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Abstract: Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation
together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and
progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has
been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon
cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a
case-control study. Enrolled subjects were further subclassified according to the established diagnostic
protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell
line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript
levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity
increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased
(p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC
were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT
was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05)
by inflammatory factors (LPS, TNF-α and TGF-β), whereas the anti-inflammatory IL-4 decreased
(p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA
of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas
decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the
adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression
of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the
colon together with the tendency towards increased levels in visceral AT in patients with CC and its
influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC.

Keywords: obesity; colon cancer; dermatopontin; extracellular matrix remodelling; inflammation

1. Introduction

Colon cancer (CC) represents the third most commonly diagnosed malignancy after
breast and lung cancer and the second principal cause of cancer mortality [1]. Different
risk factors associated with the development and prognosis of CC are preventable, com-
prising an excessive intake of red and processed meat, consumption of high-fat diets, a
low intake of vegetables and fruits, physical inactivity, alcohol drinking, smoking and
obesity [2–4]. Epidemiological studies evidenced a significant impact of obesity not only
on the risk of developing gastrointestinal cancer but also on its diagnosis and treatment [5].
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Specifically, dysfunctional adipose tissue (AT) in obesity has been closely associated with
tumour growth and metastasis, with chronic and unresolved inflammation together with
the altered extracellular matrix (ECM) remodelling and fibrosis constituting key factors
in this association [6,7]. The ECM is a dynamic and tissue-specific structure that provides
a scaffold to the cellular constituents and orchestrates multiple biochemical and biome-
chanical processes involved not only in tissue differentiation and homeostasis but also
in disease progression [8–11]. The fibrotic ECM of AT in obesity is characterized by re-
duced plasticity due to the deposition of stiff ECM components by diverse cells including
adipocytes, myofibroblasts, macrophages and the recently described fibro-inflammatory
progenitors cells [12,13]. This dense and solid ECM structure exerts dysregulated biome-
chanical forces in the microenvironment promoting cancer cell migration and blood vessels
deformation, optimal for tumour development and progression. In addition, the ECM
in obesity constitutes a reservoir for different signalling molecules involved in cancer
development [14].

Dermatopontin (DPT) is a tyrosine-rich and small molecular weight protein that
comprises a considerable proportion of the non-collagenous ECM components [15]. We
previously described a novel role for DPT in obesity influencing AT remodelling and inflam-
mation [16]. In this line, a reduction in the accumulation of collagen in the ECM in the skin
of Dpt-knockout mice was previously described [17] and Dpt-deficient mice with induced
hepatic fibrosis exhibited less collagen deposition compared to wild-type animals [18].
A great variety of biological functions in both, physiological and pathological processes
have been attributed to DPT due to its interaction with the transforming growth factor-β
(TGF-β) and decorin together with its binding to integrin α3β1 and syndecan [19–21]. In
particular, the effect of DPT on the increase of the activity of TGF-β in colon carcinogen-
esis suggests its tumour suppressor role and its function as a pre-receptor component of
the TGF-β signalling pathway [22]. In this line, reduced expression of DPT in different
neoplasms including hepatocellular carcinoma, ovarian, oral or breast cancer has been
described [23–26].

To our knowledge, the function of DPT in obesity-associated CC has not yet been fully
disentangled. We hypothesize that dysregulated levels of DPT in obesity may be associated
with CC development. Thus, we aimed to examine whether obesity influences the serum
levels of DPT and its mRNA levels in patients with CC. We also analysed the effect of pro-
and anti-inflammatory factors on the gene expression levels of DPT and the impact of DPT
on inflammation and ECM remodelling in HT-29 colon cancer cells. Finally, we explore the
effect of the crosstalk between adipocytes and CC cells in relation to the expression of DPT.

2. Results
2.1. Colon Cancer Decreases DPT Circulating Levels and Its mRNA Expression in the Colon

Baseline characteristics of the study sample are shown in Table 1. Body weight, body
mass index (BMI), estimated body fat and waist circumference were higher (p < 0.001)
in individuals with obesity (OB) compared with lean (LN) volunteers. No differences
in anthropometric and adiposity markers were found between patients with or without
CC. Patients with OB and CC exhibited higher (p < 0.001) C-reactive protein (CRP) levels
in comparison with LN and OB patients without CC. Concentrations of fibrinogen were
increased (p < 0.01) in patients with OB with CC compared with volunteers with OB without
CC. As expected, a significant increase in carcinoembryonic antigen (CEA) levels was found
among patients with CC compared to controls.
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Table 1. Characteristics of the volunteers included in the study.

