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Abstract: A general propagation lattice Boltzmann model is used to solve Boussinesq equations.
Different local equilibrium distribution functions are selected, and the macroscopic equation is
recovered with second order accuracy by means of the Chapman–Enskog multi-scale analysis and
the Taylor expansion technique. To verify the effectiveness of the present model, some Boussinesq
equations with initial boundary value problems are simulated. It is shown that our model can remain
stable and accurate, which is an effective algorithm worthy of promotion and application.

Keywords: lattice Boltzmann model; Boussinesq equation; numerical simulations; Chapman–Enskog
multi-scale analysis; Taylor expansion technique

1. Introduction

Lattice Boltzmann method (LBM) is a popular numerical method developed in recent
decades [1–3], which is based on kinetic theory. In the lattice Boltzmann method, in addition
to the fluid being discretized into fluid particles, the physical region is also discretized
into a series of lattices, and the time is discretized into a series of time steps. It has unique
advantages, such as easy implementation, simple boundary condition processing, and easy
parallel computing [4]. It can be used to simulate some fluid flow [5–7] and solve partial
differential equations [8–12].

The Boussinesq equation [13,14] describes the motions of long waves in one-dimensional
nonlinear lattices and in shallow water under gravity. The numerical solutions of the Boussi-
nesq equation are extensively studied [15,16]. Ref. [17] proposes a lattice Boltzmann model
with an optimization term for the generalized Boussinesq equation. Ref. [18] simulates
Boussinesq equations with source terms.

A general propagation lattice Boltzmann (GPLB) scheme is more general than the stan-
dard lattice Bhatnagar–Gross–Krook (SLBGK) model [19]. Some studies on GPLB models
are being promoted [9,12,19]. The stability and accuracy of simulating equations will be
improved by GPLB models. In this paper, we develop a GPLB model to solve Boussinesq
equations. The effectiveness and stability of our model are verified by comparing the
simulation results and the exact solutions.

An outline of our paper is given by: in Section 2, we derive a GPLB model for
the generalized nonlinear Boussinesq equation. In Section 3, numerical simulations are
performed. Finally, conclusions will be summarized in Section 4.

2. GPLB Model for Boussinesq Equations

This paper studies Boussinesq equations with the following forms,

utt = αuxx + (p(u))xx + βuxxxx. (1)
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where the macro variable u = u(x, t) represents the free movement of the fluid surface.
The depth of the flowing fluid and the characteristic velocity of the corresponding
long wave determined α, β, respectively. Equation (1) is a well-known generalized
Boussinesq equation.

For Equation (1), the evolution law of the particle distribution function can be the
corresponding discrete velocity Boltzmann equation [20] with the Bhatnagar–Gross–Krook
(BGK) collision operator [1],

∂ fα

∂t
+ ξα

∂ fα

∂x
= − 1

τ0
[ fα − f eq

α ], (2)

where fα(x, t) is a scalar function describing the particle distribution at position x and
time t, {ξα, α = 0, 1, . . . , n− 1} is the set of discrete velocities. f eq

α is the local equilibrium
distribution function, and τ0 is the single relaxation time.

In the LBM, the DdQb model is often used to represent the dimensions and speed
of the problem. Among them, d represents the dimension of the problem (1 represents
one-dimension, 2 represents two-dimensions, 3 represents three-dimensions), b represents
the number of lattice chains in the velocity model. In this paper, we use the D1Q5 velocity
model, in which the discrete velocities can be defined as,

ξα = ceα = c{0, 1,−1, 2,−2} = {0, c,−c, 2c,−2c}, (3)

where c = k∆x/∆t, representing the propagation speed of fα along the lattice chain. The
discrete lattice time step and space step are ∆t and ∆x, respectively. We use k to change the
propagation process, which is an important value in the current method.

Equation (2) can be decomposed into collision and propagation steps for each ∆t with
applying the time-splitting method [19],

∂ fα

∂t
= − 1

τ0
[ fα − f eq

α ] (4)

∂ fα

∂t
+ eα

∂ fα

∂x
= 0. (5)

We can choose the appropriate numerical schemes method according to the features
of Equations (4) and (5).

