carriers.

In FAD, the preclinical phase is characterized by brain

glucose hypometabolism.12,13 We have previously demon-

strated glucose hypometabolism in the cerebrum at the

presymptomatic stage of PSEN1-H163Y carriers.14 In this

follow-up study, we hypothesize that untargeted plasma

metabolite profiling could provide clues about the dysreg-

ulated metabolic pathways in presymptomatic PSEN1

mutation carriers (MC) in comparison with noncarriers

(NC) within the FAD PSEN1-H163Y cohort.2,15–17 First,

we identified metabolites, which are differentially

expressed between MC and NC and assessed their associ-

ated biological processes. Then, we explored the associa-

tion between these metabolites with plasma levels of

various amyloid beta isoforms (Ab). Taken together, our

study provides a snapshot of the plasma metabolic

changes in presymptomatic PSEN1 MC, which may

inform about biological events that are characteristics of

the preclinical phase.

Materials and Methods

Study population

Relatives with plasma samples from the PSEN1-H163Y

kindred in the Swedish FAD study were eligible for inclu-

sion. The prospective FAD study invites APP and PSEN1

kindreds at the Memory outpatient clinic in Karolinska

University Hospital, Stockholm, since 1993. Presymp-

tomatic relatives with 50% risk of disease are followed

longitudinally with a comprehensive assessment battery,

described in detail elsewhere.2,15,17 Clinical and neuroradi-

ological evaluations are accompanied by sampling of cere-

brospinal fluid (CSF) and blood. Mean (SD) age of onset

in the PSEN1-H163Y kindred is 52 � 6 years (based on

12 individuals). Symptom onset is regarded as having the

first subjective symptoms as experienced by participants

or next-of-kin. Mutation status (carrier or noncarrier)

was not known to participants or clinicians within the

study, if not stated otherwise. The study procedures were

approved by the Regional Ethical Review Board in Stock-

holm, Sweden, and were in agreement with the Helsinki

Declaration. Study participants provided written informed

consent. The plasma samples were collected in a longitu-

dinal manner as a part of the battery of clinical evaluation

over the years from 1995 to 2017.

DNA extraction from blood

As part of the FAD study protocol, venous blood was col-

lected at the Memory clinic of Karolinska university hos-

pital, Stockholm. Using the Gentra Puregene blood Kit

(Qiagen, Hilden, Germany) DNA was extracted from the

blood and resuspended in RNase & DNase free water

(Qiagen, Hilden, Germany). The concentration of

extracted DNA was measured with the QUBIT instrument

(Thermofisher, Waltham, MA, USA) as described by the

manufacturer.

Genotyping for PSEN1-H163Y mutation

20ng of DNA was amplified for PSEN1-Exon6 using for-

ward (5’ GGTTGTGGGACCTGTTAATT 3’) and reverse

(5’ CAACAAAGTACATGGCTTTAAATGA 3’) primers

with AmpliTaq Gold� 360 PCR Master Mix (Ther-

mofisher, Waltham, MA, USA). Sanger sequencing was

performed using BigDyeTM Terminator v3.1 Cycle

Sequencing Kit (Thermofisher, Waltham, MA, USA) in

both forward and reverse directions and analyzed using

ABI3500 Genetic Analyzer (Thermofisher, Waltham, MA,

USA).

APOE allele genotyping

The APOE genotyping was performed for SNP rs7412 and

rs429358 using predesigned TaqMan� SNP Genotyping

Assays (Thermofisher, Waltham, MA, USA) as indicated

in the manufacturer’s protocol. The amplified products

were run on 7500 fast Real-Time PCR Systems (Ther-

mofisher, Waltham, MA, USA).

Plasma sample collection

Nonfasting plasma was prepared from the blood. The

plasma was removed as the supernatant after 1 h incubation

at room temperature (RT) and 10 min centrifugation at

2200g. Then, the plasma was aliquoted and frozen at �80°C
until analysis. Plasma sampled between the years 1995 to

2017 were included. The metabolite analysis was carried out

at the Swedish Metabolomics Center (SMC, https://www.

swedishmetabolomicscentre.se/), Ume�a, Sweden.

