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Objectives: To determine if radiomics analysis based on preoperative computed tomography (CT) can pre-
dict early postoperative recurrence of giant cell tumor of bone (GCTB) in the spine.
Methods: In a retrospective review, 62 patients with pathologically confirmed spinal GCTB from March
2008 to February 2018, with a minimum follow-up of 24 months, were identified. The mean follow-up
was 73.7 months (range, 28.7–152.1 months). The clinical information including age, gender, lesion loca-
tion, multi-vertebral involvement, and surgical methods, were obtained. CT images acquired before the
operation were retrieved for radiomics analysis. For each case, the tumor regions of interest (ROI) was
manually outlined, and a total of 107 radiomics features were extracted. The features were selected
via the sequential selection process by using the support vector machine (SVM), then used to construct
classification models with Gaussian kernels. The differentiation between recurrence and non-recurrence
groups was evaluated by ROC analysis, using 10-fold cross-validation.
Results: Of the 62 patients, 17 had recurrence with a recurrence rate of 27.4%. None of the clinical infor-
mation was significantly different between the two groups. Patients receiving curettage had a higher
recurrence rate (6/16 = 37.5%) compared to patients receiving TES (6/26 = 23.1%) or intralesional
spondylectomy (5/20 = 25%). The final radiomics model was built using 10 selected features, which
achieved an accuracy of 89% with AUC of 0.78.
Conclusions: The radiomics model developed based on pre-operative CT can achieve a high accuracy to
predict the recurrence of spinal GCTB. Patients who have a high risk of early recurrence should be treated
more aggressively to minimize recurrence.
� 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The giant cell tumor of bone (GCTB) is generally considered a
benign tumor that rarely metastasizes. According to the 5th edition
of the 2020 World Health Organization (WHO) classification of soft
tissue and bone tumors, GCTB is classified as lesions with interme-
diate behavior and locoregional aggressiveness, but has potential
for distant metastasis [1]. Most bone GCTB occurs in the epiphysis
or metaphysis of long bones, while the occurrence in the spine is
relatively rare [2,3].

Because spinal GCTB is adjacent to large vessels and neurologi-
cal structures, performing extensive surgery, such as total en bloc
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spondylectomy (TES), is challenging and may lead to significant
morbidity after surgery [4]. TES involves the removal of entire ver-
tebrae and posterior elements. Although studies have reported
favorably low recurrence rates, the procedure carries risks of com-
plications such as neurological deficit, instrumentation failure,
postoperative cerebrospinal fluid leakage, etc [5,6]. As the strict
en bloc resection is often not feasible for the cervical spine due
to the presence of vital structures surrounding the lesion, the less
aggressive intralesional spondylectomy and curettage provide
alternative options, and they may also achieve a satisfactory prog-
nosis [7].

Some studies have shown that recurrence after surgery cannot
be entirely attributed to the residual disease that is not completely
resected. The aggressiveness of the tumor based on molecular
biomarkers and gene expressions, e.g. Ki-67, P53, RANK/RANKL/
OPG, etc., may help predict GCTB patients with higher risk of recur-
rence [8–11]. If the possibility of recurrence can be predicted
before surgery, it will help choose the optimal treatment between
performing an aggressive resection of tumorous tissue and main-
taining a good quality of life after surgery. Patients with high risk
of recurrence should consider more aggressive surgical methods
(possibly combined with adjuvant therapy) to achieve a better
prognosis. On the other hand, patients with low risk of recurrence
do not need extensive surgical resection and should rather focus on
a good functional outcome without neurological complications.

In the traditional evaluation of preoperative imaging, features
such as cystic change, adjacent soft tissue invasion, and ‘‘paint
brush borders” sign, are considered poor prognostic indicators
related to local recurrence [12–14]. However, because the vast
majority of these studies are based on extremity bone tumors,
the results are not applicable to spinal GCTB. Given the fact there
is much lower occurrence of GCTB in the spine, research is limited
with few reports in the literature. There is no information to help
clinicians stratify patients appropriately based on their risk of
recurrence.

