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Abstract

Theta oscillations (3-8 Hz) in the human brain have been linked to perception, cognitive control, and spatial
memory, but their relation to the motor system is less clear. We tested the hypothesis that theta oscillations
coordinate distributed behaviorally relevant neural representations during movement using intracranial electro-
encephalography (iEEG) recordings from nine patients (n=490 electrodes) as they performed a simple in-
structed movement task. Using high frequency activity (HFA; 70-200 Hz) as a marker of local spiking activity,
we identified electrodes that were positioned near neural populations that showed increased activity during in-
struction and movement. We found that theta synchrony was widespread throughout the brain but was in-
creased near regions that showed movement-related increases in neural activity. These results support the
view that theta oscillations represent a general property of brain activity that may also play a specific role in
coordinating widespread neural activity when initiating voluntary movement.

Key words: high frequency activity; instructed movement; intracranial EEG; sensory-motor transformation; syn-
chrony; theta

Significance Statement

Whereas theta oscillations in the human brain have been extensively related to a wide range of perceptual
and cognitive functions, there is only limited data linking theta oscillations to motor systems. In this study,
we use intracranial electroencephalography (iIEEG) to show that theta oscillations (3-8 Hz) are widespread
throughout the brain but further increased near movement-related neural populations during instructed
movement. Our results provide a link between theta oscillations and motor systems.

clear (Buzsaki, 2006; Cavanagh and Frank, 2014; Jacobs,
2014; VanRullen, 2016). It has been hypothesized that
theta oscillations provide a mechanism for temporally

Introduction
Theta oscillations (3-8 Hz) in the human brain have
been linked to a wide range of perceptual and cognitive
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coordinating widespread sensory, goal-related, and
motor neural populations that are behaviorally relevant
for voluntary movement (Cavanagh et al., 2012).

In support of this view, a recent scalp electroencepha-
lography (EEG) study observed that theta oscillations
were phase locked to the initiation of voluntary movement
and also related to performance on a visual discrimination
task (Tomassini et al., 2017). These data suggest that
theta oscillations are related to both sensory and motor
behaviors, possibly playing a specific role in coordinating
widespread sensory and motor neural activity during vol-
untary movement. However, because of the limited spatial
resolution of scalp EEG, these data do not speak to the
anatomic relationship between theta oscillations and
brain regions containing neural populations that are be-
haviorally relevant for movement (e.g., sensory, goal-re-
lated, and motor). As an alternative explanation, it is
possible that theta oscillations are anatomically wide-
spread and independent from these behaviorally relevant
neural populations, suggesting an indirect relationship to
voluntary movement, rather than a direct role in coordi-
nating movement-related neural populations

We studied whether theta oscillations specifically syn-
chronize regions that are behaviorally relevant for initiat-
ing voluntary movement by obtaining intracranial EEG
(IEEG) recorded from patients with drug-refractory epi-
lepsy as they performed a simple instructed movement
task (Parvizi and Kastner, 2018). high frequency activity
(HFA; 70-200Hz, often labeled “high gamma”) from
iIEEG data provides a measure of local firing activity with
high spatial and temporal resolution (Manning et al.,
2009; Ray and Maunsell, 2011; Burke et al., 2015; Dubey
and Ray, 2019) and can be used to identify electrodes
near sensory and motor neural populations (Cogan et al.,
2014; Flinker et al., 2015). Moreover, low frequency com-
ponents of iEEG data, such as theta, can measure wide-
spread network changes that can also be observed at
the level of scalp EEG (Buzséki, 2006; Burke et al., 20183;
Solomon et al., 2017; Bickel et al., 2018). Our approach
was to use task-related HFA increases to identify elec-
trodes that were in proximity to task-related neural popu-
lations and then assess interactions between these
regions by measuring theta synchrony between them
(Solomon et al., 2017, 2019)

We grouped electrodes based on their proximity to dis-
tributed behaviorally relevant neural populations based
on patterns of cue-evoked HFA. These included a widely
distributed “instruction-related” group of electrodes that
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showed HFA increases during instruction presentation
and a perirolandic-localized “movement-related” group of
electrodes that only showed HFA increases during move-
ment, suggesting proximity to sensory/goal-related neural
populations and movement-related neural populations,
respectively. We found that theta synchrony occurred be-
tween widespread brain regions, including regions that
did not show HFA increases, consistent with a general
role in brain function. However, theta synchrony was fur-
ther increased near regions that showed movement-re-
lated HFA increases. These results support the view that
theta oscillations play a role in coordinating distributed
neural activity when initiating voluntary movement.