Metabolite extraction and analysis

Untargeted metabolite extraction and analysis via Gas

Chromatography (GC) and Liquid Chromatography (LC)
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in combination with Mass-Spectrometry (MS) were per-

formed at SMC as described here.18 Plasma was prepared

by adding 900 µL of extraction buffer (90/10 v/v metha-

nol: water) along with internal standards for the GC–MS

and LC–MS to 100 µL of plasma. The samples were pre-

pared and analyzed in a randomized order for GC–MS

and LC–MS. Detailed methods were described in the Data

S1 section (Metabolite profiling of the plasma).

Analysis of Ab1–38, Ab1–40, and Ab1–42 in
plasma

The analyses of Ab1–38, Ab1–40, and Ab1–42 in plasma were

performed using immunoprecipitation coupled to tandem

Liquid Chromatography mass spectrometry (IP-LC–MS/

MS) as described previously.19,20 In short, calibrators were

prepared using recombinant Ab1–38, Ab1–40, and Ab1–
42 (rPeptide) added to 8 % bovine serum albumin in

phosphate-buffered saline. Recombinant 15N uniformly

labeled Ab1–38, Ab1–40, and Ab1–42 (rPeptide) were used

as internal standards (IS), added to samples and calibra-

tors prior to sample preparation. Ab peptides were

extracted from 250 µL human plasma using immunopre-

cipitation with anti-b-Amyloid 17–24 (4G8) and anti-b-
Amyloid 1–16 antibodies (6E10, both Biolegend�) cou-

pled to DynabeadsTM M-280 Sheep Anti-Mouse IgG mag-

netic beads (Thermofisher, Waltham, MA, USA).

Immunoprecipitation was performed using a KingFisherTM

Flex Purification System (Thermofisher, Waltham, MA,

USA). Analysis of processed samples was performed using

liquid chromatography-tandem mass spectrometry (LC–
MS/MS) on a Dionex Ultimate LC-system and a Thermo

Scientific Q Exactive quadrupole-Orbitrap hybrid mass

spectrometer. Chromatographic separation was achieved

using basic mobile phases and a reversed-phase monolith

column at a flow rate of 0.3 mL/min. The mass spec-

trometer operated in parallel reaction monitoring (PRM)

mode was set to isolate the 4+ charge state precursors of

the Ab peptides. Product ions (14–15 depending on pep-

tide) specific for each precursor was selected and summed

to calculate the chromatographic areas for each peptide

and its corresponding IS. The area ratio of the analyte to

the internal standard in unknown samples and calibrators

was used for quantification.

Statistical analysis

All statistical analyses were done using R (The R Founda-

tion for Statistical Computing; version 3.6.1) and R Studio

software. Group comparisons between presymptomatic

PSEN1-H163Y MC and NC were made using Wilcoxon

rank-sum tests and a P value below 0.05 was considered as

significant. Features with P values above the significance

threshold were excluded from downstream analysis. Corre-

lations between the selected metabolites and plasma Ab1–
42/Ab1–40 ratio were tested using Spearman’s rho statistic

and the P values were calculated using the asymptotic t

approximation.

The correlation between the observed metabolite levels

and how many years the sample had been kept in storage

was tested using Spearman’s rho statistic and the P values

were calculated using the asymptotic t approximation.

The same was done for correlations with participant age

at sampling and the presence of at least one APOEe4
allele. The heatmaps were constructed using two separate

clusters, one cluster for the features and another for the

samples. The clustering analysis was done using agglomer-

ative hierarchical clustering using the Wards clustering

criterion. The dissimilarity matrices were constructed

using Pearson’s correlation.

Metabolites biological interpretation

Differential metabolites between MC and NC were con-

verted into their corresponding Human Metabolome

Database identifier (http://www.hmdb.ca/, HMDB ID) as

well as annotated for their metabolite class. HMDB ID

was analyzed using the Ingenuity Pathway Analysis

(IPA)21 (https://www.qiagenbioinformatics.com/products/

ingenuity-pathway-analysis/, Qiagen Inc.) software,

enriched significant metabolite ontologies were filtered as

described in the IPA’s metabolomics white paper (http://

pages.ingenuity.com/rs/ingenuity/images/wp_ingenuity_

metabolomics.pdf).