In recent years, radiomics has emerged as a popular image anal-
ysis method for performing diagnosis as well as predicting treat-
ment response and prognosis. A large amount of quantitative
data can be extracted from medical images to build models and
aid in personalized management [15]. It can provide prognostic
biomarkers to predict the risk of postoperative recurrence and sur-
vival [16]. So far there is no relevant research reported for GCTB.
The CT examination is widely used for the management of GCTB
to reveal bone changes associated with tumors before the opera-
tion. Additional information contained in CT can be extracted by
using the radiomics for further analysis.

The purpose of this study is to develop a radiomics model based
on imaging features extracted from pre-operative CT of spinal
GCTB to predict the chance of recurrence during long-term
follow-up.

2. Materials and methods

2.1. General materials

A retrospective review was performed to identify 62 patients
with pathologically confirmed GCTB in the spine from March
2008 to February 2018. The study was approved by the Medical
Science Research Ethics Committee of the authors’ institution
and the requirement of informed consent was waived.

Inclusion criteria were (1) patients who underwent surgery in
our hospital with pathologically confirmed GCTB; (2) available CT
examination before operation; (3) complete patient medical
records. Exclusion criteria were (1) poor image quality, e.g. arti-
facts from oral metal implants; (2) incomplete follow-up data (in-
cluding both imaging and comprehensive clinical examination) or
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with a follow-up time < 24 months; (3) previous surgery or radio-
therapy of the lesion, treatment with denosumab (a RANKL inhibi-
tor). Fig. 1 shows the subject identification flowchart.

2.2. CT acquisition

All 62 patients received preoperative CT examination before
surgery. CT examination was performed on a GE Light speed 64
slice spiral CT (GE Medical System, Chalfont St Giles, UK) or a Sie-
mens Somatom Definition Flash dual-source CT (Siemens, Erlan-
gen, Germany), with tube voltage of 120 kV, tube current of 200–
300 mAs. The collimator width was 0.625 and 0.60 mm, respec-
tively; the pitch was 1.0; the slice thickness of reconstruction
was 3 mm; the interlayer distance was 3 mm.

2.3. Clinical information analysis

The clinical information was obtained from patients’ medical
records, including: age, gender, location of the lesion, multi-
vertebral involvement, and treatment. The surgery methods were
divided into three categories: TES (total en bloc spondylectomy),
intralesional spondylectomy (removal of the tumor), and
curettage.

2.4. Follow-up methods

After confirming the successful treatment based on close evalu-
ation in the first month, all patients were followed according to the
clinical guideline: once every 3 months in the first 2 years, once
every 6 months in 3–5 years, and then yearly after 5 years. The
follow-up procedures included: physical examination and imaging
of the operation site (X-ray, CT or MRI). Local recurrence was con-
firmed by imaging on CT or MRI. If a new lesion such as soft tissue
mass with uneven density and invasive growth was found at the
tumor resection site, it was considered as GCTB recurrence. For
patients showing suspicious lesions or symptoms outside the
resection site, CT guided puncture biopsy was performed to con-
firm the pathological diagnosis. Fig. 2 shows two case examples
and the imaging follow-up results.

2.5. Regions of Interest (ROI) delineation

The pre-operative CT DICOM (Digital Imaging and Communica-
tions in Medicine) images of all identified patients were exported
from PACS (Picture Archiving and Communication System). For
each case, the range of axial CT slices containing the tumor was
first determined. ROI of the tumor was manually delineated by
two musculoskeletal radiologists, who had CT interpretation expe-
rience of 18 years (N.L.) and 16 years (X.X.), respectively. The
boundary of the lesion was determined by combining CT images
of different widths and windows.

