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Abstract

Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding
focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states.
Recently, other effects of crowding have been explored, including enthalpically-related crowder–protein interactions and
changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic
desolvation and solvent-screened interaction components of protein–protein binding. Our simple model enables us to
focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the
ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase–barstar complex as a
model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous
environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered
in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total
available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the
strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the
continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions.
Results with explicit model crowders can be qualitatively similar to those using a lowered ‘‘effective’’ solvent dielectric to
account for crowding, although the ‘‘best’’ effective dielectric constant will likely depend on multiple system properties.
Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the
effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial
framework for future analyses.
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Introduction

It is believed that up to 40% of the cellular volume is occupied

by macromolecules [1], making the cell a crowded place.

Nevertheless, many in vitro experiments and computational studies

model protein processes in a vast ‘‘sea’’ of aqueous solvent. To

build better models of such processes, it is crucial to better

understand the effect of cellular crowding on the physical

determinants of protein folding and binding. While more attention

has been given to these effects in recent years, reviews of crowding

effects span multiple decades [2–9]. Experimental work has shown

that crowding can cause a thermodynamic favoring of compact

states – folded, bound, or aggregated states of proteins [10–13] –

and could favor compaction of unfolded states as well [14,15],

although sometimes certain effects were found to be small or even

reversed [16,17], likely because of enthalpic interactions between

crowding agents and the proteins being studied [18]. Nevertheless,

even small, subtle effects could have important implications for

aggregation associated with neurodegenerative diseases [10,19].

Crowding has also been experimentally shown to change the

preferred conformations of protein and DNA systems [20–25] and

to alter drug–target interactions or affinities [26–28]. Finally,

macromolecular crowding may slightly [16,29] or more greatly

affect association rate kinetics [30] and reaction mechanisms

[31,32].

Theoretical and computational studies have provided great

insight into the physical bases for observed effects due to

macromolecular crowding. Many thermodynamic studies to date

have focused on the entropic ‘‘excluded volume’’ effect, in which

crowding lowers the available cellular volume, thus lowering the

entropy of noncompact states more than that of compact states,

leading to a relative free energy stabilization of compact states.

This effect was shown to have measurable consequences in

theoretical and computational studies [33–36]. More recently, it

was shown that favorable interactions between less compact states

and the crowders could cancel out this effect or dominate over it

[37–39], demonstrating not only that the physical properties of the

crowders are important, but also that crowding could significantly

affect the enthalpic component of the binding free energy in

addition to the entropic component. The subtle interplay between

multiple energetic components as well as dynamical effects have

been considered via molecular dynamics simulations of proteins
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within a crowded environment [37,38,40,41]. These and other

time-dependent simulations [42,43] have also provided insight into

the association rates of proteins within the cellular milieu.

There have been relatively few studies that focus on how

crowding affects the electrostatic component of protein–protein

interactions and their solvation energetics. As a reasonable

hypothesis, crowding can both affect the hydration dynamics of

water [44] and deplete the number of polarizable water molecules

surrounding the proteins, thereby potentially descreening their

electrostatic interactions relative to the infinite dilution limit (i.e.,

the uncrowded case). While crowding has been incorporated into

electrostatic models via a screened Coulomb potential-based

implicit solvent model [45] and a lowered effective solvent

dielectric constant [46], to our knowledge, only very recent work

has probed more specifically to study how crowding affects

electrostatic interactions within a solvated medium [47,48]. Such

work demonstrated that it may be possible to capture certain

electrostatic effects of crowding by a lowered solvent dielectric

constant, a result that supports other work suggesting that the

observed dielectric constants within cellular environments may be

quite lower than that of water [49–53]. Specifically, Harada et al.

[47] found via explicit solvent molecular dynamics simulations that

water mobility was hindered in a crowded environment, providing

one physical mechanism for this lowered dielectric constant.

However, as they note, another mechanism for a lowered

dielectric constant may stem from the fact that crowding depletes

bulk water from around molecules, an idea that was explored

further in an implicit model study [48]. It is this latter mechanism

that provides the focus of the current study, although here, we

extend this idea to study protein–protein binding.

This work uses simplified models to study how water depletion

due to crowders can alter electrostatic binding free energies

between proteins. We use the barnase–barstar protein complex as

a model system, as it has been shown previously [54,55] that

electrostatic interactions play a crucial role in their interaction,

and it has also been used in previous studies investigating crowding

or similar phenomena [35,45]. While a more realistic model may

use explicit solvent and actual proteins as crowding agents, we

wished to separate out electrostatic effects due to water depletion

from other electrostatic effects, such as loss of mobility of

individual water molecules or electrostatic interactions with

crowder molecules. To that end, our study uses spherical,

uncharged model crowders within an implicit solvent, and

electrostatic free energies are computed through obtaining

potentials via the Poisson Equation (or the Linearized Poisson-

Boltzmann equation, if applicable). To again focus on the water

depletion effect in a controlled manner, we assume rigid binding,

although we recognize that crowding may affect protein confor-

mations [48]. Our thermodynamic cycle allows us to separately

quantify the effects of crowding on desolvation and on solvent-

screened interaction. The use of simple model crowders enables us

to systematically study these effects as a function of crowder

density and size. Adequately sampling crowder locations to get

proper Boltzmann-weighted distributions of states would be

computationally infeasible, and so we limited our results to simple

averages over 50 randomly-generated crowder placements in the

bound and unbound states per data point, especially since

Boltzmann-weighting based only on electrostatic solvation energies

may be less realistic than assuming that other factors can also

contribute to crowder placement.