Results

Demographics of the study population

A total of 24 plasma samples from 17 males were

included in this study, of these there were 6 mutation

carriers (MC) and 11 noncarriers (NC). The study partic-

ipants were relatives from the PSEN1-H163Y kindred,

except for three NC from two APP kindreds which were

included to increase the number of available controls

(Table 1). The participants underwent repeated sampling

of blood, meaning these individuals were represented

more than once and contributing to an overall mean age

at sampling of 42 � 11 years. Distribution of mutation

status, APOEe4 status and mean age at sampling in each

dataset are described in Table 1. Asymptomatic status in

all participants was confirmed by later records of the

actual age of onset in the MC and mean Mini-Mental

State Examination (MMSE) scores22 were 29 � 1 (maxi-

mum score 30) upon sampling. One of the participants

from the MC group opted for presymptomatic genetic
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testing at the hospital. This has since proved to be a rare

case of reduced penetrance, showing no signs of beta-

amyloid (Ab) retention during [11C]Pittsburgh com-

pound B (PiB) positron emission tomography (PET) at

the age of 60 years15 and no cognitive deficits during the

most recent psychological assessment, performed at the

age of 65, 13 years past the expected age of onset. There

were no known subjects with alcohol overconsumption or

dietary restrictions.

Comparison of plasma metabolite levels
between presymptomatic MC and NC

Untargeted GC–MS and LC–MS analysis of the plasma

samples detected 1199 metabolites, of which 23% were

annotated. First, a Principal Component Analysis (PCA)

model was built (Fig. S1). The PCA analysis indicate a

clear separation of the samples based on the number of

years of storage. A similar effect was previously

reported.23 For that reason, the samples were stratified

into two separate datasets based on the sample collection

year (Table 1; referred to as dataset A and B in the text).

Dataset “A” contains the samples collected before the year

2008 and dataset “B” contains the samples collected after

2008.

The two datasets were analyzed separately. Within them

the measured levels of the metabolites were compared

between the MC and NC. In dataset A, the levels of 79

metabolites (14 annotated), were significantly different in

MC compared with NC (P < 0.05) (Table 2, Table S1).

The annotated metabolites belong to the metabolite

classes of amino acids (n = 3), carboxylic acids (n = 1),

hexoses (n = 1), imidazopyrimidines (n = 1), fatty acyls

(n = 1), glycerophospholipids (n = 6) and hydroxy acids

(n = 1). In dataset B, the levels of 37 metabolites (9

annotated), were significantly different in MC compared

with NC (P < 0.05) (Table 2, Table S1). The annotated

metabolites belong to the metabolite classes of amino

acids (n = 2), purine nucleosides (n = 1), carboxylic acids

(n = 2), fatty acyls (n = 2), and bile acids (n = 2). Of the

annotated metabolites, threonine showed a significant dif-

ference between MC and NC in both datasets (P < 0.05).

Six unannotated metabolites showed significant differ-

ences between MC and NC in both datasets (Table S1).

3-methylglutarylcarnitine, pyroglutamic acid, and glu-

tamine showed a significant difference in one dataset and

a tendency to a difference in the other (P < 0.1). Addi-

tionally, five unannotated metabolites showed a signifi-

cant difference between MC and NC in one dataset and a

tendency to a difference in the other (Table S1).

In addition, the correlation between all the metabolites

that showed a significant difference between NC and MC

in the two datasets, and the number of years that the

samples have been in storage was tested. Years in storage

was calculated as the difference between sampling date

and analysis date. This was done to investigate if the

observed differences could be due to the above described

storage effect (Table S2). In dataset A, one unannotated

metabolite had a significant correlation with years in stor-

age. This metabolite was excluded from the cluster analy-

sis and the pathway analysis. In dataset B, no metabolites

had a significant association with years in storage. Similar

correlation analyses were done between metabolite levels

and participant age at the time of sampling, as well as the

presence of at least one allele of APOEe4 (Table S2). In

dataset A, pyroglutamic acid and 2-oleoyl-GPC had a sig-

nificant correlation with age at sampling (P = 0.027 and

P = 0.043 respectively). In dataset B, no significant corre-

lation was observed between any of the annotated

metabolites and age at sampling. No significant correla-

tion of metabolites with the presence of APOEe4 was

observed in either set.