Materials and Methods

Subjects

Patients with drug-refractory epilepsy underwent a sur-
gical procedure in which grid, strip, and depth electrodes
were implanted to localize epileptogenic regions (Table 1).
Clinical circumstances alone determined the number and
placement of implanted electrodes. Data were col-
lected from our institution and was approved by the
Institutional Review Board. Informed consent was ob-
tained from all participants. In total, we recorded neu-
ral activity from nine subjects (ages 21-53; three
females, six males). None of these patients had seiz-
ures originating from sensory or motor cortex. We did
not specifically exclude electrodes based on epileptic
activity (see Discussion, Limitations)

Instructed movement task

Subjects were asked to perform a simple instructed
motor task at the bedside during the epilepsy monitoring
period, ranging from 2 to 14 days after implantation. In
each trial, subjects were asked to move either their right
hand, left hand, or mouth and tongue (henceforth, “specif-
ic movements”). They were presented with written in-
structions on a laptop screen. Before the task, hand
movements were demonstrated as opening and closing
the hand and mouth and tongue movements were dem-
onstrated as repetitive movement of the jaw and tongue
without producing words or sound. Each trial consisted of
three cues presented in sequence: a wait cue (“wait for in-
structions”), an instruct cue (e.g., “on GO! please move
your right hand”), and a move cue (“GO!”; Fig. 1A) Each
screen was displayed for 5 s with 24 trials per session. We
could not perform behavioral analyses as reaction times
were not recorded during the task.

Electrocorticographic recordings

We recorded iEEG from Ad-tech subdural (grids and
strips, 4-mm contacts, spaced 10 mm apart) and intrapar-
enchymal depth electrode (1.1-mm diameter, four con-
tacts spaced 5 mm apart). Intraparenchymal depth
electrodes were typically placed in medial temporal lobe
structures but also used to target frontal lobe structures
(subjects 2, 4, and 11). iEEG was recorded using a Nicolet
or Natus EEG system. Based on the amplifier and the dis-
cretion of the clinical team, signals were sampled at either
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Age of time Number of Number of Number of electrodes
Subject # of implant Gender electrodes task-responsive with theta oscillations
1 53 Male 45 31 10
2 24 Male 81 61 45
3 35 Female 31 20 2
4 28 Male 87 22 19
5 30 Male 48 19 9
6 24 Male 64 42 5
7 29 Male 79 66 35
8 40 Female 11 8 2
9 21 Female 44 19 7

250 or 512 Hz. Signals were converted to a bipolar mon-
tage by taking the difference of signals between each pair of
immediately adjacent electrodes on grid, strip, or depth
electrodes. The resulting bipolar signals were treated as
new virtual electrodes (henceforth, “electrodes”), originating
from the midpoint between each electrode pair (Burke et al.,
2013). Analog pulses synchronized the electrophysiologi-
cal recordings with stimulus presentation events. We ex-
cluded electrodes that recorded prominent 60-Hz
electrical line noise, defined as electrodes that showed
greater spectral power in 58- to 62-Hz range as com-
pared with the 18- to 22-Hz range. Subject 5 underwent
a montage change in between sessions resulting in dif-
ferent electrode labels. We only included data from the
original montage.

Anatomical localization

Intracranial electrodes were manually identified on each
postoperative CT scans. To map electrode coordinates
from the CT scan onto the cortical surface, we registered
each postoperative CT scan to each patient’s preopera-
tive MRI scan using a rigid-body 6 degrees of freedom af-
fine transformation algorithm, and manually adjusted
each transform such that electrodes were positioned as
close to the cortical volume as possible. We co-registered
each patient’s preoperative MRI scan to the MNI152 brain
to obtain anatomic labels (Jenkinson et al., 2012). Based
on MNI152 labels, electrodes were manually assigned to
one of several regions: prefrontal, perirolandic, parietal,
temporal, medial temporal, or occipital (Fig. 1B).
Electrodes that remained unlabeled based on the co-
registration to the MNI152 volume were manually as-
signed to one of these locations.

