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Surgical reconstruction of spinal cord circuit provides 
functional return in humans

Introduction
A spinal cord injury leads to degeneration of nerve fibres 
and synapses, death of nerve cells, breakdown of neural 
connections and functional circuits followed by growth in-
hibiting glia scar. In order to restore the lost function these 
events have to be corrected and treated. The initial discov-
ery of spinal cord neuronal growth after injury when pre-
sented with a peripheral nerve conduit (David and Aguayo, 
1981) was followed by a hectic search to find ways in which 
these new axons could also enter and elongate in central 
nervous tissue (CNS), ultimately re-establishing new con-
tacts or synapses and hopefully restoring some degree of 
function. Most research has been focused on what appears 
to be the primary and most crucial problem in CNS re-
generation, which is to promote nerve fibre regeneration 
or growth across the injury site. A major impediment to 
regeneration is the various growth inhibiting substances in 
the injury induced scar (Silver and Miller, 2004; Wanner et 
al., 2013). Progress has been made in dissecting out various 
compounds and molecules in the lesion environment that 
are responsible for the curtailed growth of severed neurites. 
So far there have not been any solutions reported for the 
generic CNS lesion which is applicable to humans (Varma 
et al., 2013).

A spinal nerve root lesion is in effect a spinal cord in-
jury (Carlstedt and Havton, 2012). Interruption of nerve 
fibres in spinal roots results in degeneration of transverse 

segmental motor, sensory and autonomic neurites in the 
central and peripheral nervous system with retraction and 
disintegration of synapses and neural networks, leading to 
cessation of functional integration such as local segmental 
spinal cord reflexes (Carlstedt and Havton, 2012). Within 
a few weeks there is a conspicuous disintegration of spinal 
cord motoneurons (Bergerot et al., 2004) as well as second-
ary sensory neurons in the dorsal horn (Chew et al., 2008) 
and the development of a glia scar at the site of root trac-
tion from the spinal cord (Carlstedt et al., 1989). This lesion 
can be denoted a longitudinal spinal cord injury in contrast 
to the classical transverse medullary lesion (Carlstedt and 
Havton, 2012). 

The most common traumatic cause of spinal nerve root 
injury in man is a traction injury sustained in violent acci-
dents, such as in road traffic injuries (Alnot and Narakas, 
1995; Birch, 2001). The most common location of such 
trauma is at the complicated formation of the brachial and 
lumbosacral nerve plexa which supply the limbs with nerve 
function. The brachial plexus is most susceptible to such 
trauma because of the loose suspension of the forelimb 
with the neck and the trunk. There are also traction injuries 
affecting the lumbosacral plexus although it is much more 
protected in the bony pelvis. The ventral root is more frag-
ile than the dorsal root and hence more prone to rupture 
particularly in a human traumatic situation (Carlstedt, 
2007).
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In the majority of cases of severe brachial plexus traction 
injury, one or several of the nerve roots have been detached 
or avulsed from the spinal cord. This means that the arm is 
lacking neuronal control, but more disturbing is the severe 
and typical excruciating pain that is associated with such 
an injury.

This is a devastating injury that can only be repaired if 
there is regeneration and new neurite growth within the 
central nervous system before the loss of innervation re-
sults in neuronal death occurring due to the detachment of 
the neurons from their peripheral contacts (Bergerot et al., 
2004; Chew et al., 2008). 

Reimplanting avulsed motor roots into the spinal cord 
can restore muscle function (Carlstedt, 2007). Motoneu-
rons in the ventral horn of the spinal cord can re-establish 
connectivity with muscles if a conduit (the avulsed ventral 
root or a peripheral nerve graft) is superficially implanted 
into the spinal cord in the region of the ventral horn. The 
first part of this spinal cord motoneuron to muscle re-con-
nectivity occurs as new growth. This appears as a shoot off 
not from the interrupted axon, but from a dendrite as an 
initial central nervous nerve axon; a dendraxon (Lindå et 
al., 1985). It is well established that dendrites can produce 
aberrant or supernumerary axons after injury that can ex-
tend into the peripheral nervous system (PNS) (Hoang et 
al., 2005). Within the spinal cord, the myelin sheath and 
associated nodes of Ranvier of this neurite have a CNS 
phenotype. Electrophysiology showed the return of muscle 
function as well as re-established excitatory and inhibitory 
synaptic contacts after reimplantation spinal cord surgery 
(Cullheim et al., 1989). Recovery is explained by this orig-
inal observation of critical and crucial initial CNS type 
of neurite growth from the lesioned motoneuron before 
extending distally in peripheral nerves to muscles. This 
unique finding led to a surgical technique that is now an 
established clinical treatment and can restore useful motor 
function in patients, even those with the most severe and 
complicated brachial plexus avulsion injuries (Carlstedt, 
2007).