Heatmaps (Fig. 1A and B) for the two datasets were

generated based on the hierarchal clustering of both the

Table 1. Demographics of the study participants

Dataset
A B

Genetic status presymptomatic MC NC presymptomatic MC NC

Total number of individuals (samples) 6 8 4 6

PSEN1 kindred 6 5 4 3

APP kindred 0 3 0 3

Age (y) (Mean � SD) 35 � 5.97 39.63 � 8.83 48.5 � 5.8 49.67 � 16.13

MMSE (Mean � SD) 29 � 1 – 29 � 1 –

APOEe4 carrier % 50% 50% 50% 50%

Demographic data for dataset A (samples collected before 2008) and dataset B (samples collected after 2008), which were used for the univariate

analysis. Plasma samples were stratified for univariate analysis based on the PCA (Fig. S1). One “baseline” plasma sample from each time period

was selected, and all individuals were male and presymptomatic upon sampling. The number of Apolipoprotein E4 (APOEe4) genotype carriers in

each dataset is indicated. Seven of the participants (3 NC and 4 MC) are represented in both A and B datasets (“y” denotes years).
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samples and the metabolites (Table 2, Table S1). In both

datasets, the MC and the NC separate into two different

clusters. Furthermore, the metabolites form two distinct

clusters in both datasets as well, where one cluster of

metabolites was found at higher levels in MC than in NC

and the other shows the opposite trend (Fig. 1A and B).

Correlations between plasma metabolites
and plasma Ab1–42/Ab1–40 ratio

Amyloid pathology is a hallmark of AD and Ab levels

in plasma are used as possible surrogate biomarkers.24,25

It has been shown that PSEN1-H163Y exhibit higher

levels of Ab1–42/Ab1–40 in in vitro assays.4 We, there-

fore, tested the correlation between all 1199 metabolites

and the ratio of Ab1–42/Ab1–40 in plasma (Table 3,

Table S3). In dataset A, significant correlations were

observed between 50 metabolites (12 annotated) and

the ratio of Ab1–42/Ab1–40 (Table 3). In dataset B, sig-

nificant correlations were observed between 55 metabo-

lites (18 annotated) and the ratio of Ab1–42/Ab1–40.
This includes glucose and uric acid, showing a negative

correlation, and 1-docosapentaenoyl-GPC, showing posi-

tive correlations, which exhibit differential levels in MC

compared to NC (Table 3). None of the metabolites

showed a significant correlation with the ratio of Ab1–
42/Ab1–40 in both datasets. The distributions of the

Ab1–42/Ab1–40 ratios in the two datasets are shown in

Figure S3.

Biological significance of annotated
metabolites

To examine the biological significance of 23 annotated

metabolites from dataset A and dataset B, we performed

the Ingenuity Pathway Analysis (IPA). Canonical pathways

identified include “Asparagine Biosynthesis I,” “tRNA

Charging,” “Asparagine Degradation I,” “Glutamine

Degradation I,” and “IL-12 signaling and production in

Macrophages" (Fig. 2A). Along with pathway enrichment,

the IPA also enriched metabolites for two different cate-

gories “Disease and Disorders” and “Molecular and Cellu-

lar Functions” (Fig. S2). We explored these categories to

understand the role of these metabolites in the presymp-

tomatic MC. In “Molecular and Cellular functions,” the

metabolites were part of the cellular process “Lipid metabo-

lism,” “Cellular Growth and proliferation” (Fig. S2),

“Peroxidation of lipid,” “Production of reactive oxygen

Table 2. Differentially expressed metabolites between presymptomatic MC and NC

Dataset Metabolite Metabolite class Fold change P value Correlation to Ab(1–42/1–40)