2.1. GPLB Model for Boussinesq Equations

Since there is no spatial derivative term, Equation (4) is discretized into the following
form with the explicit Euler scheme,

f
′
α(x, t) = (1− 1

τ
) fα(x, t) +

1
τ

f eq
α (x, t). (6)

We can see that there is no difference between the collision process and that in the
SLBGK models.

We treat Equation (5) as follows,

fα(x, t + ∆t) = m0 f
′
α(x, t) + m−1 f

′
α(x− Si, t) + m1 f

′
α(x + Si, t), Si = ∆x · ei, (7)

where m0, m−1 and m1 are free parameters satisfying,

m0 + m−1 + m1 = 1, m−1 −m1 = ∆t · ξα

Si
= ∆t

ceα

∆xeα
= k. (8)
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Thus, we can get from Equation (8),

m0 = 1− n, m−1 =
n + k

2
, m1 =

n− k
2

. (9)

We introduce one parameter n for Equation (9). From Equation (7), we improve the
propagation process. Substituting Equation (9) into Equation (7), we can obtain:

fα(x, t + ∆t) = f
′
α(x, t) +

n
2

[
f
′
α(x + Si, t)− 2 f

′
α(x, t) + f

′
α(x− Si, t)

]
− k

2

[
f
′
α(x + Si, t)

− f
′
α(x− Si, t)

]
.

(10)

We choose k2 6 n 6 1 to ensure simulation stability [9].
So far, Equations (6) and (10) constitute the GPLB model for Equation (1). Next, we

will recover Equation (1).

2.2. Recovery of Boussinesq Equations

To complete our general propagation lattice Boltzmann model for Equation (1), the
multi-scale Chapman–Enskog [21] and Taylor expansions will be applied to obtain the
specific expressions of the local equilibrium distribution function f eq

α .
Firstly, applying the Taylor expansion to f

′
α(x + Si, t) and f

′
α(x− Si, t), and retaining

the terms up to O(∆t5), we have:

f
′
α(x + Si, t) = f

′
α(x, t) + Si · ∂x f

′
α(x, t) +

(Si · ∂x)2

2
f
′
α(x, t) +

(Si · ∂x)3

6
f
′
α(x, t)

+
(Si · ∂x)4

24
f
′
α(x, t) + O(S5

i )

= f
′
α(x, t) +

∆t
k
(ξα · ∂x) f

′
α(x, t) +

∆t2

2k2 (ξα · ∂x)
2 f
′
α(x, t)

+
∆t3

6k3 (ξα · ∂x)
3 f
′
α(x, t) +

∆t4

24k4 (ξα · ∂x)
4 f
′
α(x, t) + O(∆t5),

(11)

f
′
α(x− Si, t) = f

′
α(x, t)− ∆t

k
(ξα · ∂x) f

′
α(x, t) +

∆t2

2k2 (ξα · ∂x)
2 f
′
α(x, t)

− ∆t3

6k3 (ξα · ∂x)
3 f
′
α(x, t) +

∆t4

24k4 (ξα · ∂x)
4 f
′
α(x, t) + O(∆t5).

(12)

Using Equations (10)–(12), we have:

fα(x, t + ∆t) = f
′
α(x, t)− ∆t(ξα · ∂x) f

′
α(x, t) +

∆t2n
2k2 (ξα · ∂x)

2 f
′
α(x, t)

− ∆t3

6k3 (ξα · ∂x)
3 f
′
α(x, t) +

∆t4n
24k4 (ξα · ∂x)

4 f
′
α(x, t) + O(∆t5).

(13)

Taylor expansion of Equation (13) to O(∆t5),

fα(x, t + ∆t) = fα(x, t) + ∆t∂t fα(x, t) +
∆t2

2
∂2

t fα(x, t) +
∆t3

6
∂3

t fα(x, t)

+
∆t4

24
∂4

t fα(x, t) + O(∆t5),
(14)
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we have:

fα(x, t) + ∆t∂t fα(x, t) +
∆t2

2
∂2

t fα(x, t) +
∆t3

6
∂3

t fα(x, t) + +
∆t4

24
∂4

t fα(x, t) + O(∆t5)

= f
′
α(x, t)− ∆t(ξα · ∂x) f

′
α(x, t) +

∆t2n
2k2 (ξα · ∂x)

2 f
′
α(x, t)− ∆t3

6k3 (ξα · ∂x)
3 f
′
α(x, t)

+
∆t4n
24k4 (ξα · ∂x)

4 f
′
α(x, t) + O(∆t5).