In contrast to the ability of motor neurons to regrow 
within, and extend beyond, the spinal cord after root avul-
sion, it is well documented that sensory nerve fibres cannot 
regenerate back into the spinal cord after injury (Carlstedt, 
1985a). The primary sensory neuron situated in the dorsal 
root ganglion is effectively barred in the PNS-CNS transi-
tional region at the astrocyte rich interface with the PNS 
part of the root. Inhibition can cause the regrowing axonal 
tips to form synaptoid endings abutting the glia interface. 
Obviously, sensory function cannot be recovered by re-
implanting avulsed sensory roots in these injuries, which 
for the affected patients means agonizing chronic pain, 
loss of proprioceptive and exteroceptic sensation, as well 
as reduced muscle coordination and function (Htut et al., 
2007).

Hypothetically, similar to motoneurons also sensory 
nerve cells in the spinal cord could elongate new pro-

cesses into a PNS graft implanted into the dorsal spinal 
cord to reconnect with the periphery. Indeed, medullary 
implantation of a nerve graft into the dorsal horn of the 
spinal cord has been documented to induce extension of 
processes from spinal cord dorsal horn neurons into the 
sensory part of a spinal nerve after the dorsal root ganglion 
has been removed, in effect bypassing the primary sensory 
neurons (Carlstedt, 1985b). When asking spinal cord neu-
rons to extend new processes into the PNS it is likely that 
not axons, but dendrites would be recruited by the PNS 
conduit implanted into the dorsal horn. Experimentally it 
was shown that intrinsic sensory spinal cord neurons can 
extend new (non-regenerative) processes into an implant-
ed PNS conduit (Carlstedt, 1985b). Immunohistochemical 
technique showed that these neurites were dendrites that 
had extended into the implanted PNS conduit and have 
functional properties (James et al., 2017). Electrophysiol-
ogy verified that the new growth from sensory spinal cord 
neurons can transmit impulses. There was also a demon-
stration of transsynaptically provoked muscle contraction 
when stimulating those neurites, indicating an integration 
of this new growth with segmental spinal cord circuits, par-
ticularly ventral horn motoneurons had occurred (James et 
al., 2017). This original experimental observation has led to 
application. 

Surgical Strategy and Outcome
The implantation of a PNS conduit into both the ventral 
and dorsal part of the spinal cord, for motor and senso-
ry recovery respectively, has been performed in clinical 
cases of brachial plexus avulsion injury (Figures 1 and 2). 
Following such procedures proprioception together with 
muscle function could be demonstrated. The biceps tendon 
reflex was confirmed clinically as well as the Hoffman (or 
H-) reflex by means of electrophysiology (Carlstedt et al., 
2012). With this extended spinal cord surgery, including 
also sensory repair, it was obvious that movements had be-
come more controlled without the usual synkinesis seen in 
cases where only motor conduits had been reconstructed 
(Carlstedt, 2007). Functional magnetic resonance imaging 
demonstrated sensory motor activities on active and pas-
sive elbow flexion verifying the return of proprioception 
recordable at cortical level (Carlstedt et al., 2012). This 
procedure is a type of neurotisation which is palliative and 
depending on neuronal plasticity. It does not result in full 
sensory recovery. Surgery alone is inutile in curative at-
tempts to restore a better sensation by means of spinal cord 
regeneration of primary sensory (dorsal root ganglion) 
neurons. 

Adjuvant Therapy for Spinal Cord Sensory 
Regeneration
Adjuvant therapy is necessary to complement surgery in 
order to recover better sensation after dorsal root injury or 
avulsion from the spinal cord. There are at least two major 
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Figure 1 Surgical strategy for recovery 
of spinal cord circuits after root 
avulsion in humans.
After dorsal root ganglionectomy con-
duits of peripheral nervous type-roots 
or peripheral nerve grafts are implanted 
into the ventral and dorsal parts of the 
spinal cord. They are distally connected 
to respectively motor or sensory parts 
of spinal nerve after ganglion has been 
deleted. DRG: Dorsal root ganglion.

reasons for the failure of injured dorsal root axons to re-
grow back into the spinal cord. There is a lack of intrinsic 
neuronal growth, based largely on inactivity in the phos-
phoinositide3-kinase (PI3K)/Akt/mammalian target of 
rapamycin (mTOR) pathway, which is negatively regulated 
by phosphatase and tensin homolog (PTEN) (Park et al., 
2010). Another major impediment to regeneration into the 
spinal cord is the formation of an inhibitory environment 
by a glial scar.