B Glycohyocholic acid Bile acids �1.023 0.014 �0.236

B Asymmetric dimethylarginine Carboxylic acids 0.403 0.025 0.418

B Ursodeoxycholic acid Bile acids 2.193 0.025 �0.006

B Threonine1 Amino acids 0.392 0.043 0.042

B Asparagine Amino acids 0.417 0.043 0.164

B N2,N2-Dimethylguanosine Purine nucleosides 0.649 0.043 0.139

B N-Acetylvaline Carboxylic acids 0.341 0.043 �0.018

B 3-Methylglutarylcarnitine2 Fatty acyls �0.793 0.043 �0.382

B 2-Hydroxycaproic acid Fatty Acyls 0.339 0.043 0.394

A 1-oleoyl-GPC Glycerophospholipids 0.170 0.003 0.544

A Cystine Amino acids �0.289 0.017 �0.341

A Glutamine2 Amino acids 0.157 0.017 0.505

A 2-oleoyl-GPC Glycerophospholipids 0.335 0.017 0.505

A Pyroglutamic acid2 Carboxylic acids 0.153 0.024 0.544

A Uric acid Imidazopyrimidines �0.496 0.024 �0.609*

A 1-Palmitoyl-sn-glycero-3-phosphocholine Glycerophospholipids 0.436 0.024 0.390

A 1-arachidonoyl-GPC Glycerophospholipids 0.337 0.024 0.401

A 3-Hydroxybutyric acid Hydroxy acids �0.731 0.024 �0.341

A Glucose Hexoses �0.164 0.033 �0.571*

A Threonine1 Amino acids 0.138 0.045 0.445

A Propionylcarnitine Fatty Acyls �0.497 0.045 �0.374

A 2-stearoyl-GPC Glycerophospholipids 0.264 0.045 0.220

A 1-docosapentaenoyl-GPC Glycerophospholipids 0.342 0.045 0.648*

Annotated metabolites (n = 23) showed a significant (P < 0.05) difference between MC and NC. Log2 foldchange is shown as the difference

between MC and NC, with positive values indicating higher relative metabolite levels in MC, and vice versa.
1Indicates the metabolite is significantly different between MC and NC in both dataset A and dataset B.
2Indicates that the metabolite is significantly different between MC and NC in one dataset and trending in the other (0.05 < P < 0.1).

*Significant correlation (P < 0.05) between metabolite and Ab1–42/1–40-ratio.
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species,” and “Neuronal cell death.” In addition, under the

category “Disease and Disorders” the metabolites were

linked to the disease-related phenotypes including “Meta-

bolic disease,” “Endocrine system disorder,” and “Chronic

inflammatory disorder” (Fig. 2E and F, Fig. S2).

Metabolites are the functional endpoint of biological

processes, which do not act alone and are regulated by

upstream regulators at a given physiological condi-

tion.26,27 Therefore, with the help of the “Upstream Regu-

lator Analysis”21 algorithm part of IPA, (supported by the

A B

Status
PSEN1H163Y

M
et

ab
ol

ite
s

M
et

ab
ol

ite
s

Samples collected after 2008Samples collected before 2008

PSEN1H163Y(RP)
PSEN1WT

−4 −2 0 2 4

Figure 1. Heat map showing similarities between samples of the metabolites that were differentially expressed between NC (noncarrier group,

dark blue) and the PSEN1-H163Y MC (mutation carrier group, Green). Sample from the reduced penetrance mutation carrier (RP) case is

represented by yellow color. Legend: Red (upregulated metabolite), Blue (downregulated metabolite) and white (no modulation). (A) Samples

from dataset A. (B) Samples from dataset B.
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Ingenuity� Knowledge Base) various, statistically signifi-

cant, regulators of the 23 metabolites were identified

(Table S4). These upstream regulators include the tran-

scription factors TFE3 (Transcription factor E3), ZBTB20

(Zinc finger- and BTB domain-containing protein 20)

and CEBPB (CCAAT-Enhancer Binding Protein-b).
Moreover, along with transcription factors, IPA identified

the enzymes DDAH2 (dimethylarginine dimethylamino-

hydrolase-2), RGS16 (Regulator of G Protein Signaling

16), FMO3 (flavin monooxygenase-3), and PIK3CA

(phosphatidylinositol-4,5-bisphosphate 3-kinase alpha),

which are part of regulatory networks. Furthermore,

metabolites that are part of “Lipid metabolism” and “Cell

cycle” were visualized using IPA (Fig. 3A and B).