(15)

Multi-scale Chapman–Enskog expansion of the system in the following forms,

∂x = ε∂x1 , (16)

∂t = ε∂t1 + ε2∂t2 + ε3∂t2 + ε4∂t4 , (17)

fα =
∞

∑
n=0

εn f (n)α = f 0
α + ε f (1)α + ε2 f (2)α + ε3 f (3)α + · · · . (18)

Using Equations (6), (15)–(18), we obtain:

O(ε0) : f 0
α = (1− 1

τ
) f 0

α +
1
τ

f eq
α , i.e., f 0

α = f eq
α , (19)

O(ε1) : f 1
α + ∆t∂t1 f 0

α = (1− 1
τ
) f 1

α − ∆t(ξα · ∂x1) f 0
α , (20)

O(ε2) : f 2
α + ∆t∂t2 f 0

α + ∆t∂t1 f 1
α +

∆t2

2
∂2

t1
f 0
α = (1− 1

τ
) f 2

α +
n∆t2

2k2 (ξα · ∂x1)
2 f 0

α , (21)

O(ε3) : f 3
α + ∆t∂t1 f 2

α + ∆t∂t2 f 1
α + ∆t∂t3 f 0

α +
∆t2

2
∂2

t1
f 1
α +

∆t3

6
∂3

t1
f 0
α

= (1− 1
τ
) f 3

α + ∆t(ξα · ∂x1)(1−
1
τ
) f 2

α −
∆t3

6k3 (ξα · ∂x1)
3 f 0

α ,
(22)

O(ε4) : f 4
α + ∆t(∂t1 f 3

α + ∂t2 f 2
α + ∂t3 f 1

α + ∂t4 f 0
α )

+
∆t2

2
(∂2

t1
f 2
α + ∂2

t2
f 0
α + 2∂2

t1,t2
f 1
α + 2∂2

t1,t3
f 0
α ) +

∆t3

6
(∂3

t1
f 1
α + 3∂t2 ∂2

t1
f 0
α )

+
∆t4

24
∂4

t1
f 0
α

= (1− 1
τ
) f 4

α − ∆t(ξα · ∂x1)(1−
1
τ
) f 3

α +
n∆t2

2k2 (ξα · ∂x1)
2(1− 1

τ
) f 2

α

+
n∆t4

24k4 (ξα · ∂x1)
4 f 0

α .

(23)

Simplifying Equations (19)–(23), we have:
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− f 1
α

τ∆t
= [∂t1 + (ξα · ∂x1)] f 0

α , (24)

− f 2
α

τ∆t
=

[
∆t
2

∂2
t1
+ ∂t2 −

n∆t
2k2 (ξα · ∂x1)

2
]

f 0
α +

[
∂t1 + (1− 1

τ
)(ξα · ∂x1)

]
f 1
α , (25)

− f 3
α

τ∆t
=

[
∆t2

6
∂3

t1
+ ∆t∂2

t1,t2
+ ∂t3 +

∆t2

6k2 (ξα · ∂x1)
3
]

f 0
α +

[
∆t
2

∂2
t1
+ ∂t2 −

n∆t
2k2 (1−

1
τ
)

(ξα · ∂x1)
2
]

f 1
α +

[
∂t1 + (1− 1

τ
)(ξα · ∂x1)

]
f 2
α , (26)

− f 4
α

τ∆t
=

[
∂t4 +

∆t
2

∂2
t2
+ ∆t∂2

t1,t3
+

∆t2

2
∂t2 ∂2

t1
+

∆t3

24
∂4

t1
− n∆t3

24k4 (ξα · ∂x1)
4
]

f 0
α

+

[
∂t3 + ∆t∂2

t1,t2
+

∆t2

6
∂3

t1
+

∆t2

6k3 (ξα · ∂x1)
3(1− 1

τ
)

]
f 1
α +

[
∂t2 +

∆t
2

∂2
t1
− n∆t

2k2 (ξα · ∂x1)
2 (27)

(1− 1
τ
)

]
f 2
α +

[
∂t1 − ∆t(ξα · ∂x1)(1−

1
τ
)

]
f 3
α .