Lean OB

non-CC CC non-CC CC p OB p CC p OBxCC

n (male, female) 11 (7, 4) 15 (8, 7) 31 (19, 12) 16 (9, 7)
Age (years) 53 ± 3 63 ± 3 55 ± 1 62 ± 3 0.518 <0.001 0.925

Body weight (kg) 65.4 ± 1.9 63.4 ± 1.8 84.9 ± 2.1 81.1 ± 2.9 <0.001 0.303 0.753
Body mass index (kg/m2) 23.1 ± 0.2 22.5 ± 0.4 36.7 ± 0.7 34.2 ± 0.8 <0.001 0.065 0.772

Estimated body fat (%) 27.8 ± 2.2 29.1 ± 1.4 36.7 ± 1.2 34.2 ± 1.8 <0.001 0.268 0.369
Waist circumference (cm) 83 ± 2 80 ± 2 100 ± 2 115 ± 7 <0.001 0.270 0.228
Fasting glucose (mg/dL) 103 ± 5 142 ± 12 113 ± 5 127 ± 11 0.775 0.020 0.221
Free fatty acids (mg/dL) 11.7 ± 1.5 26.5 ± 2.4 15.2 ±1.2 22.6 ± 2.1 0.893 <0.001 0.086
Triglycerides (mg/dL) 93 ± 15 116 ± 11 118 ± 13 151 ± 28 0.079 0.398 0.324

CRP (mg/L) 0.90 ± 0.07 1.39 ± 0.82 1.63 ± 0.09 9.64 ± 1.49 *** <0.001 <0.001 <0.001
Fibrinogen (mg/dL) 330 ± 18 273 ± 26 303 ± 20 447 ± 48 ‡ 0.203 0.398 0.017

CEA (ng/mL) 1.58 ± 0.32 2.55 ± 0.44 1.68 ± 0.28 8.41 ± 2.60 0.267 0.021 0.401

Data are mean ± SEM. CC, colon cancer, CEA, carcinoembryonic antigen; CRP, C-reactive protein; OB, obesity.
Statistical differences were analyzed by two-way ANCOVA and one-way ANCOVA followed by Tukey’s post hoc
tests as appropriate. *** p < 0.001 vs. LN non-CC, LN-CC and OB non-CC. ‡ p < 0.05 vs. OB non-CC.

Circulating DPT levels were increased (p = 0.040) in patients with OB and decreased
(p < 0.001) in patients with CC (Figure 1A). No sexual dimorphism was found in serum
concentrations of DPT (p = 0.359). A significant decrease in the expression of DPT was
found in the colon of patients with CC compared to controls (p < 0.05) (Figure 1B). Since
visceral AT (VAT) exhibits a fundamental role in obesity-associated inflammation and colon
carcinogenesis, the gene expression of DPT in this AT depot was also studied. A tendency
towards higher mRNA DPT levels was found in patients with CC, although differences
were not statistically significant (p = 0.064) (Figure 1C).
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2.2. Influence of Inflammation-Related Factors in the Expression of DPT in HT-29 Cells 
Inflammation constitutes a crucial hallmark of CC local progression enhancement, 

and thus, we evaluated whether pro- and anti-inflammatory factors that are altered in OB 
have an effect on DPT expression in HT-29 cells. The treatment of HT-29 cells with lipo-
polysaccharide (LPS) (p < 0.05) and with tumour necrosis factor (TNF)-α (p < 0.01) resulted 
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Figure 1. (A) Circulating levels of dermatopontin (DPT) of lean (LN) volunteers and patients with
obesity (OB) classified according to the presence or not of colon cancer (CC) [LN-nonCC: n = 9;
OB-nonCC: n = 31; LN-CC: n = 15; OB-CC: n = 16]. DPT gene expression levels in (B) colon [nonCC:
n = 5; CC: n = 7] and (C) visceral adipose tissue (VAT) [nonCC: n = 11; CC: n = 10] in patients with
and without CC. Differences between groups were analysed by two-way ANCOVA and by two-tailed
unpaired Student’s t-tests. Bars represent the mean ± SEM. * p < 0.05.