Extracting spectral power

We extracted 3 s segments of iEEG data from 1000 ms
before and 2000 ms after each cue presentation (“wait”
cue, the “instruction” cue, and the “Go” cue). We ex-
tracted spectral power with 50 complex valued Morlet
wavelets (wave number 7) with center frequencies loga-
rithmically spaced from 2 to 200 Hz (Addison, 2002). We
first squared and then log-transformed the wavelet con-
volutions, resulting in a continuous representation of log-
power surrounding each cue presentation. We averaged
these log-power traces in 500-ms epochs with 400-ms
overlap surrounding the presentation of each task related
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cue (Fig. 1C). We z-transformed power at each frequency
by the mean and standard deviation of power values ob-
tained from randomly selected clips of IEEG data re-
corded from that session so as to not bias values toward
any particular task-related event (Burke et al., 2013;
Ramayya et al., 2015).

Identifying electrodes that showed task-responsive
activity

We identified “task-responsive” electrodes as those
that showed significant spectral power changes at any
frequency in relation to the instruction or movement
cue. For each electrode, we identified spectrally and
temporally contiguous power differences between task
conditions by performing a cluster-based permutation
procedure that accounts for multiple comparisons
(Maris and Oostenveld, 2007). We describe the statisti-
cal procedure for the comparison between movement
and wait intervals (“move-wait”), but separately per-
formed this procedure comparing instruction and wait
intervals (“instruct-wait”). As suggested by Maris and
Oostenveld, we began by performing an unpaired t test
at each time interval comparing power distributions asso-
ciated with all movement and wait trials performed by the
subject. Using an uncorrected p =0.05 as a threshold, we
identified the largest cluster of adjacent time-frequency
windows that showed positive t statistics (greater power
following movement compared with wait trials), and the
largest cluster of adjacent time-frequency windows that
showed negative t statistics (greater power during wait tri-
als compared with move trials). By taking the sum within
each of these clusters, we computed positive and negative
“cluster statistics,” respectively. To assess the statistical
significance of each cluster statistic, we generated a null
distribution of cluster statistics based on 1000 iterations of
shuffled data (on each iteration, “move” and “wait” labels
were randomly assigned to power values recorded during
the session). Based on where each cluster statistic fell rela-
tive to the null distribution, we generated a one-tailed p
value for each effect, that we converted to a two-tailed p
value. For instance, a clustered power increase with a one-
tailed p value of 0.025 was assigned a two-tailed p value of
0.05, corresponding to a 5% false-positive rate of identify-
ing either a positive or negative cluster at that electrode.
We considered an electrode to be task-responsive if we
observed a cluster statistic with a p <0.05 during either

eNeuro.org



Research Article: Confirmation 4 of 14

eMeuro

Wait for instructions

On “GO!,” please move o
your Right Hand W occipital (n=7)
| temporal (n =211)

medial temporal (n = 49)

Instruction types:
“Right Hand”
“Left Hand”
“Mouth/Tongue”

parietal (n = 28)

perirolandic (n = 122)

m prefrontal (n = 165)

sample rate = 512 Hz

" HFA: 70 - 125 Hz

17 Hz

Theta: 3-8 Hz

& e
151 | ‘."\?ﬂ“ﬂ/ \J‘.W\\\“'v\"cl'\'ﬁ\‘ﬂ\‘\wm‘»
= Ll I
g 41 Hz
Time (3 seconds)
D Wait z-score Instruction z-score Move t-stat
200 ‘ 1 .
= 78 e Mos i
L 49 - 2
>
% 31 :L 0 0
S198 ll—
8 12 -2
[ G e - 05 4
5 — | 5 ‘ ‘ ‘
3 . S -1 3 - -1 _—_—— - S
500 0 500 1000 500 0 500 1000 500 0 500 1000 Null cluster statistics

Time from cue (ms)