From Equation (24), one can obtain:

f 1
α = −τ∆t

{
[∂t1 + (ξα · ∂x1)] f 0

α

}
. (28)

Substituting Equation (28) into (25), we have:

f 2
α = −τ∆t2

{[
(

1
2
− τ)∂2

t1
+

1
∆t

∂t2 + (1− 2τ)∂t1(ξα · ∂x1)− τ1(ξα · ∂x1)
2
]

f 0
α

}
. (29)

Coupling Equations (26), (28) and (29), we obtain:

f 3
α = τ∆t3

{[(
τ2 − τ +

1
6

)
∂3

t1
+

1
∆t

(1− 2τ)∂2
t1,t2

+
1

∆t2 ∂t3

]
+

[(
3τ2 − 3τ

2
− 1
)

∂2
t1

+
1

∆t
(1− 2τ)∂t2

]
(ξα · ∂x1) +

[
3τ2 +

( n
k2 − 4

)
τ + 1− n

2k2

]
∂t1(ξα · ∂x1)

2

+

[( n
k2 − 1

)
τ + 1− n

k2 +
1

6k2

]
(ξα · ∂x1)

3
}

f 0
α .

(30)

Lastly, substituting Equations (28)–(30) into Equation (27), we have:

f 4
α =τ∆t4

{[
1

∆t3 ∂t4 +

(
1

2∆t2 −
τ

∆t2

)
∂2

t2
+

(
1

∆t2 −
2τ

∆t2

)
∂2

t1,t3
+

(
1

2∆t

−3τ

∆t
+

3τ2

∆t

)
∂t2 ∂2

t1
+ τ2∂4

t1

]
+

[(
−
(

1
∆t
− τ

∆t2

)
τ +

1
∆t

)
∂t3

+τ3∂2
t1,t2

+ τ4∂3
t1

]
(ξα · ∂x1) + τ5(ξα · ∂x1)

4 + τ6∂2
t1
(ξα · ∂x1)

3

+(τ7∂2
t1
+ τ8∂t2)(ξα · ∂x1)

2
}

f 0
α ,

(31)

where:



Entropy 2022, 24, 486 6 of 14

τ1 = τ − 1 +
n

2k2 ,

τ2 = −τ3 +
3
2

τ2 −
(

∆t
6

+
5

12

)
τ +

1
24

,

τ3 =

(
2 +

4
∆t

)
τ2 −

(
3

∆t
+ 3
)

τ + 1,

τ4 = −τ3∆t + 2τ2∆t− 7∆t
6

τ +
∆t
6

,

τ5 =

(
− n

2k2 −
n∆t
k2 + ∆t

)
τ2 +

(
− 1

6k3 +
n
k2 −

n2

4k4 +
2n∆t

k2 − 2∆t− ∆t
6k2

)
τ − n

24k4 +
1

6k3

− n
2k2 +

n2

4k4 −
n∆t
k2 +

∆t
6k2 + ∆t,

τ6 = −3∆tτ3 +

(
−2n

k2 + 7∆t− n∆t
k2 + 1

)
τ2 +

(
5n
2k2 −

2
6k3 +

3n∆t
k2 − ∆t− 1

)
+

1
6k3 −

n
2k2

− 3∆t− n∆t
2k2 ,

τ7 =

(
9
2
− 3n

2k2 −
9∆t

2

)
τ2 + (3∆t− 3)τ3 +

(
3n
2k2 +

∆t
2
− 3

2

)
τ + ∆t− n

4k2 ,

τ8 =

(
2 +

1
∆t

)
τ2 +

(
−3 +

1
∆t

+
n

k2∆t

)
τ + 1− n

2k2∆t
.

fα and f eq
α follow:

∑
α

fα = ∑
α

f eq
α = ut. (32)

From Equation (19), we have:

∑
α

f 0
α = ut, ∑

α

f n
α = 0, n > 0. (33)

In order to recover Equation (1) and satisfy the solvability, based on ensuring that the
truncation error is minimized, it is determined that fα and f eq