2.2. Influence of Inflammation-Related Factors in the Expression of DPT in HT-29 Cells

Inflammation constitutes a crucial hallmark of CC local progression enhancement,
and thus, we evaluated whether pro- and anti-inflammatory factors that are altered in
OB have an effect on DPT expression in HT-29 cells. The treatment of HT-29 cells with
lipopolysaccharide (LPS) (p < 0.05) and with tumour necrosis factor (TNF)-α (p < 0.01)
resulted in increased DPT mRNA levels (Figure 2A,B) whereas a downregulation after the
treatment with the anti-inflammatory interleukin (IL)-4 (p < 0.05) was detected (Figure 2C).
No significant differences in DPT mRNA expression after stimulation with IL-13 or under
hypoxia were detected (Figure 2D,E). Importantly, a significant increase in DPT was found
after the treatment with TGF-β at lower concentrations (Figure 2F).
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Figure 2. Effect of LPS (A), TNF-α (B), IL-4 (C), IL-13 (D), CoCl2 (E) and TGF-β (F) on mRNA
levels of DPT in HT-29 colon cancer cells. Bar graphs are the mean ± SEM (n = 5–6 per group).
One-way ANOVA followed by Dunnett’s post hoc tests was used to analyse differences between
groups. * p < 0.05 and ** p < 0.01.

2.3. Impact of DPT on the Expression of Key ECM Remodelling-Related Genes in HT-29 Cells

Tumour cells were treated with increasing concentrations of DPT to explore whether
DPT itself influences the expression of molecules closely related to the remodelling of the
ECM and the inflammatory response. We found that the treatment with DPT increased
(p < 0.05) the mRNA levels of the ECM remodelling-related genes collagen type 1 α1
chain (COL1A1), collagen type 5 α3 chain (COL5A3) and vascular endothelial growth
factor A (VEGFA) together with a significant decrease of decorin (DCN) (p < 0.01) and
osteopontin (SPP1) (p < 0.05). No effect of DPT on the analysed inflammation-related genes
was observed except for an increase in the expression levels of interleukin (IL)-18 (Figure 3).

Remarkably, gene expression levels of COL1A1, COL5A3 and TGFB were upregulated
(p < 0.05) after the treatment with DPT in Caco-2 cells, another common cell line used to
reproduce the features of the tumoural bowel epithelium. The expression of the inflamma-
tory markers IL1B (p < 0.01) and IL8 (p < 0.05) were increased in DPT treated-Caco-2 cells.
No effect of DPT on the rest of analyzed genes were found (Supplemental Figure S1).
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Figure 3. Effect of DPT treatment on the expression levels of (A) Collagen (COL)-1A1, COL5A3 and
COL6A3; (B) transforming growth factor-β (TGFB), decorin (DCN) and matrix metalloproteinase
(MMP)-9; (C) vascular endothelial growth factor A (VEGFA), osteopontin (SPP1) and Kruppel-
like factor 4 (KLF4) and (D) interleukin (IL)-1B, IL8 and IL18 in colon cancer cells. Values are the
mean ± SEM (n = 5–6 per group). Differences between groups were analysed by one-way ANOVA
followed by Dunnett’s post hoc tests. * p < 0.05.

2.4. Adipocyte-Conditioned Media Upregulate DPT Expression Levels in Tumour Cells

To study the possible effect that the molecules released by visceral adipocytes from
patients with OB may have on colon cancer cells, we analysed the expression of DPT
in HT-29 cells treated with the adipocyte conditioned medium (ACM). Interestingly, we
observed a strong (p < 0.01) increase in DPT mRNA levels in HT-29 cells treated with the
ACM from volunteers with OB compared with the colon cancer cells incubated with the
control media (Figure 4). Increased (p < 0.05) mRNA levels of DPT after ACM treatment
were confirmed in Caco-2 cells (Supplemental Figure S2).
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3. Discussion

Obesity, a current global pandemic, is considered a preventable risk factor for CC de-
velopment [27–30]; moreover, a worse cancer prognosis has been described among patients
with fat excess [27,31]. Increasing evidence reveals that obesity prompts the development
of CC through the pathophysiological effects of VAT that favours tumourigenesis, tumour
growth and metastasis. Especially, dysfunctional VAT in patients with obesity results in a
systemic dysregulation of adipokines promoting a chronic inflammation state and changes
in ECM remodelling that contributes to cancer development [32–35]. Since the excess depo-
sition of ECM components, together with fibrosis, contribute to the development of CC, the
study of the ECM microenvironment is considered of key importance [6,35]. In the present
study, we explored the impact of DPT, a small protein of the ECM, in obesity-associated
CC and we have found that (i) circulating levels of DPT and its gene expression levels in
the colon are decreased in patients with CC and, oppositely, a tendency towards increased
mRNA levels in VAT was found, (ii) the inflammation-related factors LPS and TNF-α
upregulated DPT expression while IL-4 downregulated its expression in HT-29 cells, (iii)
DPT influences the expression of critical ECM remodelling-related factors in colon cancer
cells and iv) visceral adipocyte-derived factors from patients with OB increased the mRNA
levels of DPT in HT-29 cells.