Figure 1. Methods. A, Instructed movement task. Each trial consisted of three cues: a “wait” cue, an “instruction” cue (where sub-
jects were instructed to prepare of three movements: move their right hand, left hand or mouth and tongue), and a “go” cue move-
ment (referred to as “movement-cue” throughout the text), where subjects were asked to carry out the instructed movement. B, We
recorded from 490 bipolar electrode pairs (henceforth, “electrodes”) throughout neocortex and medial temporal lobe that are shown
here in standard MNI152 space (henceforth, “brain plot”). C, We illustrate our methods of extracting neural activity using a three sec-
ond voltage recording from an example electrode in perirolandic cortex (indicated by a red circle in panel B). We used wavelet convo-
lution of voltage time series to extract time-resolved measures of power and phase at a wide range of frequencies (3-200 Hz). We
illustrate three example wavelet convolutions (3, 17, 41 Hz). We focus our analyses on two neural signals: (1) HFA, power in wideband
70- to 125-Hz frequencies, which is an established correlate of aperiodic local spiking activity (dashed red line indicates power esti-
mates); and (2) theta oscillations, periodic membrane potential fluctuations in narrowband 3 to 8 Hz frequencies, that are hypothe-
sized to facilitate interregional neuronal interactions (dashed blue line indicates phase estimates). D, We identified task-responsive
electrodes using a non-parametric cluster-based statistical procedure that identified significant task-related power changes in any
contiguous time-frequency interval. We illustrate our method to detect movement-related changes in power (“move”-“wait”) at an exam-
ple electrode (same as C). Time-frequency plots summarizing data across various time and frequency windows (3—200 Hz; centered from
—500 to 1000 ms relative to cue onset). We show average cue-locked power (left, “wait”; center-left, “move”) or cue-locked power differ-
ences (center-right, t statistics comparing “move” and “wait” conditions). Power values have been log transformed and normalized within
frequency (“whitened”). White line indicates cue onset. We obtained non-parametric p values for each time-frequency cluster by compar-
ing effect size to a null distribution of cluster statistics (right). Vertical blue line marks effect size of low frequency power decrease relative
to null distribution, whereas vertical red line marks high frequency power increase. We considered an electrode to be task-responsive if it
showed a significant instruction or movement-related power change in any time-frequency range.

the move-wait comparison or the instruct-wait comparison
(Fig. 1D).

Grouping electrodes based on cue-evoked HFA

We grouped task-responsive electrodes based on HFA
changes in relation to the instruction cue and the move-
ment cue. For each electrode, we measured HFA as
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average z-scored, log-transformed power of wavelets
ranging from 70 to 125Hz (log transform before z-score,
see above, Extracting spectral power). We defined a
baseline interval as the 500 ms before the wait cue. We
performed a paired t test between mean HFA values dur-
ing the 0- to 1000-ms time interval after the instruction
cue and this prewait baseline interval to measure instruc-
tion-evoked HFA. Similarly, we performed a paired t test
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between mean HFA values during the 0- to 1000-ms time
interval after the movement cue and this prewait baseline
interval to measure movement-evoked HFA. We grouped
electrodes based on evoked HFA changes as follows.
First, we identified instruction-related electrodes as
those that showed increased HFA following the inst
ruction cue (t>2.5, p<0.05). Second, we identified
movement-related electrodes as those that showed in-
creased HFA following the movement cue (t>2.5,
p < 0.05), but that did not show instruction-related HFA
increases. Third, we identified “HFA decrease” electro-
des as those that showed decreased HFA either during
the instruction cue or the movement cue (t < —-2.5,
p <0.05). Finally, we labeled all remaining task-respon-
sive electrodes as “HFA null” as they did not show sig-
nificant cue-related changes in HFA during the task.

We selected these grouping criteria as a method to gen-
erally distinguish distinct patterns of local neural activity
observed in this dataset, with the acknowledgment that
specific boundary criteria are arbitrary. We used this data-
driven approach to identify electrode groups rather than a
region of interest analysis because some patterns of local
neural activity might be widely distributed throughout the
brain, and because a particular region might contain dis-
tinct and opposing patterns of neural activity (Ramayya et
al.,, 2015). We grouped electrodes that showed both in-
struction-related and movement-related increases in HFA
as part of the instruction-related group, rather than the
movement-related group. This response pattern likely re-
flects a combination of visually responsive neural popula-
tions (that show increases in activity following both cues)
but may also include preparatory motor populations that
show increased activity during movement instruction and
execution.

Identifying theta oscillations at each electrode

We identified oscillations at each electrode by assess-
ing whether the power spectrum showed narrowband
peaks above the 1/f background activity using a recently
described parametric curve-fitting method (Donoghue et
al., 2020). This approach has two main advantages over
the simpler alternative of averaging power in narrowband
frequency ranges. First, it avoids conflating any potential
oscillatory components with the aperiodic background
component of the power spectrum, which has been
shown to reflect asynchronous neural spiking and noise
(Manning et al., 2009; Ray and Maunsell, 2011; Voytek
and Knight, 2015; Dubey and Ray, 2019). Second, this ap-
proach does not require predefined frequency ranges to
identify oscillatory spectral peaks in the power spectrum
and can account for electrode-to-electrode variability in
the center frequency of oscillations.