We find that on average, crowding lowers desolvation penalties

and amplifies solvent-screened interactions, stabilizing favorable

interactions and destabilizing unfavorable ones. This effect is more

pronounced when crowder size is reduced, assuming a standard-

size water probe radius within the continuum model. The mean

stabilization or destabilization of solvent-screened interactions was

robust to the specific placement of the random crowders, but the

average desolvation effects were not, with very large standard

error values. While an overall reduced dielectric constant may

capture average water depletion effects, there may be system

specific conditions that lead to uncertainty in the mean effect of

crowder placement as a simple function of crowder density and

size. Finally, we show that crowding can differentially affect the

electrostatic contributions of individual protein residue side chains

toward binding, with the relative effects on desolvation and

interaction depending on the residue’s environment. This suggests

that crowding could affect the consequences of specific mutations

on binding, as well as the role that certain residues or binding ‘‘hot

spots’’ play in varied cellular environments. While these results

may qualitatively agree with intuition, our goal is to provide a

systematic, controlled demonstration and quantitative analysis of

these effects. Moreover, the methods used here provide experi-

mentally testable hypotheses and an initial framework for

understanding the role of crowding in modulating electrostatic

interactions in protein–protein binding that can be built upon in

future work.

Materials and Methods

Structure Preparation
Studies used a 2.0 Å resolution crystal structure of barnase

complexed with a Cys -. Ala (40,82) double mutant of barstar

(PDB ID 1BRS) [56]. The asymmetric unit consisted of 3 model

complexes; the complex corresponding to chains A and D were

used in this study. Crystallographic water molecules greater than

3.3 Å from either binding partner or with fewer than three

potential hydrogen-bonding interactions with protein were

removed. The remaining 17 water molecules were assigned to

either protein partner based on proximity and hydrogen-bonding

contacts. The amide groups of asparagine and glutamine and the

imidazole group of histidine were flipped as necessary and the

tautomerization states of histidine were assigned based on manual

inspection of possible hydrogen bonding with surrounding

residues. The two N-terminal residues of barnase and residues

64 and 65 of barstar were not resolved in the crystallographic

experiment, and neighboring residues were patched with acetyl or

N-methylamide groups. Hydrogens were modeled onto the

structure with the HBUILD [57] functionality in CHARMM

[58], using the CHARMM22 force field [59] and the TIP3P water

model [60]. Patches and missing side chain density were added via

CHARMM and were energy minimized.

Crowder Placement
Bound and unbound states in each binding free energy

calculation were crowded separately. A box was created to

contain both the protein complex (or each unbound state) and the

model crowders, such that the box ‘‘walls’’ were each 70 Å from

the most extreme (i.e., maximal and minimal) x, y, and z protein

coordinates. The dimensions of the box were approximately

19061906190 Å. Spherical crowders of either specified or

random radii (up to 25 Å, roughly the size of the barnase–barstar

complex) were added sequentially, and each potentially new

crowder was accepted if it did not (1) overlap in space with any

existing crowder or protein molecule, (2) partially or totally fall

outside the total box volume, or (3) cause the volume density of

crowders to be higher than the desired value. The volume density

of crowders was calculated as the ratio of the total volume of the

crowders to the originally available volume (i.e., volume not taken
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up by the protein(s)). Fig. 1 shows sample, random crowder

placements around the bound state at denoted specifications.

Preliminary analyses showed that one consequence of our crowder

placement method is a depletion of crowder density at the system’s

extreme edges; future efforts to place crowders could adopt a

strategy leading to more even placement throughout the entire

system volume.

Continuum Electrostatics Calculations
A single-grid red-black successive over-relaxation finite-differ-

ence solver (M.D. Altman and B. Tidor, unpublished) [61] of the

Poisson/Linearized Poisson Boltzmann Equation, distributed with

the Integrated Continuum Electrostatics (ICE) software package

(D.F. Green, E. Kangas, Z.S. Hendsch, and B. Tidor, Massachu-

setts Institute of Technology Technology Licensing Office), was

used to solve for the electrostatic potentials of both crowded and

uncrowded systems. Unless otherwise noted, a probe radius of

1.4 Å was used to define the molecular surface for the dielectric

boundaries. Likewise, unless otherwise noted, a dielectric constant

of 4 was used for all spherical crowders and protein atoms, and the

solvent was modeled using a dielectric constant of 80. Potentials

were solved on a 49164916491 grid. A three-tiered focusing

procedure was used, in which the system (the complex and all

crowders) occupied 23%, 92%, and 184% of the grid. At the

lowest focusing, the regions beyond the entire system were

modeled as dielectric 80 and screened Coulombic (or Debye-

Huckel, in cases of non-zero ionic strength) boundary conditions

were used. Zero-radius dummy atoms were placed at identical

extreme points of every run to maintain equal grid resolution for

all states. At the highest focusing, this grid spacing yielded a

resolution of approximately 4.6 grids/Å, and the grid was centered

on barstar within the large system (for a small subset of runs, the

grid was centered on a particular atom within the interfacial

barstar Asp39 residue). PARSE radii and charges [62] were used.