The decreased circulating concentrations of DPT and its expression levels in the
colon found in patients with CC are in line with previous findings showing reduced
DPT expression in several malignancies including hepatocellular carcinoma as well as
oral, breast, ovarian, colon and papillary thyroid cancers [22–26,36]. In this regard, a
tumour suppressor role for DPT has been proposed, mainly based on its role in increasing
the biological activity of TGF-β [20,22]. TGF-β and its signalling effectors influence CC
behaviour showing dual roles depending on the stage of tumour development [37,38].
Thus, TGF-β is considered both a tumour suppressor gene by inhibiting early stages of
colon tumourigenesis and a significant stimulator of tumour progression, invasion and
metastasis in more advanced stages [37]. Since the colon is anatomically located close to
abdominal VAT, the study of the influence of dysfunctional visceral adipocytes during OB
on cancer cells is of key importance to better understand the underlying mechanisms that
link OB and CC. We found a tendency towards upregulation of DPT mRNA expression in
the VAT from patients with CC, suggesting that in this tumour-surrounding tissue, DPT
may promote CC development by favouring a pro-inflammatory microenvironment. In
this sense, our group previously described that increased DPT levels in the VAT from
individuals with OB promote fibrosis and inflammation [16]. In light of these findings,
DPT may exhibit a different behaviour depending on the tissue in which it is expressed
suggesting a tumour suppressor role in the colon, the tissue where cancer develops, and
conversely, a promoter role of matrix remodelling and fibrosis in VAT.

We observed that the inflammation-related molecules LPS and TNF-α increased DPT
expression while the anti-inflammatory cytokine IL-4 downregulated DPT expression in
HT-29 cells. Since inflammation predisposes to the development of cancer and promotes all
stages of tumourigenesis [39] and DPT was previously described as a tumour suppressor
molecule, our findings suggest a compensatory mechanism whereby DPT expression may
increase in the context of strong inflammation, trying to avoid or minimize cell damage
exhibiting its tissue-repairing functions; however, whether DPT is an inflammation driver
or a responder still remains unknown. A similar response was observed after an inflam-
matory insult in zebrafish and mice where DPT levels were increased after myeloablative
radiation [40]. Furthermore, plasma levels of DPT also increase after chemotherapy treat-
ments [40]. Importantly, TGF-β treatment induced an increase in the mRNA levels of DPT.
A similar response was found in a human stellate LX-2 cell line and in cultured fibroblasts
where DPT expression was inducible by TGF-β [18,41]. In line with our results, IL-4 has
been involved in the persistent downregulation of DPT expression in skin fibroblasts in
patients with systemic sclerosis, a fibrotic disorder [41]. Further research will help us to
better understand the crosstalk between these important molecules.
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The remodelling of the ECM is a dynamic event with a repairing role being proposed
for DPT. Collagen is the main component of the tumour microenvironment and its content
and distribution are modified to further participate in cancer fibrosis by coordinating the ex-
pression of different transcription factors, signal transduction pathways, and receptors [42].
Interestingly, we observed increased expression of COL1A1 and COL5A3 after the treatment
with DPT at the highest concentration. Reportedly, Dpt-deficient mice display decreased
collagen accumulation in the skin probably due to the loose packing of collagen fibrils
and their irregular morphology [17]. During different phases of fibrosis development in
tumour cells, soluble mediators including DPT may promote an irregular accumulation
and composition of collagen, affecting the development of cancer. DPT is known to in-
teract with decorin to enhance collagen fibrillogenesis [43]. We found reduced levels of
DCN after DPT treatment. While DPT triggers a small diameter collagen assembly [44],
decorin notably delays fibril formation [45], suggesting the role of these two molecules in
the regulation of the assembly and turnover of collagen in the ECM greatly influencing
cell behaviour in the tumour microenvironment [41]. Elegantly, Mao et al. described
that the intestine of Dcn-deficient mice acquires a pro-tumourigenic phenotype by the
increase of epithelial-mesenchymal transition markers that favours CC metastasis [46].
Previous studies showed that DPT enhances the expression and activity of TGF-β in other
cell types [20,47], but we did not find changes in TGFB expression after treatment with
DPT. Osteopontin (SPP1) is overexpressed in CC being associated with a poor prognosis
linked to invasion and metastasis [48–50]. The decreased mRNA levels of SPP1 after DPT
treatment may suggest a role of DPT in reducing tumour progression [51]. VEGF proteins
are involved in blood vessel formation in physiological and pathological events including
wound healing, inflammatory diseases and cancer [52]. When tissues are damaged, VEGF-
A is upregulated to form new capillaries ensuring immune cells, nutrients and oxygen
supply to the injured area. VEGFA expression was increased after the stimulation with
DPT suggesting that DPT may favour tissue repair by facilitating the angiogenesis process.
Importantly, changes in gene expression levels were observed after the treatment with
the highest concentration suggesting a threshold in DPT levels that would explain the
dual behaviour that this molecule exhibits; however, not only the concentrations of this
molecule may determine its biological effect, but also the availability and expression levels
of the receptors to which DPT binds; these interactions can result in the activation of certain
intracellular pathways or in the suppression of the functions of the receptor, as in the case
of binding to the receptor VLA-4 [40]. Based on these data, we presume that DPT influences
ECM remodelling in HT-29 cells by modulating the expression of certain types of collagens
and molecules that are dysregulated in inflammation, obesity or cancer.