α should satisfy the following
moment conditions:

∑
α

ξα f 0
α = 0, (34)

∑
α

ξ2
α f 0

α =
αu + p(u)

τ1∆t
, (35)

∑
α

ξ3
α f 0

α = 0, (36)

∑
α

ξ4
α f 0

α = − βu
τ5∆t3 . (37)

Summing Equation (28) over α, and coupling with Equations (32) and (33), we obtain:

∂t1(ut) = 0. (38)

Summing Equation (29) over α and coupling with Equations (33)–(35), we obtain:

∂t2(ut) =
1
ε2 (αuxx + (p(u))xx). (39)
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Summing Equation (30) over α and coupling with Equations (33)–(36), we obtain:

∂t3(ut) = −
∆t2

ε2

[
3τ2 +

( n
k2 − 4

)
τ + 1− n

2k2

]
∂t1

[
αuxx + (p(u))xx

∆tτ1

]
. (40)

Summing Equation (31) over α and using Equations (33)–(37), we obtain:

∂t4(ut) = −
∆t3

ε2

(
1

2∆t2 −
τ

∆t2

)
(αuxx + (p(u))xx) +

1
ε4 ∂4

x(βu)− ∆t3

ε2 τ8∂t2

[
αuxx + (p(u))xx

∆tτ1

]
. (41)

Taking Equation (38) × ε+ Equation (39) × ε2+ Equation (40) × ε3+Equation (41) ×
ε4 and assuming ε = ∆t, macroscopic equations, i.e., Equation (1), can be recovered with
second order accuracy,

utt − αuxx − (p(u))xx − βuxxxx = R. (42)

Through error analysis, we have:

R =− ε2

τ1

[
3τ2 +

( n
k2 − 4

)
τ + 1− n

2k2

]
{α∂t1(uxx) + ∂t1 [(p(u))xx]} − ε3

(
1
2
− τ

)
{α∂t2(uxx) + ∂t2 [(p(u))xx]} −

ε3

τ1

[
(2ε + 1)τ2 +

(
−3ε + 1 +

n
k2 ε
)

τ + ε− n
2k2

]
{α∂t2(uxx) + ∂t2 [(p(u))xx]}
= O(ε2).

2.3. Equilibrium Distribution Functions

In this paper, the D1Q5 velocity model is used, i.e., b = 5. The discrete velocity set is
ξα = {0, c,−c, 2c,−2c}. Coupling with Equations (34)–(37), we can derive the equilibrium
distribution functions,

f 0
0 = ut −

5
4

(
αu + p(u)

c2∆tτ1

)
+

1
4

(
βu

c4∆tτ5

)
, (43)

f 0
1 =

2
3

(
αu + p(u)

c2∆tτ1

)
− 1

6

(
βu

c4∆t3τ5

)
, (44)

f 0
2 =

2
3

(
αu + p(u)

c2∆tτ1

)
− 1

6

(
βu

c4∆t3τ5

)
, (45)

f 0
3 = − 1

24

(
αu + p(u)

c2∆tτ1
− βu

c4∆t3τ5

)
, (46)

f 0
4 = − 1

24

(
αu + p(u)

c2∆tτ1
− βu

c4∆t3τ5

)
, (47)

where f 0
1 = f 0

2 , f 0
3 = f 0

4 .

3. Numerical Simulations

Different values of k and n determine the relationship between the GPLB and
SLBGK models:

(I) k = n = 1, the SLBGK scheme;
(II) n = k2, the LW scheme;
(III) k2 < n < k, here we choose n =

(
k + k2)/2;

(IV) n = k , the FP scheme;
(V) k < n < 1 , here, we choose n = k + 0.1.

Among them, the LW scheme (II) performs better than other schemes.
To illustrate the GPLB model constructed by the combination of Equations (6) and (10),

the numerical simulations of Equation (1) are developed. With taking the LW scheme, the
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non-equilibrium extrapolation scheme is used to treat the boundary condition [22]. In each
of the test examples, the exact solution determines the initial and boundary condition. We
use E2 (root-mean-square error), E∞(maximum absolute error) and GRE (global relative
error) to measure accuracy of our model by comparing the LBM solutions with the exact
solutions [23].