The ionic strength was set to zero except when implicit salt was

modeled at a concentration of 0.145 M and a Stern layer of 2 Å

was used. Due to memory limitations, runs with nonzero ionic

strength were solved on a 40164016401 grid, and to assess the

effect of ionic strength, were compared only to other runs at the

same grid resolution.

Potentials were solved for both the bound and unbound

dielectric boundaries upon charging up one binding partner at a

time. By multiplying (one-half) the potential differences due to

charges on a given partner by the charges on that partner,

desolvation penalties were obtained, and by multiplying the

potentials due to charges on one partner by the charges on the

other partner, solvent screened interactions were obtained [63]

(Fig. 2).

Model Charge Variation
The monopole on each binding partner was changed by adding

or subtracting random charge values of maximum magnitude

0.1 e to randomly selected atoms within the partner until the

desired overall monopole was reached. No single atom was

allowed to have an overall charge magnitude greater than 0.85 e.

To test the robustness of the results, monopoles were changed by

starting both with the original charge distribution and from a

structure in which all the charges were set to zero. Here we show

only the results produced by starting with the original barnase-

barstar charge distribution.

Component Analyses
To quantify the contributions of selected residues toward the

electrostatic component of binding in the presence and absence of

model crowders, the partial atomic charges on the side chain of a

given residue were all set to zero and the binding free energy re-

evaluated, in a similar manner to component analyses in previous

work on both protein and small molecule systems [55,64–68]. The

effect of zeroing out the side chain was then computed via:

DDGres~DGzeroed{DGorig

A positive value of DDGres implies that a residue’s side chain

contributes favorably toward the electrostatic component of

binding, as zeroing out its charges worsens binding. The

desolvation and interaction components of DDGres were computed

by directly subtracting the desolvation and interaction components

of the binding free energies between the system with zeroed

charges and the original system, respectively.

Component Analyses of Residue Groups within Barstar
For analyses in which charges of groups of residues were zeroed,

groups were determined by calculating the solvent accessible

surface area (SASA) of residues within each partner (assuming

Figure 1. Sample simulated crowded environments. Here, the
bound state barnase–barstar complex (red and blue) is surrounded by
randomly-placed crowders (orange); the top row depicts environments
in which the radius of crowders varied within a system (from 5–25 Å), at
increasing crowder volume densities (left to right). The bottom row
depicts environments at a constant crowder volume density, but with
increasing crowder radius (left to right).
doi:10.1371/journal.pone.0098618.g001

Figure 2. Schematic defining physically relevant components
of the electrostatic binding free energy. Pictorially represented are
the ligand (barstar) desolvation penalty (LDP), the receptor (barnase)
desolvation penalty, (RDP) and the complex solvent-screened interac-
tion (int). Gray regions denote solvent, and white regions denote low-
dielectric cavities in the shape of a given partner, but without charges
modeled. The total electrostatic binding free energy is LDP + RDP + int.
doi:10.1371/journal.pone.0098618.g002
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associated water molecules are considered residues and not bulk

solvent) in the bound and unbound states. CHARMM was used to

calculate SASA, using a 1.4 Å -radius probe and the

CHARMM22 force field. Residues with non-zero burial upon

binding were classified as either highly buried or peripheral

depending on whether more or less than 50% of their unbound

SASA remained in the bound state. Non-core residues were

classified as either surface exposed or partially exposed depending

on whether they have more or less than 50 Å2 SASA in the

unbound state. Here, the charges of both side chain and backbone

atoms were set to zero so that the union of all atoms considered

was the entire barstar protein (and associated explicit water

molecules).

Data Analysis and Visualization
Figures of protein molecules and model crowder systems were

generated using VMD [69]. All plots and data analyses were

performed using Matlab (The Mathworks, Inc. Natick, MA).

Results

To assess the effect of water depletion due to crowding on the

electrostatic component of protein–protein binding, binding free

energies were computed in the presence and absence of model

crowders. To model the crowded states in a controlled fashion and

focus on water depletion, spherical, uncharged ‘‘crowders’’ were

randomly placed around the bound and unbound state proteins at

specified densities (Fig. 1). The effect of crowding on the

electrostatic component of the binding free energy was quantified

as the difference between the electrostatic binding free energies in

the presence and absence of crowders:

DDGcrowding~DGbind,crowded{DGbind,uncrowded

A negative DDGcrowding means that crowding lowers the electro-

static binding free energy (i.e., favors binding, all other compo-

nents equal). With our model, DGbind,elec,uncrowded was found to be

0.5 kcal/mol, suggesting that the electrostatic component of

binding in this system (in pure aqueous solvent) is neither strongly

favorable nor unfavorable, in qualitative agreement with previous

work using quantitatively different parameters [70]. Given that the

electrostatic binding free energies between proteins are generally

quite unfavorable with models using an internal dielectric constant

of 4 [71], our value supports the accepted view that electrostatics

play an important role in this system.