Discussion

In this study, we performed an untargeted screening of

plasma metabolites in male presymptomatic PSEN1-

H163Y MC known to exhibit brain glucose hypometabo-

lism early in the preclinical phase, up to 20 years prior to

expected onset age.14 It has been reported that the plasma

metabolome significantly varies between males and

females.28 Due to the nonavailability of female presymp-

tomatic carriers, our study does not include plasma from

female subjects. The presymptomatic metabolite profile

identified in our study is therefore not confounded by

any gender bias in the blood metabolite profile. APOEe4
is represented in both MC and NC and metabolite corre-

lation analysis did not indicate skewness.28 In presymp-

tomatic MC, amino acids, fatty acyls, carboxylic acids,

hexoses, purine nucleosides, glycerophosphatidylcholines,

and bile acids were significantly altered when compared

to NC (Table 2). Interestingly, these classes of metabolites

are also associated with sporadic AD.1,5–7,9,10,29–32 Nota-

bly, we found asparagine, propionyl-l-carnitine, glyc-

erophosphatidylcholine species, and asymmetric

dimethylarginine (Table 2), which were part of the

Table 3. Correlation between metabolites and plasma Ab1–42/1–40 ratio

Dataset Metabolite Metabolite class Correlation to Ab (1–42/1–40) P value

B 2-methylguanosine Purine Nucleosides 0.794 0.006

B 2-stearoyl-GPC Glycerophospholipids �0.794 0.006

B Hypoxanthine Imidazopyrimidines �0.782 0.008

B scyllo-Inositol Organooxygens �0.782 0.008

B myo-Inositol Organooxygens �0.758 0.011

B 1-stearoyl-GPC Glycerophospholipids �0.758 0.011

B 2-methylglutaric acid Fatty acyls �0.758 0.011

B Phenylalanylalanine Carboxylic acids �0.721 0.019

B Valerylcarnitine Fatty acyls �0.721 0.019

B Creatinine Carboxylic acids 0.709 0.022

B Indoleacetate Indoles �0.709 0.022

B Tetradecanedioate Fatty acyls �0.709 0.022

B Caffeic acid Hydroxycinnamic acids �0.697 0.025

B Phenylalanylvaline Carboxylic acids �0.697 0.025

B Pyroglutamic acid Carboxylic acids 0.697 0.025

B 2 � Hydroxypalmitate Fatty acyls �0.673 0.033

B Butyrylcarnitine Fatty acyls �0.661 0.038

B Uracil Diazines 0.661 0.038

A Pipecolate Carboxylic acids �0.736 0.004

A Phenylacetylglutamine Carboxylic acids �0.665 0.013

A 1-docosapentaenoyl-GPC Glycerophospholipids 0.648 0.017

A Serotonin Indoles �0.610 0.027

A Uric acid Imidazopyrimidines �0.610 0.027

A Octenoylcarnitine Fatty acyls �0.588 0.035

A Cholic acid Steroids 0.577 0.039

A Glucose Hexoses �0.571 0.041

A Hexadecanedioate Fatty acyls �0.566 0.044

A Eicoseneoyl carnitine Fatty acyls �0.555 0.049

A Inosine Purine Nucleosides �0.555 0.049

A Malic acid Hydroxy acids �0.555 0.049

Spearman correlation between 1199 detected metabolites, in both dataset A and B, and Ab1–42/1–40 ratio. The table shows the annotated

metabolites that show a significant correlation (P < 0.05).
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metabolite panel that previously has been reported to pre-