Specific adipokines secreted by dysfunctional adipocytes in OB have been shown to
exert modifications of tumour cell behaviour probably by the induction of inflammation
and ECM remodelling [53–56]. In our study, the increased gene expression levels of DPT
in HT-29 cells after the stimulus with the ACM from patients with OB reflect the crosstalk
between dysfunctional adipocytes and cancer cells.

The study has a few limitations. Further studies in larger cohorts to improve our
understanding of the role of DPT in obesity-associated CC are needed and more studies
on the dissection of signalling mechanisms of DPT-mediated angiogenesis might unravel
novel targets for tissue regeneration and cancer. The results may be also verified in animal
models since HT-29 cells do not represent a real tumour as they are a cultured cell line
isolated from an adenocarcinoma. Thus, the cell variety within a tumour and/or different
types of CC was not considered in this study. In this sense, the treatment of different
tumoural cell lines including HCT116 +/− p53 due to the importance of p53 mutations and
the microsatellite instability in CC would provide important and additional information
about the role of DPT in the carcinogenesis process.

In light of these findings, the decreased circulating and expression levels of DPT in the
colon together with the tendency towards increased levels of visceral AT in patients with
CC suggest a possible role of DPT in the OB-associated CC. DPT could have a different
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behaviour being modulated in a time- or tissue-specific manner. In early tumour stages DPT
could act as a tumour suppressor, while in other situations, this molecule could promote
metastasis by favouring cell migration and fibrosis in the tumour microenvironment.

4. Materials and Methods
4.1. Patient Selection

In order to analyze the effect of obesity and CC on DPT concentrations, 73 subjects
(26 LN and 47 with OB) were recruited from healthy volunteers and patients attending
the Departments of Endocrinology and Nutrition and Surgery at the Clínica Universidad
de Navarra (Figure 5). Patients were classified according to body mass index (BMI) (LN:
BMI < 25 kg/m2 and OB: BMI > 30 kg/m2). BMI was calculated as weight in kilograms
divided by the square of height in meters and body fat percentage (BF) was estimated using
the Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) [57]. Waist
circumference was measured at the midpoint between the iliac crest and the rib cage on the
midaxillary line. Subjects were further subclassified according to the established diagnostic
protocol for CC [42 without CC (non-CC) and 31 with CC (pathological characteristics
are shown in Supplemental Table S1)]. The control volunteers were healthy, were not
receiving any pharmacological treatment and had no signs or clinical symptoms of cancer,
liver alteration or T2D. VAT samples were collected from patients undergoing Nissen
fundoplication (for LN volunteers), Roux-en-Y gastric bypass (for severe obesity) and
curative resection for primary colon carcinoma (for CC treatment) [non-CC: n = 11; CC: n =
10] at the Clínica Universidad de Navarra. A cohort of human colon RNA samples (5 from
normal colon tissue and 7 from CC tissue) were obtained from OriGene (Rockville, MD,
USA). All reported investigations were carried out in accordance with the principles of the
Declaration of Helsinki, approved by the Hospital’s Ethical Committee (protocol approval
number: 2018.094) and informed consent from all volunteers was obtained.
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4.2. Analytical Measurements