Binding free energy contributions were broken into desolvation

and interaction components (Fig. 2). The free energy cost upon

binding to remove solvent interactions with barstar (considered the

‘‘ligand’’) is denoted the ligand desolvation penalty (LDP), and was

found to be 41.7 kcal/mol for the uncrowded system. The

energetic cost upon binding to remove solvent around barnase

(the ‘‘receptor’’) is termed the receptor desolvation penalty (RDP,

37.2 kcal/mol when uncrowded). Finally, the solvent-screened

interaction between the partners (int) was also quantified (2

78.4 kcal/mol when uncrowded).

On Average, Crowding Lowers Desolvation Penalties and
Amplifies Interactions

Figure 3 is a graph of DDGcrowding as a function of crowder

radius (bars grouped by bottom axis) and crowder volume density

(top axis). In the rightmost set of bars, crowder radii vary within

each system from 5–25 Å (the largest spheres were therefore

approximately the size of the protein complex). Total DDGcrowding

values are broken up into contributions due to changes in barstar’s

desolvation penalty (LDP, blue), barnase’s desolvation penalty

(RDP, green), and solvent-screened interaction (int, red). Each bar

is the result of 50 random trials, with average values +/2 standard

error (not standard deviation) shown for each contribution.

Figure 3. DDGcrowding, in kcal/mol, for barnase-barstar vs. crowder volume density (top axis) and radius (bottom axis). The bars at
right (‘‘varied’’) are for systems in which the crowder radius varies within each trial. Each bar is the average of 50 trials and is shown as a composite of
its contributions of barstar desolvation penalty (LDP, blue), barnase desolvation penalty (RDP, green), and solvent-screened interaction (int, red). Error
bars on each contribution represent +/21 standard error. Missing bars are a result of unsatisfiable geometric constraints (see Results).
doi:10.1371/journal.pone.0098618.g003
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Figure 3 shows that on average, DDGcrowding was negative for all

crowder densities and radii, although generally, the effects were

more pronounced at higher crowder densities and smaller crowder

radii. Moreover, the changes in all contributions (LDP, RDP, and

int) were generally negative on average, in this system. This result

makes intuitive sense – in a crowded environment, each unbound

state is already partially desolvated by crowders, with some

crowders potentially occupying the same space in the unbound

state as the binding partner does in the bound state. Hence, there

may be less solvent displaced near the binding interface upon

binding in the crowded system when compared to an uncrowded

one, resulting in a reduced desolvation penalty on average.

Moreover, the bound state is also partially desolvated due to the

crowding, resulting in less solvent screening and more amplified

interactions between the two partners. Because the interactions in

this complex are favorable in general, amplifying them would

increase their favorability.

The average effects seen in Fig. 3 are qualitatively similar to

what one might obtain using a lower solvent dielectric constant.

Previous work has modeled aspects of crowding via the use of a

lower ‘‘effective’’ solvent dielectric constant [37,38,46,48], and

experimental evidence suggests that a dielectric constant can be

characterized for the cytoplasm [51,53] through measuring shifts

in emission wavelength maxima of fluorescent probes due to the

polarity of the microenvironment. This observed constant likely is

a macroscopic average accounting for both the loss of water

mobility and water depletion (and potentially other effects), the

first of which is not accounted for in the present study.

Nevertheless, it is instructive to measure the effects of a lowered,

effective solvent dielectric on protein–protein binding. Figure S1

shows DDG values (relative to a solvent dielectric constant of 80)

for the desolvation and interaction components of barnase-barstar

binding as a function of solvent dielectric constant. In addition,

Table 1 shows numerical data using two potential values of solvent

dielectric constant – an experimentally obtained value of 21.9[53]

and the value of 55, similar to values found from explicit

simulations at 30% crowder volume density, to model solely the

effects of hindered water mobility [47]. A dielectric constant of

21.9 produced DDG values that were several times more

pronounced (Table 1) than the results obtained using explicit

crowders (Fig. 3), but this may be because the experimentally-

obtained constant would account for not only water depletion, but

also hindered water mobility and other possible effects of

crowding. A dielectric constant of 55 again produced more

pronounced results than using explicit crowders within a dielectric

80 medium, although the effects were more quantitatively similar

to our explicit crowding simulations (,1 kcal/mol difference in

DDG for desolvation components and ,5 kcal/mol difference in

DDG for interaction, at a 30% crowding density and varied radius,

Table 1). Again, differences could be due to the fact that this value

was found to account for hindered water mobility and not water

depletion.