dict the clinical transition from presymptomatic to pro-

dromal or symptomatic late-onset AD.7

We identified differential metabolites associated with

“Production of reactive oxygen species,” “lipid peroxida-

tion,” “glucose metabolism disorder,” and “chronic

inflammatory disorder” (Fig. 2, Fig. S2) which are known

to be inherent of FAD pathobiology.13,33–36 Amyloid-beta

mediated mitochondrial dysfunction associated with

glucose hypometabolism is an indicator of molecular

events, which precede amyloid aggregation.37–39 Oligo-

meric forms of Ab can give rise to oxidative stress placing

themselves in the lipid bilayer which causes lipid peroxi-

dation, at the end leading to neuronal cell death.13,40,41

Furthermore, increased levels of 1-docosapentaenoyl-GPC

(positive correlation), decreased levels of glucose (negative

correlation), and uric acid (negative correlation) in MC

were significantly correlated with Ab1–42/Ab1–40 (Table 2).

A

B C D

E F

Biological process Disease Increased metabolite Decreased metabolite

0.5 1 1.5 2 2.5 3
Asparagine Biosynthesis I

tRNA Charging

Asparagine Degrada on I

Glutamine Degrada on I

Apelin Muscle Signaling Pathway

IL-12 Signaling and Produc on in Macrophages

Maturity Onset Diabetes of Young (MODY) Signaling

Growth Hormone Signaling

-log(p-value)

Figure 2. (A) Enriched canonical pathways for 23 annotated metabolites, which were differentially expressed between presymptomatic PSEN1

MC and NC. (B–D) In “Molecular and Cellular Functions” terms, identified metabolites were associated with (B) “Production of reactive oxygen

species” (C) “Peroxidation of lipid,” (D) “Neuronal cell death”. (E–F). In “Disease and Disorders” terms, under “Metabolic disease” (E) “Glucose

metabolism disorder” and in “Inflammatory disease” (F) “Chronic inflammatory disorder” metabolite network was identified.
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A

B Lipid metabolism

Cell cycle

Increased metabolite Decreased metabolite
Figure 3. (A) Network of metabolites and its regulators involved in the “Cell cycle.” (B) Molecular network of differentially expressed metabolites

and their upstream regulators involved in the “Lipid metabolism.”
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Besides, several metabolites were significantly correlated

with Ab1–42/Ab1–40, but not identified in the univariate

analysis, probably due to a lack of statistical power

(Table S3). Plasma Ab measurement is a growing fron-

tier25,42 and its measurement is associated with several

challenges both technical and biological.43,44 Ab measure-

ment is affected by age,45 gender,46 body mass index,47

and high density lipoproteins levels47 of the subjects.

Moreover, plasma Ab levels are associated with time to

freezing blood samples as well as the volume of blood

collected from the study subjects.43,44 More recent studies

have also indicated only weak correlations between

plasma Ab levels and Ab levels measured in CSF and

brain by PET-imaging, indicating limitations in the diag-

nostic value of plasma Ab with the current methodolo-

gies.24 Furthermore, despite the difficulties of Ab
measurements in plasma the variability due to between

individual differences in Ab production or degradation is

very much reduced when the ratio Ab1–42/Ab1–40 is used

(as here), since it normalizes for this, and for possible

variability due to preanalytical procedures (either sample

handling and storage).20 In mass spectrometry assays, iso-

tope-labeled calibrators are also added to the samples

before processing and analyses, which give more exact

measures of the Ab1–42/Ab1–40 ratio as compared with

then analyses are performed by separate immunoas-

says.19,20 The suggested upstream regulators of the identi-

fied metabolites in our study are proposed to play a role

in modulating different cellular events. In the event of

mitochondrial dysfunction, TFE3 is activated and plays a

vital role in regulating energy metabolism.48 In addition,

ZBTB20 is another upstream regulator that plays an

essential role in glucose homeostasis.49 Thus our results

give several indications of a dysfunctional energy metabo-

lism in AD.11,26,33,37,50,51

In the context of inflammation, astrocytes and micro-

glia are the principal players in AD26,52 and their activa-

tion is characteristic of the preclinical phase.53 Ab
activates microglia (Brain resident macrophages54 which