E2 =
1
M

√√√√ M

∑
i=1

[
u(xi, t)− u′(xi, t)

]2, (48)

E∞ = max
i=1,2,...,M

∣∣∣u(xi, t)− u
′
(xi, t)

∣∣∣, (49)

GRE =

M
∑

i=1

∣∣∣u(xi, t)− u
′
(xi, t)

∣∣∣
M
∑

i=1

∣∣u′(xi, t)
∣∣ . (50)

In our model, u(xi, t) represents the LBM solution, u′(xi, t) represents the exact solution.The
number of lattices is M.

Example 1. When α = 0, β = −1, and p(u) = u2, and Equation (1) is as follows,

utt −
(

u2
)

xx
+ uxxxx = 0. (51)

Ref. [24] gives the exact solution u(x, t) of Equation (51)

u(x, t) =
1
2

b2 − 4s2 + 6s2 tanh2[s(x− bt)], (52)

where b and s are arbitrary constants.
We set x ∈ [−10, 10], b = 0.2, s = 0.3, k = 0.9, n = k2, τ = 4, ∆x = 0.025, and

∆t = 0.00025. Figure 1 shows the evolution process of numerical solution and exact
solution with time. It can be seen from Figure 1 that the soliton propagates along the
negative direction of the x-axis. The space-time evolution graph of the LBM solution and
exact solution are listed in Figure 2. Table 1 lists the error of the LBM solutions at different
times. The LBM solutions agree with the exact solutions well.
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(a) LBM solution
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(b) exact solution

Figure 1. LBM solution (a) and exact solution (b) for the propagation of the soliton from t = 0 to
t = 2 for Example 1.



Entropy 2022, 24, 486 9 of 14

−10 −5 0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

 

 

LBM solution at t = 0.5

Exact solution at t = 0.5

(a)

−10 −5 0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

 

 

LBM solution at t = 1

Exact solution at t = 1

(b)

−10 −5 0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

 

 

LBM solution at t = 1.5

Exact solution at t = 1.5

(c)

−10 −5 0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

 

 

LBM solution at t = 2

Exact solution at t = 2

(d)

Figure 2. LBM solutions versus exact solutions at (a) t = 0.5; (b) t = 1; (c) t = 1.5; (d) t = 2 for
Example 1.

Table 1. Comparison of LBM solutions and exact solutions for Example 1 at different times.

t = 0.5 t = 1 t = 1.5 t = 2

E2 1.7818× 10−4 7.1242× 10−4 1.6018× 10−3 2.8446× 10−3

E∞ 5.0682× 10−4 2.0260× 10−3 4.5535× 10−3 8.0828× 10−3

GRE 7.7264× 10−4 3.0896× 10−3 6.9474× 10−3 1.2341× 10−2

Example 2. When α = 1, β = 1, and p(u) = 3u2, and Equation (1) is as follows,

utt − uxx − 3
(

u2
)

xx
− uxxxx = 0. (53)

Ref. [25] gives the exact solution u(x, t) of Equation (53).

u(x, t) = 2
ar2 exp

(
rx + r

√
1 + r2t

)
(

1 + a exp
(

rx + r
√

1 + r2t
))2 . (54)

We set x ∈ [−80, 40], a = 0.2, r = 0.2, k = 0.5, n = k2, τ = 3.9, ∆x = 0.25, and
∆t = 0.00025. Figure 3 shows the evolution process of the numerical solution and exact
solution with time. It can be seen from Figure 3 that the solution propagates along the
negative direction of the x-axis. The space-time evolution graph of the LBM solution and
exact solution is shown in Figure 4. Table 2 lists the error of the LBM solutions at different
times. The LBM solutions agree with the exact solutions well.
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Table 2. Comparison of LBM solutions and exact solutions for Example 2 at different times.

t = 10 t = 20 t = 30 t = 40

E2 3.0848× 10−6 6.1918× 10−6 9.2945× 10−6 1.2367× 10−5

E∞ 2.2720× 10−4 4.3032e× 10−4 6.2525× 10−4 8.2072× 10−4

GRE 1.2330× 10−2 2.5070× 10−2 3.7928× 10−2 5.1775× 10−2
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(a) LBM solution
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(b) exact solution

Figure 3. LBM solution (a) and exact solution (b) for the propagation of the solution from t = 0 to
t = 40 for Example 2.
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Figure 4. LBM solutions versus exact solutions at (a) t = 10; (b) t = 20; (c) t = 30; (d) t = 40 for
Example 2.