To apply this method, we concatenated iEEG data from
each trial during the entire time interval (0-5000 ms follow-
ing the wait, instruction, and move cues) into a single
time series for the entire recording. We computed the
power spectrum of this time series using Welch’s
method for frequencies ranging from 2 to 50 Hz. Briefly,
we fit the aperiodic 1/f background component of the
power spectrum using an exponential function (in log
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power vs linear frequency space) and then fit Gaussian
peaks to the residual “flattened” power spectrum to as-
sess for oscillatory peaks [python fitting oscillations
and one over f (FOOOF) package Donoghue et al.,
2020]. We labeled electrodes as recording theta oscilla-
tions if we observed a spectral peak with a center fre-
quency in the 3 to 8 Hz range.

Measuring pairwise theta phase synchrony between
electrodes

We studied pairwise connectivity between electrode
pairs by measuring theta phase synchrony using methods
similar to a recent study of medial temporal lobe theta
(Solomon et al., 2019).

We used wavelets to extract instantaneous theta phase
for each electrode throughout the task. We convolved the
iEEG signal from each electrode with complex-valued
Morlet wavelets from 3-8 Hz (wave number=5, 6 wave-
lets spaced 1 Hz apart). Each wavelet was convolved with
6000ms of data surrounding the instruction and move-
ment cue (—1000 to 5000 ms surrounding each cue) and
buffered with 1000 ms at the beginning and end of each
segment (clipped after convolution). We averaged phase
values across wavelets (circular mean) resulting in a single
theta phase value for each time sample at each electrode.

For a given pair of electrodes, we measured within-trial
theta phase coupling across time in 1000-ms time inter-
vals spanning the trial epoch. This duration allows for at
least three cycles of a theta oscillation. We focused on
two time intervals that we hypothesized would be impor-
tant for coordinating neural populations for voluntary
movement: the 1000 ms surrounding the instruction cue
and the move cue. We centered each of these time in-
tervals from 250 ms before the cue to 750 ms following
the cue to account for any temporal smearing into the
prestimulus interval from the wavelet convolution. We
also present data from surrounding time intervals using
a sliding window analysis (ranging from —1000ms to
cue, to 1000 to 2000 ms postcue).

For a given time interval, we computed theta phase dif-
ferences between the electrodes for each sample of time.
The null hypothesis states that the distribution of phase
differences across trials between two unrelated signals
should be uniformly distributed on a unit circle. We as-
sessed the non-uniformity (“tightness”) of the distribution
of phase differences for each pair at each time interval by
computing the resultant vector length (RVL; python circ-
stat package, Circular Statistics Toolbox; Berens and
Velasco, 2009). RVL values can range from O (uniform cir-
cular distribution suggesting independent phases) to 1
(non-uniform distribution suggesting high phase cou-
pling). We obtained a RVL value separately for each trial
for the given time interval that we refer to as the “true”
RVL distribution in the section below.

We used a non-parametric resampling procedure to es-
timate the null distribution of RVL values for a given pair of
electrodes as follows. For each iteration, we randomly se-
lected a 1000 ms clip of phase values from each electrode
that had an intact autocorrelation structure but were mis-
matched in trial number and in temporal relation to cue
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presentation. This method ensured that the null distribu-
tion would not be influenced by event-related phase reset
phenomena occurring at both electrodes. First, we ran-
domly select a trial for each electrode, then circularly
shifted each 6000-ms phase clip by a random value, and
then selected a contiguous 1000 ms clip for each elec-
trode. We computed a null RVL value by comparing
phase differences between these random phase clips. We
repeated this procedure 1000 times resulting in a null RVL
distribution for a given electrode pair. To measure the ex-
tent to which phase coupling was greater than expected
by chance during a given time interval, we performed an
unpaired t test between true RVL distribution and the null
RVL distribution. We refer to the resulting t statistics as
“synchrony t statistics” when presenting results, and spe-
cifically refer to “instruction synchrony t statistics” and
“movement synchrony t statistics” for the instruction-re-
lated and movement-related time intervals, respectively.
We computed a t statistic to assess whether the distribu-
tion of RVL values across trials was greater than expected
by chance, rather than the mean RVL value that might be
heavily influenced by a handful of outlier trials.

Statistical tests

We performed ANOVA or Student’s t tests to compare
continuous distributions and y? test to compare cate-
gorical distributions. We performed false discovery rate
(FDR) correction for multiple comparisons (Benjamini
and Hochberg, 1995). We considered an FDR-corrected
p value < 0.05 to be statistically significant. We also oc-
casionally report uncorrected p values as noted. We
performed analyses using MATLAB and Python using
both publicly available packages (e.g., NumPy, for nu-
merical computing; SciPy, for statistics and signal proc-
essing; MNE, for spectral analyses; pycircstat, for
circular statistics; FOOOF, fitting oscillations and one
over f, for power spectrum modeling; and statsmodels,
for regression modeling) and custom code.