2.6. Radiomics analysis to build prediction model

The radiomics analysis procedures are illustrated in Fig. 3. The
procedure starts with generating the 3D tumor mask, extracting
radiomics features, selecting important features, and lastly build-
ing the classification model to predict the recurrence and non-
recurrence cases. For each case, the segmented tumors on all axial
CT image were combined to generate a 3D tumor mask, and from
which a total of 107 imaging features were extracted using PyRa-
diomics under Python 3.6 [17]. The detailed methods were
described in the Supplementary Materials. The 107 features were
obtained using several different algorithms, including First-Order
(N = 18); Shape (N = 14); GLCM (N = 24); GLSZM (N = 16); GLRLM
(N = 16); GLDM (N = 14); and NGTDM (N = 5), and they were sum-



Fig. 1. The subject identification flowchart. A total of 62 patients with spinal GCTB in non-recurrence group (N = 45) and recurrence (N = 17) group are identified.
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marized in a table. The basic definition and terminology used in
each algorithm were explained, and the explicit mathematical
equation for each feature was given.

To evaluate the importance of these features in differentiating
patients with and without recurrence, a sequential feature selec-
tion process was utilized via constructing multiple support vector
machine (SVM) classifiers [18]. In this process, we used SVM with
Gaussian kernel as the objective function to test the performance
of models built with a subset of features. In the beginning, an
empty candidate set was presented, and features were sequentially
added. 10-fold cross-validation method was applied to test the
model performance. In each iteration, the training process was
repeated 1,000 times to explore the robustness of each feature.
After each iteration, the feature which led to the best performance
was added to the candidate set. The selection process stopped after
Fig. 2. Two case examples. Top panel: A 39-year-old woman, (A-B) axial and sagittal
postoperatively confirmed as GCTB. (D) The sagittal T2-weighted MR image at 13-month
pathology with puncture biopsy. The recurrence probability predicted by the radiomics
and sagittal CT images showing a mass on the L4 vertebra, (G) treated with total en bloc sp
there is no sign of recurrence. The patient is continuously being followed and showing
model is 0.30, a true negative case.
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the addition of features did not improve the performance anymore.
Here, we used 10-6 as termination tolerance for the objective func-
tion value.

After the features were selected by the SVM, they were used to
build the models and test the performance by using 10-fold cross-
validation. That is, 90% of cases were used for training to build the
model, and the performance was tested using the remaining 10%
cases. The output of the model is a recurrence probability for each
testing case, which was used to classify as recurrence or non-
recurrence using the threshold of 0.5. The process was performed
10 times to complete the 10-fold cross-validation. Each case had
only one chance to be included in the testing group. After the anal-
ysis was completed, all results were combined to calculate the final
prediction performance, and to generate the receiver operating
characteristic (ROC) curve.
CT images showing the lesion, (C) treated with total en bloc spondylectomy, and
follow-up, showing the progression of the residual tumor (arrow), and confirmed by
model is 0.94, a true positive case. Bottom panel: A 34-year-old woman, (E-F) axial
ondylectomy, postoperatively confirmed as GCTB. (H) At a 60-month follow-upMRI,
no evidence of recurrence. The recurrence probability predicted by the radiomics



Fig. 3. The radiomics analysis procedures to build the classification model. The procedure starts with tumor ROI drawing, followed by radiomics feature extraction using the
PyRadiomics software. Lastly, the SVM is applied to select important features and build the final classification model to differentiate the recurrence and non-recurrence cases.

Table 1
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2.7. Statistical analysis

Statistical analyses were performed using Matlab 2019b for
Windows. For evaluation of the clinical parameters, chi-square
(or Fisher exact test) and Mann-Whitney U tests were applied for
categorical and continuous data, respectively. The ROC curve was
generated to show the prediction performance. The accuracy, and
true positive (TP), true negative (TN), false positive (FP), false neg-
ative (FN) were calculated. P-value < 0.05 was considered statisti-
cally significant.
Demographic and clinical characteristics of patients (N = 62).