Example 3. We set α = 1, β = −1, and p(u) = u2, Equation (1) becomes the good nonlinear
Boussinesq equation, which is of the following form,
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utt = uxx +
(

u2
)

xx
− uxxxx. (55)

The exact solution u(x, t) of Equation (55) is as follows,

u(x, t) = −Asech2

(√
A
6

(
x +

√
1− 2A

3
t + x0

))
. (56)

In the computational domain of simulation, x ∈ [−20, 20]. A = 0.5, x0 = 0,
τ = 1.8, ∆x = 0.1, and ∆t = 0.0001 are setted. Figure 5 shows the evolution process
of the numerical solution and exact solution with time. It can be seen from Figure 5 that the
solution propagates along the negative direction of the x-axis. The space-time evolution
graph of the LBM solution and exact solution are shown in Figure 6. Table 3 lists the error of
the LBM solutions at different times. The LBM solutions agree with the exact solutions well.

Example 4. We set α = 1, β = 1, and p(u) = u2, Equation (1) becomes the bad Boussinesq
equation, which is of the following form,

utt = uxx +
(

u2
)

xx
+ uxxxx. (57)

The exact solution u(x, t) of Equation (57) is as follows,

u(x, t) = Asech2

(√
A
6

(
x +

√
1 +

2A
3

t + x0

))
. (58)

In the computational domain of the simulation, x ∈ [−30, 30]. A = 0.08, x0 = 0,
τ = 16, ∆x = 0.065, and ∆t = 0.0001 are setted. Figure 7 shows the evolution process of
numerical solution and exact solution with time. It can be seen from Figure 7 that the
solution propagates along the negative direction of the x-axis. The space-time evolution
graph of the LBM solution and exact solution are shown in Figure 8. Table 4 lists the error of
the LBM solutions at different times. The LBM solutions agree with the exact solutions well.

Table 3. Comparison of LBM solutions and exact solutions for Example 3 at different times.

t = 0.5 t = 1 t = 1.5 t = 2

E2 1.3459× 10−5 4.9778× 10−5 1.0154× 10−4 1.6501× 10−4

E∞ 2.1978× 10−3 2.8161× 10−3 5.3003× 10−3 7.5997× 10−3

GRE 2.6839× 10−3 8.2844× 10−3 1.6677× 10−2 2.7141× 10−2
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(a) LBM solution
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Figure 5. LBM solution (a) and exact solution (b) for the propagation of the solution from t = 0 to
t = 2 for Example 3.
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Figure 6. LBM solutions versus exact solutions at (a) t = 0.5; (b) t = 1; (c) t = 1.5; (d) t = 2 for Example 3.

Table 4. Comparison of LBM solutions and exact solutions for Example 4 at different times.

t = 1 t = 2 t = 3 t = 4

E2 8.4609× 10−7 3.2913× 10−6 7.2237× 10−6 1.2485× 10−5

E∞ 4.8385× 10−4 1.8602× 10−4 4.0126× 10−4 6.9719× 10−4

GRE 9.3621× 10−4 3.6597× 10−3 8.0689× 10−3 1.4017× 10−2
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(a) LBM solution
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Figure 7. LBM solution (a) and exact solution (b) for the propagation of the solution from t = 0 to
t = 4 for Example 4.
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Figure 8. LBM solutions versus exact solutions at (a) t = 1; (b) t = 2; (c) t = 3; (d) t = 4 for Example 4.

4. Conclusions

In this paper, we have developed a general propagation lattice Boltzmann model for
the generalized nonlinear Boussinesq equation. The macroscopic equation is recovered
correctly from our model with the second-order accuracy through the Chapman–Enskog
analysis. By applying the D1Q5 velocity model, Boussinesq equations are simulated.
The numerical results agree well with the exact solutions with selecting the appropriate
parameters that affect the propagation process. The results show that our model can remain
stable and accurate, which is an effective algorithm worthy of promotion and application.
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