To assess whether task-related neural activity differed
in relation to specific movements (left hand vs right hand
vs mouth and tongue), we applied a one-way ANOVA on
the distribution of mean power within the time-frequency
range of the clustered power change at each electrode
(uncorrected p < 0.01).

Data sharing
Behavioral and neural data obtained for this study and
associated code will be made available on request

Code accessibility

The code described in this paper is freely available online
at https://github.com/ashwinramayya/code_RamaEtal20_
sensorymotor.

Results

Identifying task-related electrodes

We obtained iEEG recordings from nine patients as
they performed a simple instructed movement task with
distinct instruction and movement intervals (Fig. 1A). We
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recorded from 490 bipolar electrode pairs across wide-
spread brain regions (Fig. 1B). We excluded 70 electrodes
that showed prominent electrical line noise.

We found that 288 of the remaining electrodes were
task-responsive, in that they showed a spectral power
change in relation to the instruction or movement cue,
which was more frequent than expected by chance (y?
statistic =336, p < 0.001; 23.4 expected based on the 5%
false-positive rate). We identified these power changes
without specifying a time interval or frequency range
using a non-parametric statistical procedure cluster-
based procedure (Maris and Oostenveld, 2007). Briefly,
this method assessed whether an electrode showed con-
sistent cue-related power changes in any contiguous
time-frequency window that were greater in magnitude
than expected by chance. We illustrate this method in
Figure 1B-D using an example electrode from the periro-
landic cortex that showed an increase in HFA and a de-
crease in wideband low-frequency power during the
movement interval as compared with the wait interval
(FDR-corrected p’s < 0.001)

HFA identified distinct neural response functions
throughout the brain

We identified electrodes that were positioned near be-
haviorally relevant neural activity using task-related HFA
changes (70- to 125-Hz power), a known proxy for local
neural firing rates (Dubey and Ray, 2019). At each task-re-
sponsive electrode, we studied how HFA changed follow-
ing the instruction and move cues to estimate the
response function of nearby neural populations. We illus-
trate the high spatial and temporal specificity of HFA by
showing distinct response functions from four nearby
electrodes from an example subject (Fig. 2A). Two elec-
trodes showed large time-locked HFA increases (blue
electrode only during instruction and orange electrode
only during movement). The other two electrodes did not
show large HFA changes (yellow showed a small magni-
tude decrease following instruction and movement,
whereas purple showed no reliable change).

We grouped electrodes based on cue-related HFA
changes to generally distinguish distinct patterns of neu-
ral activity observed in this dataset (Fig. 2C-F). We quanti-
fied the HFA changes at each electrode by using t tests to
compare mean HFA during the 1000 ms following each
cue to a baseline interval (500 ms preceding the wait cue),
resulting in an instruction-related t statistic and a move-
ment-related t statistic. We grouped electrodes into one
of four mutually exclusive groups as follows (HFA elec-
trode groups). First, instruction-related electrodes were
those that showed increased HFA following the instruc-
tion cue (n = 53 electrodes, 7 subjects) (Fig. 2C). Second,
movement-related electrodes were those that showed
only increased HFA following the movement cue (n = 34
electrodes, 6 subjects) (Fig. 2D). Third, HFA decrease
electrodes were those that showed decreased HFA either
following either cue (n = 54 electrodes, 8 subjects) (Fig.
2E). Fourth, HFA null electrodes were task-responsive
electrodes that did not show reliable cue-related HFA
changes (n = 147 electrodes, 9 subjects) (Fig. 2F).
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Figure 2. HFA identifies distinct local neural responses. A, Four example electrodes showing distinct HFA responses during the
task from the same subject. Brain plot illustrates the location of each electrode (purple, blue, and orange are in perirolandic, where-
as yellow is parietal, on the border between postcentral gyrus and superior temporal sulcus). The HFA responses in each of these
electrodes correspond to the average response functions described below. B, Distribution of instruction and movement-related
HFA across all electrodes (see main text for details). We identified four groups of electrodes as follows: (1) Instruction-related elec-
trodes (blue, 53 electrodes, 7 subjects), (2) Movement-related electrodes (red, 34 electrodes, 6 subjects), (3) HFA decrease (yellow,
54 electrodes, 8 subjects), and (4) HFA null (purple, 147 electrodes, 9 subjects). Gray error ellipse marks 95% confidence interval of
bivariate distribution. C-F, Average HFA (z-scores) at each electrode group and their anatomic distributions on brain plots.