Characteristics Non-recurrence
(N = 45, 72.6%)

Recurrence
(N = 17, 27.4%)

Age (years) 31.9 ± 14.0 32.7 ± 10.8
Gender
Male 22 (75.9%) 7 (24.1%)
Female 23 (69.7%) 10 (30.3%)
Location
Cervical spine 15 (71.4%) 6 (28.6%)
Thoracic spine 18 (78.3%) 5 (21.7%)
Lumbar spine 7 (58.3%) 5 (41.7%)
Sacral spine 5 (83.3%) 1 (16.7%)
Multi-vertebral involvement
No 43 (75.4%) 14 (24.6%)
Yes 2 (40%) 3 (60%)
Treatment
TES 20 (76.9%) 6 (23.1%)
Intralesional spondylectomy 15 (75.0%) 5 (25.0%)
Curettage 10 (62.5%) 6 (37.5%)
3. Results

3.1. Demographics and clinical characteristics

A total of 62 patients were identified, who were divided into the
recurrence group (N = 17) and the non-recurrence group (N = 45)
according to follow-up results with a minimum of 2 years. The
mean follow-up timewas 73.7months (range, 28.7–152.1months).
The postoperative recurrence rate was 27.4% (17/62). Table 1
shows the demographic and clinical characteristics in these two
patient groups, including age, sex, lesion location, multi-vertebral
involvement, and treatment methods. None of them shows a sta-
tistical difference between the recurrence and non-recurrence
groups.

There were three surgical procedures, and patients receiving
curettage had a higher recurrence rate (6/16 = 37.5%) compared
4

to patients receiving TES (6/26 = 23.1%) or intralesional spondylec-
tomy (5/20 = 25%). The difference was not statistically significant
due to small case number. Although only 5 patients had multi-
vertebral involvement, 3 of 5 (60%) had recurrence, suggesting a
more aggressive nature when multiple segments were involved.



Fig. 4. The box plot of the parameter ‘‘GLDM Large Dependence High Gray Level
Emphasis”. The value is lower in the non-recurrence group than in the recurrence
group, which has the lowest p-value of 0.07 among all 10 selected features. The box
plot of the other 9 features are included in the Supplementary Materials.
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3.2. Development of radiomics model

A total of 10 features, including 4 first-order histogram param-
eters (90 Percentile Intensity, Entropy, Kurtosis, Median) and 6 tex-
ture features (GLCM Maximal Correlation Coefficient, GLCM
Maximum Probability, GLDM Large Dependence High Gray Level
Emphasis, GLDM Small Dependence High Gray Level Emphasis,
GLRLM Gray Level Non-Uniformity Normalized, and GLSZM Gray
Level Non-Uniformity Normalized) were selected by SVM to build
the final classification model. The order of the selected feature,
their p values, and the accumulated AUC (that is, the AUC achieved
by the 1st, 1st + 2nd, 1st + 2nd + 3rd,. . . etc.) are listed in Table 2.
The box plot of the parameter that has the lowest p-value, GLDM
Large Dependence High Gray Level Emphasis, is shown in Fig. 4.
The box plots of the other 9 features are shown in the Supplemen-
tary Materials.

The trained prediction model was evaluated using 10-fold
cross-validation. The model will give a recurrence probability for
each case, and the combined results are shown in Fig. 5. The gen-
erated ROC curves are shown in Fig. 6. The AUC of the final predic-
tion model using all 10 features is 0.78. The overall prediction
accuracy is 89%, with 11 TP cases, 44 TN cases, 6 FN cases, and 1
FP cases. When the clinical information in Table 1 was added to
the final model, the performance was not improved. If only using
the 4 first-order histogram features to build the model, the SVM
classification results showed 7 TP cases, 42 TN cases, 10 FN cases,
and 3 FP cases. The overall prediction accuracy was 79% and the
AUC of the prediction model was 0.73. If only using the 6 texture
features to build the model, the SVM classification results showed
4 TP cases, 43 TN cases, 13 FN cases, and 2 FP cases. The overall
prediction accuracy was 76% and the AUC of the prediction model
was 0.62.