The qualitative trends seen with lowered dielectric constants

(Fig. S1) were similar to the trends found in this work for either

increasing crowder volume density or decreasing radius, although

for a given crowder radius and volume density, there may not exist

an effective dielectric constant that provides quantitative agree-

ment. Perhaps a ‘‘long-range’’ dielectric constant cannot model

the full effect of hydration immediately surrounding each

macromolecule; in a heterogeneous environment, the dampening

of the electric fields due to a small amount of highly polar water

might not be captured by an average, low macroscopic dielectric

constant and therefore, effects of crowding may be overestimated.

Nevertheless, one potential solution, similar to what was done in

work by Harada et al. [38], is to use a slightly lower dielectric

constant to account for the loss of water mobility and explicitly

model crowders to account for water depletion. Future work could

also involve effective medium theory approaches to estimate

effective dielectric constants of this composite environment as a

function of crowder size and shape [72].

The relatively small standard error for interaction indicates that

the mean stabilization due to the further descreening of

interactions relative to infinite dilution is fairly robust to the

ensemble of states sampled; there is little uncertainty in the mean

effect. However, the large standard error for both desolvation

contributions in all ensembles indicates great uncertainty in the

mean reduction of desolvation penalties due to random crowder

placement. As desolvation penalties depend strongly on the level of

direct solvent exposure of charged or polar interfacial groups, it

makes sense that they will be very sensitive to precise crowder

placement. Interaction energies, on the other hand, are more long-

ranged, except for interfacial interactions (and these are fairly

unaffected by crowders in the bound state anyhow), and are

therefore far less sensitive. The large standard error due to

desolvation, by definition, implies an even larger standard

deviation and therefore a huge amount of variability between

trials, which suggests the necessity of thorough sampling.

Currently, it is computationally infeasible to thoroughly sample

all relevant crowder configurations. Preliminary attempts to use

Boltzmann-weighting to more heavily account for lower-energy

states by obtaining partition functions from each set of 50 sampled

configurations resulted in similar qualitative trends to those shown

in Fig. 3 (data not shown).

Our results suggest that the effects of crowding on water

depletion are most pronounced at a given crowder volume density

when the crowders are small, although large standard errors

confound the robustness of this result, especially for desolvation.

Presumably, very small molecules can more closely approach the

irregular surface of a protein, more substantially desolvating it in

its unbound state and more effectively descreening its interactions

with a partner in the bound state relative to infinite dilution.

Analyses of our model crowded systems showed that the minimum

distance of approach between any one crowder and the proteins

increases on average as the crowder radius increases (Figure S2), in

support of this hypothesis.

It is plausible that aspects of this observed trend could be

dependent on the use of a standard, nonzero-sized (here, 1.4 Å)

‘‘probe’’ used to generate the molecular surface in continuum

models. The water-sized probe is intended (as standard practice) to

approximately account for the nonzero size of discrete water

molecules and the inability of ‘‘actual’’ water molecules to occupy

cavities and crevices smaller than their size. A consequence of this

model feature is that low-dielectric regions will be larger than the

actual volume occupied by model crowders and protein, and this

difference will likely be greater for systems with smaller-radius

crowders due to the likelihood that they often closely approach

each other and the protein.

To test this hypothesis, we redid a subset of the calculations

shown in Figure 3 using a probe radius of zero to generate the

molecular surface. The results are shown in Figure S3. Desolvation

penalties were still reduced on average and interactions amplified,

but as expected, the quantitative effects were now often ,50–75%

less pronounced (DDGcrowding = ,2 kcal/mol or less). Addition-

ally, the dependence of the desolvation effects on radius was not

apparent (although they did not appear to be statistically

significant even with a standard probe radius). However, the

average effect on the interaction component still strengthened

overall as the crowder radius decreased, suggesting some
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robustness to the observation that smaller crowders may have

greater impact. While it is standard practice to use a probe radius

of 1.4 Å [73,74], results using a continuum model can be sensitive

to this feature [74,75]. Our results demonstrate this limitation,

specifically when modeling crowding effects using a continuum

approach.

Even with the ‘‘standard’’ probe radius of 1.4 Å, at radii that

more accurately model small proteins (20–25 Å), the mean effects

on electrostatic interaction were found to be modest, but still

significant on average, especially at higher crowding densities.

These data suggest that the effects of crowding on electrostatics

could be sensitive to the precise distribution of molecular sizes

within the cell, and that it might be not be crowding due to

proteins but rather, due to smaller metabolites and peptides that

most greatly affects the electrostatic component of binding. We

note that the trends for radii are curtailed here due to missing data

at higher crowder densities and larger radii. Because of our purely

random, sequential crowder placement, it became geometrically

impossible to satisfy all constraints noted in the Methods when

both crowder size and desired volume density were large. Future

work can attempt to explore this region of property space while

still maintaining a purely random crowder placement within the

noted constraints.

Taken together, these results show that on average, the effects of

crowding on electrostatic interactions can vary as a function of

both crowder volume density and size, but desolvation effects are

highly sensitive to crowder placement. To qualitatively account for

crowding effects due to water depletion, therefore, it may be

expedient to use an effective lowered solvent dielectric constant.