HFA electrode groups showed distinct anatomic distri-
butions (Fig. 3). Movement-related electrodes (Fig. 3B)
were heavily clustered in perirolandic regions (n=21/34,
X° statistic =19.8, p < 0.001), whereas instruction-related
(Fig. 3A) and HFA null electrodes (Fig. 3D) were widely
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distributed throughout the brain (y? test, ps>0.15).
HFA decrease electrodes (Fig. 3C) were also wide-
spread but were more frequently observed in parietal
and temporal regions than expected (y? statistic=12.3,
p=0.012).
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Figure 3. HFA electrode groups have distinct anatomic and functional properties. A-D, Anatomical distribution of each group
across five regions of interest (prefrontal, perirolandic, parietal, temporal, and MTL). E, Rates of instruction and movement selectivity
across each electrode group. Dashed horizontal lines indicate the overall frequency of observing an electrode from the specified
group in any brain region (A-D), and the false positive rate of observing selective electrodes (E).

HFA electrode groups also differed in their selectivity
for specific movements (one-way ANOVA comparing
mean activity during left hand vs right hand vs mouth;
Fig. 3E). Movement-related electrodes most frequently
showed distinct neural responses in relation to specific
movements (47.1%, n = 16/34), followed by instruc-
tion-related electrodes (22.6%, n=12/53), and HFA
null electrodes (14.3%, n=21/147; all more frequent
than expected based on 5% false-positive rate,
statistic =22.2, p <0.001). We rarely observed instruc-
tion-related selectivity (y° test, p >0.5)

Theta oscillations are widespread and independent of
HFA

We found that cue-related HFA changes at each elec-
trode were independent of narrowband theta power
(3-8 Hz) after accounting of wideband frequency compo-
nents of the power spectrum (“low-frequency activity,” 2-
to 30-Hz power) using multivariate linear regression (Fig.
4). At each electrode, we measured instruction-related
and movement-related measures of low-frequency activ-
ity and theta power using the same time intervals used to
measure cue-related HFA (Materials and Methods). We
found that movement-related changes in HFA were nega-
tively related to low-frequency activity (t statistic of B
coefficient = —3.68, FDR-corrected p =0.002), but inde-
pendent of theta (p>0.5). Instruction-related HFA
changes were independent of both low-frequency activity
and theta (ps > 0.25).

In a separate analysis, we identified electrodes that
showed theta oscillations using a curve fitting procedure

January/February 2021, 8(1) ENEURO.0252-20.2020

to detect 3- to 8-Hz peaks in the power spectrum beyond
the background 1/f component (wideband low-frequency
changes in the analysis above; Donoghue et al., 2020).
We observed good fits to the power spectra across task-
responsive electrodes (R = 0.99 + 0.012; mean * SD;
Fig. 5A) and observed theta oscillations in 134/288 task-
responsive electrodes (Fig. 5B). These oscillations were
widespread across HFA electrode groups and brain re-
gions (X2 statistic, ps > 0.5; Fig. 5C,D). We focus the re-
mainder of the analyses studying interactions among
these electrodes that recorded theta oscillations.