trigger a proinflammatory cascade, likely IL-12, and IL-

23.55–57 The metabolites found in our study (Fig. 2A) are

associated with the IL-12 pathway. Activated microglia

induce neurotoxic reactive astrocytes.58 Moreover, the

metabolite upstream-regulator CEBPB identified here, is

activated by Ab in glial cells, which in turn initiates the

inflammatory cascade.59

A rare case of PSEN1-H163Y reduced penetrance

(RP)15 is also part of our study. We included the plasma

samples collected before the average age of onset in the

family (52 � 6) and the RP case exhibits a similar meta-

bolic profile to the other MC (Fig. 1). Such reduced pen-

etrance cases are rare and have been shown to have other

protective genetic or environmental modifiers.60 Further

experimental studies employing single-cell genomics61 and

directly induced neurons from fibroblasts62 can shed

more light on possible mechanisms leading to resilience.

This pilot-scale study has its limitations. The study

design is observational, it is difficult to control all the

confounding factors, for example, the metabolite profile is

highly influenced by lifetime immunological experience,63

gut microbiota64 and exposome.65 Also, the medication

history as well as preceding diet of the subjects and time

of plasma sampling was not accounted for. However, a

study evaluating fasting versus nonfasting, in the same

individuals (i.e. repeat samples fasting and postprandial,

incl. repeat samples), found no effects66 on Ab1–42 or

Ab1–40. The metabolites found in dataset A and dataset

B are not comparable rather they complement each other.

Considering the low frequency of the PSEN1 mutation

carriers in our Swedish cohorts the sample size was small,

and the P values were not corrected for multiple compar-

isons11 in the univariate analysis. It has been shown that

blood metabolites are strongly associated with age, yet

their association is highly selective. In our analysis, we

found pyroglutamic acid and 2-oleoyl-GPC to be corre-

lated with age (Table S2).

Here, we report plasma metabolites and their upstream

regulators and pathways, which were dysregulated in

presymptomatic PSEN1-H163Y mutation carriers. These

are consistent with previous findings of FAD pathophysi-

ology. It is estimated that there are 25 424 blood metabo-

lites67,68 and due to contemporary technical limitations, a

large fraction of them remain unannotated. In this study,

we found several unannotated metabolites (Tables S1 and

S3) that will be of significant interest to future FAD

metabolomics studies. Understanding these unannotated

metabolites will provide a comprehensive understanding

of common metabolites that exist in both datasets A and

B (Tables S1 and S3). However, results from this pilot

study need to be evaluated in a larger FAD cohort. Con-

sidering the low frequency of FAD cases in the Swedish

population, acquiring the optimal sample size for similar

studies remains the biggest hurdle. The FAD cases can be

highly informative on the cellular and molecular front

when metabolomics are integrated with multi-omics data-

sets.27,69
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Figure S1. PCA of all 24 plasma samples in the study,

which were analyzed for 1199 metabolites in an untar-

geted manner.

Figure S2. List of GO terms under the category of

“Molecular and Cellular Functions” and “Disease and

Disorders,” which were enriched for the 23 annotated

metabolites in the Ingenuity Pathway Analysis (IPA).

Figure S3. Boxplot showing the distribution of the Ab1–
42/Ab1–40 ratio for dataset A (left) and dataset B (right).

Table S1. The unannotated metabolites presented as

“mass@retention time,” that showed a significant

(P < 0.05) difference between MC and NC. Log2 fold-

change shown as the difference between MC and NC,

with positive values indicating higher relative metabolite

levels in MC, and vice versa.

Table S2. The Spearman’s correlation between 23

metabolites and age at the time of sampling, number of

storage years and presence of APOEe4 allele (P < 0.05

value was considered as significant).

Table S3. Spearman correlation between 1199 detected

metabolites, in both dataset “A” and “B”, and Ab1–42/1–40-
ratio.

Table S4. List of upstream regulators, which were

enriched for the 23 annotated metabolites in the Ingenu-

ity Pathway Analysis (IPA).

Data S1. Methodological description of plasma metabolite

profiling using mass spectrometry.
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