4. Discussion

Radiomics is an emerging technology that can be applied to
evaluate tumor heterogeneity through the spatial arrangement of
imaging voxels with varying signal intensity, which can generate
quantitative information to aid in the diagnosis and treatment of
tumors [19]. Compared with genetic testing or pathological analy-
sis that requires analysis on tissue samples, radiomics can be ana-
lyzed using images, which is non-invasive and easy to perform. CT
examination is widely used in clinical diagnosis, treatment plan-
ning, and follow-up of GCTB patients. The recurrence of spinal
GCTB after surgery is related to the invasiveness of tumor cells,
and the biological characteristics of tumor tissues may be revealed
in preoperative CT images. However, the conventional imaging
analysis using subjective assessment by a radiologist is difficult
to capture the tumor heterogeneity. The texture analysis is widely
applied to quantify the spatial heterogeneity of tumors. Although
the technology-related heterogeneity (e.g. image noise and arti-
facts) is present on images [20], several studies have shown that
Table 2
The selected radiomics features by SVM to build the final classification model.

Feature Name P-value AUC

90 Percentile Intensity 0.12 0.60
GLCM Maximum Probability 0.12 0.62
Kurtosis 0.51 0.63
GLSZM Gray Level Non-Uniformity Normalized 0.28 0.63
GLDM Large Dependence High Gray Level Emphasis 0.07 0.66
Entropy 0.16 0.68
GLDM Small Dependence High Gray Level Emphasis 0.31 0.71
GLCM Maximal Correlation Coefficient 0.19 0.75
Median 0.72 0.78
GLRLM Gray Level Non-Uniformity Normalized 0.17 0.78
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the CT texture features have high consistency, and thus CT-based
radiomics analysis is feasible [21–23].

From the 10 selected features, there are 4 first-order histogram
features and 6 textural features, including 2 GLCM features, 2
GLDM features, 1 GLRLM feature, and 1 GLSZM feature. From the
definitions, a GLCM quantifies the incidence of voxels with the
same intensities at a predetermined distance along a fixed direc-
tion. A GLRLM quantifies consecutive voxels with the same inten-
sity along fixed directions. A GLDM quantifies gray level
dependencies in an image, which is defined as the number of con-
nected voxels within a specific distance that is dependent on the
center voxel. A GLSZM quantifies gray level zones in an image
[17], which is defined as the number of connected voxels that share
the same gray level intensity. One drawback of the texture analysis
is that the features can only be extracted using sophisticated
Fig. 5. The recurrence probability of all cases predicted by the SVM model. The
recurrence probability of each case is predicted by the final radiomics model trained
using all 10 selected features. By using the threshold of 0.5 as the cut-off, the overall
accuracy is 89%, with 11 true-positive (TP), 44 true-negative (TN), 6 false-negative
(FN), and 1 false positive (FP) cases.



Fig. 6. The ROC curves to differentiate recurrence and non-recurrence groups. The
ROC curves are generated by using the final model built with all 10 selected
radiomics features, as well as the model built with the 4 first-order histogram and 6
texture parameters.
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computer algorithms, and not visible by naked eyes. Nonetheless,
it is believed that the texture reveals tumor heterogeneity, which
is associated with underlying biology, and radiomics analysis pro-
vides a feasible method to unlock the buried information.

The classification model used in the present study is SVM,
which is a widely used method for dealing with a large number
of image-extracted features. SVM is not based on the original fea-
ture space but the transformed features via specific kernel meth-
ods, which works as a transformation to map input parameters
into a different feature space where the transformed data can be
divided more easily. This method can transform both the impor-
tant and unimportant features into a new feature space in which
the information of the selected feature can be fully utilized. The
Gaussian kernel was used in this study. Each individual feature
may provide useful information, even if the corresponding p-
value is not lower than 0.05. The combination of all features can
provide complementary information in SVMmodeling. Meanwhile,
the cost function of SVM allows the evaluation of margins between
different groups. This can improve the robustness of the model and
avoid overfitting during the training process. For a study with a
small case number, SVM is the most suitable choice to balance
the variance and bias of the input data. Other classification models,
such as logistic regression and decision tree, work in the original
feature space, and may not reach a high accuracy due to the lack
of flexibility.