Our work supports the idea that such a constant is likely to be

specific to crowding volume fraction [47] and the distribution of

crowder radii, and additional parameters may be needed to

capture system-specific variations due to various arrangements of

crowders.

In addition to the varied probe radius size discussed above, a

subset of data was obtained under other different model

conditions, to gauge the robustness of our results to parameters

and physical conditions. First, we varied the internal dielectric

constant used for both protein and model crowders. For maximal

control, the precise locations of crowders in the bound and

unbound states of the 50 trials were maintained in calculations

with different dielectric constants in one set of runs, and allowed to

vary in another set. Results here used a varied crowder radius at a

volume density of 30%. With an internal dielectric constant of 1,

results were qualitatively similar to those with an internal dielectric

constant of 4 when controlling for crowder placement and

quantitatively more pronounced on average, especially for

desolvation penalties (Table 1, ein = 1, same’’). However, standard

errors were much larger, which may explain the difference in

DDLDPcrowding between trials in which the same crowders were

used and when random crowders were used (Table 1, ‘‘ein = 1,

random’’).

To understand how the presence of electrolytes could modulate

the effect of crowding, data were gathered including implicit

mobile ions at a concentration of 0.145 M through obtaining

potentials via the linearized Poisson-Boltzmann equation. Again,

we used a crowder volume density of 30% and randomly varied

crowder radii, although all relevant runs with and without mobile

ions were done at a somewhat lower grid resolution due to

memory limitations when modeling salt (see Methods). We

obtained qualitatively similar results when the solvent contained

implicit, mobile ions, although the average lowering of the LDP,

RDP, and especially int, were not as pronounced (Table 1).

If crowders descreen interactions relative to infinite dilution,

they should amplify both attractive and repulsive interactions. To

show this, we computationally modified the charge distributions

on both barstar and barnase to vary their monopoles (see

Methods). Of course, such charge distributions are not realistic,

but they allow for a controlled, systematic study on how a system’s

charge distribution may affect its molecular recognition profile in a

crowded environment. Figure 4 shows the average change in LDP,

RDP, and int for three modeled pairs of monopoles – in which the

partners either had opposite, large-magnitude monopoles (+/2

10 e), no net monopole, or the same, large-magnitude monopole

(+10 e). Each bar is the average of 50 trials in which crowders of

varied (5–25 Å) radius were used at a 30% volume density. The

average effect of crowding on desolvation penalties was similarly

stabilizing in all three cases, but the average effect on interactions

is markedly different in the three cases. As expected, crowding

greatly destabilized the (+10/+10) interaction and greatly stabi-

lized the (+10/210) one. This suggests that binding partners’

overall monopoles can affect how they interact with partners in a

Table 1. DDGcrowding values for selected model systems described in the text.

DDGcrowding LDP RDP int TOT

eout = 55 20.1 21.1 24.8 26.0

eout = 21.9 23.1 26.6 221.7 231.4

ein = 4, control run 21.260.5 21.460.5 21.0860.05 23.760.7

ein = 1, same 2362 2562 21.460.1 2963

ein = 1, random 061 2561 21.460.1 2662

0 M ions, same, lower grid 21.260.5 21.460.5 21.0860.05 23.760.7

0 M ions, random, lower grid 21.060.4 20.160.3 20.9760.04 22.160.5

0.145 M ions, same, lower grid 20.960.5 21.360.5 20.4860.05 22.860.7

0.145 M ions, random, lower grid 20.760.4 20.260.3 20.5160.05 21.460.5

DDGcrowding values broken into components (LDP, RDP, int, and total) for systems not shown in Fig. 3. In the first two rows, the outer dielectric constant is varied as a
substitute for explicitly modeling crowders. In the next set of rows (ein = 1, ein = 4), the internal dielectric constant was changed to 1 and compared with the control value
of the reference system (ein = 4, also the rightmost bar in Fig. 3). The last four rows show the effect of nonzero ionic strength. For maximal control, all components were
re-evaluated at a slightly lowered grid both without ions (‘‘0 M ions, same, lower grid’’) and with ions (‘‘0.145 ions, same, lower grid’’). Additionally, crowders were either
kept the same as they were in the 50 trials of the reference system (‘‘same’’) or were randomly varied (‘‘random’’).
doi:10.1371/journal.pone.0098618.t001
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crowded environment, although this effect is mediated more by

interactions rather than the desolvation component.

Crowding can Differentially Affect Electrostatic
Contributions of Side Chains toward Binding

Many protein–protein interactions have been shown to be

mediated by one or more polar or charged residues or ‘‘hot-spots’’

[76–79]; such residues can be elucidated by experimental

mutagenesis studies (e.g., alanine scanning) or through computa-

tional analyses. Presumably, if the overall electrostatic binding free

energy can be modulated by the level of environmental crowding,

as the model above suggests, then this implies that the specific

contributions of individual residues toward that interaction can

also be altered, but the nature of the alteration may depend on the

properties of each residue.