Blood samples were obtained after more than 8-h of fasting. Concentrations of glucose
were measured by an automated analyser (Hitachi Modular P800, Roche, Basel, Switzer-
land) and triglycerides and free fatty acids levels were analysed by commercially available
kits (InfinityTM, Thermo Electron Corporation, Melbourne, Australia) as previously de-
scribed [58]. The high sensitivity CRP, fibrinogen and CEA concentrations were measured
as previously described [59]. Serum concentrations of DPT were determined by using
a commercially available ELISA kit according to the manufacturer’s instructions (Cus-
abio, Wuhan, China). The intra- and interassay coefficients of variation were 8% and
10%, respectively.

4.3. RNA Isolation and Real-Time PCR

RNA isolation was performed as previously reported [59]. The transcript levels for
COL1A1, COL5A3, collagen type 6 α3 chain (COL6A3), DCN, DPT, IL1B, IL8, IL18, kruppel-
like factor 4 (KLF4), matrix metalloproteinase-9 (MMP9), SPP1, TGFB and VEGFA were
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quantified by Real-Time PCR (7300 Real-Time PCR System, Applied Biosystem, Foster
City, CA, USA) as previously described [59]. Primers and probes were designed using the
software Primer Express 2.0 (Applied Biosystems, Foster City, CA, USA) and obtained from
Genosys (Merck, Darmstadt, Germany). To avoid genomic DNA amplification, primers or
TaqMan® probes were designed to encompass fragments of the areas from the extremes of
two exons (Supplemental Table S2).

The TaqMan® Universal PCR Master Mix (Applied Biosystems) was used for cDNA
amplification and the primer and probe concentrations for gene amplification were 300 nM
and 200 nM, respectively. The endogenous control gene was the 18S rRNA (Applied
Biosystems) and the ∆∆Ct formula was used for relative quantification. Relative gene
expression levels were expressed as fold expression over the calibrator sample (average of
individuals without CC or unstimulated HT-29 cells). All samples were run in triplicate
and negative controls were included in all reactions.

4.4. Cell Cultures

Human stromovascular fraction cells (SVFC) were isolated from VAT in subjects
with obesity. SVFC were cultured and differentiated to mature adipocytes as previously
described [60] and the ACM was obtained from these cultures, centrifuged and diluted to
20% and 40%.

Two colorectal adenocarcinoma cell lines, HT-29 (HTB-38TM) and Caco-2 (HTB-37TM)
were obtained from the ATCC® (Middlesex, UK) and cultured following the manufacturer’s
instructions. The Caco-2 cell line was a generous gift of Dr. Amaya Azqueta from the
University of Navarra. Briefly, cells were seeded at 3 × 105 cells/well and grown in
McCoy’s 5A medium with L-glutamine (Merck, Darmstadt, Germany) supplemented
with 10% fetal bovine serum and antibiotic–antimycotic at 37 ◦C for 24 h. HT-29 cells
were serum-starved for 2 h and then treated with ACM (20% and 40%), DPT (1, 10 and
100 ng/mL) (R&D Systems, Minneapolis, MN, USA), IL-4 (1, 10 and 100 ng/mL) (R&D
Systems, Minneapolis, MN, USA), IL-13 (1, 10, and 100 ng/mL) (R&D Systems), LPS (10,
100 and 1000 ng/mL) (R&D Systems), TGF-β (1, 10 and 100 ng/mL) (R&D Systems) and
TNF-α (1, 10 and 100 ng/mL) (Sigma) for 24 h. Caco-2 cells were also serum-starved for 2 h
and then stimulated with DPT (1, 10 and 100 ng/mL) and ACM (20 and 40%).

4.5. Statistical Analysis

Data are shown as mean ± standard error of the mean (SEM). Gene expression levels
and CRP concentrations were logarithmically transformed due to their non-normal distri-
bution. Differences between groups were assessed by two-way ANOVA, one-way ANOVA
followed by Tukey’s or Dunnett’s post hoc tests and two-tailed unpaired Student’s t-tests
as appropriate. Differences between groups adjusted for age were analysed by analysis
of covariance (ANCOVA). The calculations were performed using the SPSS version 23
(SPSS, Chicago, IL, USA) and GraphPad 8.0 (San Diego, CA, USA). A p-value of <0.05 was
considered statistically significant.
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