The retinoic acid signalling system is very powerful in 
neuron growth and regeneration. Previous work has shown 
that retinoic acid receptor (RAR) beta 2 signalling stim-
ulates axonal outgrowth in human, mouse and rat (Agu-
do et al., 2010). RARbeta 2 induces axonal regeneration 
programs within injured neurons and encourages axonal 
growth also in the inhibitory central nervous system (Yip 
et al., 2006). In adult spinal cord explants and dorsal root 
ganglion neurons where RARbeta 2 is absent, overexpres-
sion of RARbeta stimulates neurite outgrowth (Corcoran et 
al., 2002). In a rat model of cervical dorsal root rhizotomy 
(C5–T1), a RARbeta agonist was given (Goncalves et al., 
2015). After 4 weeks of treatment behavioural tests showed 
recovery of sensory and skilled locomotor function. Dorsal 
root fibre regeneration across the dorsal root peripheral/
central transitional region (PNS-CNS TR) was shown 
by biotinylated dextran amine (BDA) labelling, electron 
microscopy, and by means of tractography, all of which 
showed a robust ingrowth of neurites. Synaptic recovery 
was demonstrated by analysis of noxious heat stimuli re-
sponses, synaptic density, and mechano- and propriocep-
tive synapses in the dorsal horn, showing that new connec-
tions had been established in the spinal cord (Goncalves et 
al., 2015). It has earlier been an established concept that in 

the mature individual retinoic acid response elements are 
locally activated after neuronal injury and hence the RAR-
beta agonist would not have an effect on intact afferents in 
promoting central sprouting and recovery (Zhelyaznik et 
al., 2003). 

Of paramount importance is how the regenerated dorsal 
root axons re-entered the spinal cord. In the naïve adult 
situation, there is a specialized transitional region between 
the stereotype peripheral nerve compartment of the dorsal 
root and the central nervous fibre tracts of the spinal cord. 
This transitional region is characterised by a number of 
unique structural entities (Berthold and Carlstedt, 1977). 
Among these are the occurrence of fibrous astrocytic pro-
cesses surrounding and separating the most proximal pe-
ripheral paranodes, as well as a compound PNS-CNS type 
of node of Ranvier at the crossing of nerve fibres from the 
PNS to the CNS of organization (Berthold and Carlstedt, 
1977). In RARbeta agonist treated animals, a glial construct 
of a similar organization had been re-established at the 
passing of regenerated dorsal root axons into the spinal 
cord. This is of conceptual importance as it indicates that 
this naïve state of structural glial organization has to be 
recapitulated to allow successful regeneration. This is pres-
ently the subject of further studies in particular what the 
role of the NG2 cells are in this context. 

Studies of the mechanisms underlying the switch from 
a nonpermissive environment in the CNS, as well as an 
increased regenerative capacity in the dorsal root neurons, 
demonstrated that the RARbeta agonist modulates the 
PTEN signalling pathway in both neurons and astrocytes 
(Goncalves et al., 2015). In neurons RARbeta, induces 
PTEN to move from the membrane, where it blocks axonal 
growth via the PI3K inhibition (Park et al., 2010), into the 

Figure 2 Peroperative view through operating microscope of spinal cord replantation. 
After a laminoplasty, the dura and arachnoid membrane are opened and the spinal cord 
exposed. In this case dorsal and ventral roots had been avulsed from the spinal cord and 
detached out of the medullary canal. Grafts were harvested from sensory nerves (superficial 
radial and medial cutaneous nerve of forearm) of the ipsilateral affected arm. Cables of nerve 
graft were installed into the spinal cord canal through intervertebral foramina. Cables of the 
nerve grafts were introduced through small slits in pia mater in the ventro- and dorsolateral 
aspects of the spinal cord and distally connected to motor and sensory parts of detached spi-
nal nerve respectively. The picture demonstrates multiple cable grafts already implanted in 
the ventral part of the spinal cord for motor recovery. Instruments are seen to insert a graft 
in the dorsal part of the spinal cord for sensory restoration.
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cytoplasm, where it becomes phosphorylated and hence 
inactive. In addition, stimulation of RARbeta results in an 
increased secretion of PTEN in exosomes. These are taken 
up by astrocytes, resulting in hampered proliferation and 
glia scar formation, as well as causing them to arrange in a 
normal appearing scaffold around the regenerating axons, 
allowing them to grow back into the spinal cord (Goncalves 
et al., 2015). The dual effect of RARbeta signalling, both 
neuronal and glial, results in axonal regeneration in the 
spinal cord after dorsal root injury. 

In summary, this surgical strategy is the first and so far 
the only treatment that restores spinal cord connections 
and circuits with functional recovery in humans after trau-
ma. There is the potential for new growth and plasticity, 
rather than regeneration, of spinal cord sensory neurons 
that can replace the injured primary sensory dorsal root 
neurons and reconnect to the periphery for reestablish-
ment of some but not all sensory qualities. In order for a 
more complete return of sensory function after dorsal root 
avulsion from the spinal cord an adjuvant therapy will be 
necessary, with RARbeta being one such potential thera-
peutic target. 
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