To explicitly demonstrate, quantify, and better understand this

intuitive idea, we began with the original (unaltered) charge

distribution of the complex and quantified the electrostatic

contribution of selected barstar residues toward the binding free

energy by computationally setting the original partial atomic

charges on a given side chain to zero and re-evaluating the binding

free energy to obtain a DDGres (see Methods); this procedure was

done both in the presence of crowders (the 50 trials used in the

original analyses were used to obtain an average DDGres) and in

the absence of crowders. Consequently, we can define a

DDDGres,crowding that quantifies the effect of crowding on a

residue’s contribution toward the binding free energy:

DDDGres,crowding~DDGres,crowded{DDGres,uncrowded

A positive DDDGres,crowding means that a residue contributes more

favorably (or less unfavorably) toward binding in the presence of

crowding than in its absence.

In this study, we chose to calculate DDDGres,crowding for five

barstar residues whose side chains were previously shown to

contribute significantly toward the electrostatic component of

binding free energy [55]: Tyr29, Asp35, Asp39, Thr42, and

Glu76. Figure 5a is a graph of the DDDGres,crowding for each of

these residues, broken up into barstar desolvation (LDP) and

interaction (int) components (there is no change in the desolvation

of barnase, RDP, as only charges on barstar were changed to

zero). On average, the charged side chains contributed even more

favorably in the presence of crowding, although the effect was

quite small, with an average DDDGres,crowding of only tenths of a

kcal/mol. The contributions were not significantly changed on

average for the two polar side chains studied.

Interestingly, the desolvation component of DDDGres,crowding

was altered more on average for Asp35 and Asp39, whereas the

interaction component was altered more on average for Glu76.

We hypothesize that the different mechanisms of altering

DDDGres,crowding is due to where these residues lie relative to the

binding interface (Fig. 6). Both Asp35 and Asp39 are interfacial

and highly buried upon binding, and so crowding may more

greatly affect their desolvation penalties, by partially desolvating

them already in the unbound state. Glu76, however, is more

peripheral to the interface and so it remains more solvent exposed

upon binding–this implies that crowding could more greatly

impact the solvent-screening of its interactions in the bound state.

To further explore the idea that crowding might affect residue-

based contributions differently, we grouped barstar residues based

on both level of surface exposure and degree of burial upon

binding (see Methods). Then, we zeroed out the charges

simultaneously on all residues in each group (including both side

chain and backbone) to determine DDGres for that group. This was

Figure 4. Effect of partner monopole on DDGcrowding. DDGcrowding, broken into barstar desolvation penalty (LDP), barnase desolvation penalty
(RDP), and solvent-screened interaction (int) components, is shown in kcal/mol for the binding free energy of hypothetical proteins generated by
randomly altering the charges of randomly selected atoms on the barnase–barstar complex until a desired overall monopole on each partner is
reached (see legend). Each bar shows the average of 50 trials in which the bound and unbound states were crowded with spheres of random, varied
radii (5–25 Å) to 30% crowder volume density. Error bars indicate +/21 standard error.
doi:10.1371/journal.pone.0098618.g004
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done both in the presence and absence of crowding to obtain a

DDDGres,crowding (using the 50 trials used in the original analyses).

Indeed, surface residues that are highly buried upon binding

showed the largest desolvation component of DDDGres,crowding

values (Fig. 5b), while surface residues that are peripheral to the

interface (i.e., only partially buried upon binding) showed the

largest interaction component of DDDGres, crowding. Interestingly,

DDDGres,crowding of surface residues with no burial upon binding

(i.e., distal from the interface) was negative; here, crowding makes

these residues contribute more unfavorably toward binding. This

result may be due to the dominating effect of the monopoles of

distal groups; the monopoles on our model of barnase (+1) and the

collection of distal, surface exposed residues on barstar (+3) have

the same sign. The same trends are found when one controls for

the number of residues in each group by finding the average

DDDGres,crowding per residue in each group (Fig. S4). These results

explicitly demonstrate that electrostatic contributions–and there-

fore perhaps mutational energies–can be predictably altered in an

Figure 5. Effect of crowding on residue-based electrostatic contributions. DDDGres,crowding, broken into barstar desolvation penalty (LDP)
and interaction (int), in kcal/mol, is shown for (a) selected barstar residues (see legend) and for (b) groups of barstar residues based on level of surface
exposure and degree of burial (see Methods); The number above each bar indicates the actual magnitude of the selected component of DDGres

without crowding present. Each bar indicates an average of 50 trials in which each crowded bound and unbound state is crowded with spheres of
random, varied radii between 5 and 25 Å to 30% crowder volume density. Error bars indicate +/21 standard error.
doi:10.1371/journal.pone.0098618.g005

Figure 6. Location of the 5 barstar residues studied via component analysis within the barnase(blue)/barstar(red) complex.
doi:10.1371/journal.pone.0098618.g006
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environmentally-dependent way for residues in a crowded

environment.

Discussion

In this work, we used simplified models to investigate the effect

of macromolecular crowding on the electrostatic component of

protein–protein binding free energy via water depletion. We found

that for proteins with favorable electrostatic interactions, crowding

can enhance the relative favoring of the bound state due to

lowered desolvation penalties and enhanced interactions. For

proteins with potentially unfavorable interactions, there may be

opposing effects. The effects of crowding on desolvation were

highly sensitive to crowder placement–yielding far more uncer-

tainty in the mean effect on desolvation than in the mean effect on

the interaction component.