Spinal GCTB should be managed case-by-case, as each patient
presents unique challenges. The treatment goals are tumor
removal, spinal stability, and neural tissue decompression. There-
fore, the choice of surgical method should be made with consider-
ation of all factors comprehensively. The common methods are
total en bloc spondylectomy (TES), intralesional spondylectomy,
and curettage. TES may be too damaging and can result in severe
complications in some cases because of the proximity of vital
structures to the vertebra, especially in complicated cervical spine
surgery [6,24]. For these patients, intralesional resection and curet-
tage may be considered, and further, adjuvant therapies can be
used to improve outcome. The significance of clinical characteris-
tics in predicting recurrence is still unclear and controversial. For
example, some studies reported that GCTB of the proximal tibia
were more likely to recur [25], but others not [26]. The majority
of research is based on the predictive factors for recurrence of
6

GCTB in the epiphysis or metaphysis of long bones, few for spinal
GCTB [27–29]. In our study, we did not find any of the analyzed
clinical information (age, sex, location, multi-vertebral involve-
ment) showing a significant difference between the recurrence
and non-recurrence groups. When combined with clinical data,
the performance of the radiomics model did not improve, suggest-
ing the limited value of clinical information in prognosis
prediction.

The value of radiomics in predicting recurrence and prognosis
has been demonstrated for some diseases, but mostly for tumors
with a high incidence, such as lung cancer [30], liver cancer [31],
prostate cancer [32], nasopharyngeal carcinoma [33], ovarian can-
cer [34], etc. For studies of primary bone tumors, osteosarcoma
was the most reported [35–37]. We have not found any radiomics
study for predicting postoperative recurrence in GCTB. The radio-
mics analysis has been applied for the diagnosis of GCTB and
other primary spinal tumors, e.g. for differentiation of chordoma
and GCTB located in the sacrum [38,39]. It was reported that
the radiomics model based on CT and multi-parameter MRI has
predictive value in distinguishing them, and thus provides helpful
clinical information to aid in diagnosis and treatment planning.
For GCTB therapy response prediction, Jisook Yi et al. evaluated
the changes in CT images after denosumab treatment and found
that changes in tumor size, histogram and textural parameters
might be helpful in the assessment of tumor response [40]. How-
ever, only 8 patients, including appendicular and spinal GCTB,
were included, which could be due to the limited clinical use of
denosumab.

The results of our spinal GCTB study indicated that the radio-
logical model has the potential to provide a personalized relapse
risk assessment. When patients are predicted to have a high risk
of recurrence, more thorough surgery and adjuvant treatments
need to be considered. Moreover, patients with a high risk of
relapse should receive closer postoperative follow-up after treat-
ment, so the recurrence can be diagnosed early for re-excision
and improve the patient’s prognosis [41]. On the other hand, for
patients predicted to have a low risk of recurrence, follow-up
imaging may be spared to reduce radiation risk and unnecessary
cost. Furthermore, better risk stratification information can help
the surgeon to give patients more reasonable clinical
expectations.

There were some limitations in this study. First, the study ana-
lyzed a single-center retrospective dataset using patients present-
ing to our institution, and the sample size was small. Second, the
treatment in this patient cohort only included surgery with differ-
ent procedures, without more advanced adjuvant treatments such
as denosumab. This promising drug has not been marketed in some
country, and not available to most patients in our cohort. Third,
only the pre-operative CT instead of MRI were analyzed in this
study. We included spinal GCTB patients in a 10-year period, com-
pared with CT, MRI has undergone substantial changes in the
instrumentation upgrade and improved scanning protocol, and
thus, CT images were chosen. Lastly, we included all patients
who were followed for a minimum of 2 years. Some patients
may show later recurrence, and a longer follow-up time is needed
to find more recurrence cases.

In conclusion, in this study, we applied radiomics analysis to
investigate the relationship between preoperative CT manifesta-
tions and postoperative recurrence in patients diagnosed with
spinal GCTB. The results showed that the combined histogram
and texture features selected by SVM based on preoperative CT
images could be applied to predict recurrence with high accuracy.
The capability to predict the risk of recurrence can be used to
determine the optimal personalized management strategy, includ-
ing the surgical methods, the need for adjuvant treatment, appro-
priate prognostic expectations, and the follow-up protocol.
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