Our results can potentially provide experimentally-testable

hypotheses. For example, one could experimentally study the

effect of monopole-changing yet relatively isosteric (e.g., Asn-

RAsp) interfacial and peripheral mutations on protein–protein

binding in crowded and uncrowded environments to see if

crowding affects their relative contributions as predicted.; these

experiments can be bolstered by varying ionic strength to highlight

the interaction component of binding over desolvation compo-

nents. Experimental tests would likely combine the effects of

crowding due to both water depletion and lowered solvent

mobility, so experimental results should reflect the predictions in

this work in combination with other computational predictions

[47].

The importance of crowder size was studied in a previous

computational study that focused on the excluded volume effect of

crowding on the binding of the barnase–barstar complex [35].

Like our study, it was also found that smaller crowders had a larger

effect, but for a different reason–at a given volume density, smaller

crowders left smaller voids for the proteins to occupy, lowering the

available volume. This effect was confirmed in another study, and

it was also shown that the ratio between crowder size and protein

size is important [12]. Thus, smaller crowders may have a bigger

impact for multiple reasons – by their excluding more volume and

by their ability to more closely approach proteins to desolvate

them and descreen their electrostatic interactions relative to

infinite dilution.

We also demonstrated that crowding can differentially affect the

relative contributions of residues toward binding. That these

changes can be dominated by different phenomena (desolvation

vs. interaction) could provide avenues for rational, environmen-

tally-dependent design tasks.

This study provides a useful framework on which to build in

future studies. With adequate computational resources, larger-

sized model crowders and overall crowded volumes could be

explored. Elements of ‘‘reality’’ can be added individually, in turn,

to understand the effect of each on the binding free energy. Such

elements include using actual protein shapes for the crowders

(crowder shape has been shown to affect changes in folding and

binding free energies [12,80]) as well as protein charge distribu-

tions to include direct enthalpic crowder interactions, which have

been shown to be important for protein stability and conformation

[18,48]; it would be interesting to quantify their precise effects on

protein–protein binding. Another future goal is to increase the

sampling of crowder configurations and potentially the conforma-

tional states of the binding partners, to allow for Boltzmann-

weighted averages through Monte Carlo or dynamic simulations.

In this study, the costs of Poisson-based models on such large

systems prohibited exhaustive sampling (each binding free energy

calculation took ,0.5 day of CPU time and.1GB RAM with

current resources).

To also account for the altered mobility of water molecules due

to crowding, explicit solvent simulations are necessary, and have

been previously attempted [38,47], although rigorously analyzing

such effects on the energetics of specific protein–protein binding

has yet to be done, to our knowledge. Given the potential

computational cost of such studies, alchemical transitions [81,82]

of individual residues (i.e., component analysis) or small molecule–

protein binding systems may be good starting points.

In this study, we demonstrated and systematically explored the

idea that macromolecular crowding can affect the electrostatic

component of the free energy of binding between proteins through

depleting regions of high dielectric water. Our results highlight yet

another example of how environmental effects can have a

quantitative and potentially qualitative impact on molecular

recognition and should therefore be considered in both the

analysis and the rational design of biomolecular systems.

Supporting Information

Figure S1 DDGelec vs. solvent dielectric (relative to a
solvent dielectric constant of 80), without explicit
crowders. A lowering of the external dielectric constant

produces a similar qualitative trend as increasing the volume

density or decreasing the radius of explicit crowders.

(PDF)

Figure S2 Average minimum distance of approach
between crowders and protein vs. crowder radius. The

minimum distance of approach is the shortest distance between

the protein and crowder in each state, accounting for their radii.

Data are shown for both 15% crowder volume density (data for

20% crowder density show a similar trend, not shown). Data are

averaged over bound and unbound states for all 50 trials

conducted for each radius and volume density. Error bars are

+/2 one standard deviation.

(PDF)

Figure S3 Effect on DDGcrowding of using a zero-radius
probe to generate the molecular surface. A subset of runs

shown in Fig. 3 were redone using a zero-radius probe sphere to

generate the molecular surface instead of the standard 1.4-Å

probe. Identical crowder placements were used for each bar shown

here and the bar corresponding to the same crowder density and

radii in Fig. 3; the only different is in the size of the probe sphere.

(PDF)

Figure S4 Per residue DDDG for sets of residues on
barstar. Residues were grouped by degree of burial and solvent

exposure and values were normalized by dividing by the number of

residues in each group (Figure 5b in the main text does not normalize

per residue). Similar overall qualitative trends are seen in this

Figure and in Figure 5b in the main text. The number above each

bar indicates the per-residue value of the selected component of

DDGres.

(PDF)

File S1 Contains sample pdb files used in our analyses;
each contains the barnase/barstar complex with a
specific random placement of crowders of varying radii
at 30% crowding density. Also included are files specifying, for

each pdb file, the radii of each atom and model crowder.

(TAR)
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