Pairwise theta synchrony is widespread but
dependent on movement-related HFA

We observed widespread pairwise phase synchrony
between task-responsive electrodes that showed theta
oscillations. For each pair of electrodes, we measured the
extent to which theta oscillations were “coupled” over
time by testing whether theta phase differences were
more consistent than expected by chance. We focused
on two time intervals that we hypothesized as potentially
behaviorally relevant: 250 ms before, and 750 ms follow-
ing, the instruction and movement cues. In each time in-
terval, we quantified the extent to which phase coupling
was greater than expected by chance, resulting in an in-
struction synchrony t statistic and movement synchrony t
statistic. We illustrate our method for quantifying pairwise
theta synchrony using three example electrodes from
perirolandic cortex that were all task-responsive and
showed theta oscillations (Fig. 6). We only included task-
responsive electrodes with simultaneous iEEG recordings
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that both showed theta oscillations (n=1806 electrode pairs, r=0.65, p<0.001; and across subjects, r=0.71,
pairs) p=0.029), suggesting that theta synchrony was generally
We found that average pairwise theta synchrony was  stable throughout each trial and not driven by event-related
greater than expected by chance during both the instruc-  phenomena.
tion and movement intervals (paired t tests on distributions We found that theta synchrony was heavily influenced
of average synchrony t statistics for each subject; instruc- by the physical distance between electrodes in a pair and
tion: tg=4.42, p=0.002; movement: tg=2.5 p=0.037). the similarity in the frequency of theta oscillations de-
We observed significant (p < 0.05) pairwise instruction-inter-  tected at each electrode. In both cases, we observed a
val synchrony in 213/1806 electrode pairs and movement-  supra-linear increase in pairwise synchrony when electro-
interval synchrony in 253/1806 electrode pairs (y° tests, des were closer to each other in physical space and theta
ps < 0.001; n=90 expected by chance during each interval).  frequency (Fig. 7). We observed linear relations between
We also found a positive correlation between theta syn-  pairwise synchrony and log transforms of each of these
chrony during instruction and movement (Pearson r across  measures (Pearson’s r > 0.25, p < 0.001).
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Figure 6. Theta oscillations are more synchronous than expected by chance. A, We illustrate our method for measuring theta phase
synchrony using three example electrodes from the perirolandic cortex (color scheme matched to Fig. 2). Brain plot showing loca-
tions of each electrode and power spectra with green lines marking theta oscillation center frequencies (6.99 Hz in electrode 1,
7.07 Hz in electrode 2, and 4.84 Hz in electrode 3). B, Single trial data raw iEEG data (top, solid lines) and filtered 3- to 8-Hz iEEG
(bottom, dashed lines) from electrode 1 (blue) and electrode 2 (red) during the instruction interval of interest (250 ms before and
750 ms after cue presentation). Polar plots show distribution of theta phase differences during this time interval showing a clustering
around 7. Orange line shows RVL (drawn on unit circle), which measures the non-uniformity or (tightness) of the phase distribution
(RVL=0.9 for this time interval). C, Null distribution of RVL values generated from random resampling of contiguous 1-s phase data
from electrodes 1 and 2. Vertical red lines mark true RVL values from each trial. Blue vertical line marks the mean true RVL distribu-
tion. We quantified the extent to which phase synchrony across trials differed from the null distribution via unpaired t test resulting
in a synchrony t statistic for the time interval. D, We show synchrony t statistics for the interaction between electrodes 1 and 2 sur-
rounding several 1-s time intervals surrounding the instruction cue (—1000 ms before 2000 ms after using a sliding window analysis).
Horizontal axis tick labels indicate the mean of each time window. Red line marks the mean of the instruction interval of interest
(—250 to 750 ms). E, F, Same as C, D for interactions between electrode 1 and electrode 3. We observed significant synchrony be-
tween electrode 1 and electrode 2 (synchrony t statistic =14.9, p < 0.001), but not between electrodes 1 and 3 during the instruction
interval of interest (synchrony t statistic =1.4, p >0.15). G, H, Mean of synchrony t statistics over time across all electrode pairs
(n=1807) during the instruction (G) and movement intervals (H), with red lines marking the instruction and movement intervals of in-
terest. We observed greater synchrony across electrode pairs than expected by chance (see main text for statistics). Width indicates
SEM across electrode pairs. I, We observed positive correlation between instruction synchrony t statistics and movement-related
synchrony t statistics across all electrode pairs.

We found that theta synchrony was positively related to  instruction-related HFA observed at the electrode pair,

movement-related HFA increases after accounting for the
effects of physical distance and theta similarity using mul-
tivariate linear regression. We fit two separate linear mod-
els for the instruction and movement time intervals.
During the instruction interval, we asked whether instruc-
tion synchrony t statistics were dependent on mean

January/February 2021, 8(1) ENEURO.0252-20.2020

whereas during the movement interval, we studied the re-
lation between movement synchrony t statistics and
mean movement-related HFA. In both models, we in-
cluded log-transformed physical distance and log-trans-
formed frequency similarity as additional independent
variables.
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Figure 7. Theta synchrony is heavily influenced by physical distance and similarity in oscillation frequency. A, D, Distributions of
Euclidian distance in MNI coordinate space (mm, A) and differences between center frequency of theta oscillations (D) across elec-
trode pairs. We show the relation between synchrony during the instruction interval and these measures but observed similar rela-
tions during the movement interval (see main text). B, E, Synchrony showed supra linear increases as a function of decreasing
physical distance (B) and decreasing differences in theta center frequencies (E) that were fit by power law functions. C, F,
Synchrony showed linear relations to log transforms of physical distance (C) and differences in theta frequency (F). Dashed red line
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Theta synchrony showed an independent, significant  electrodes) and out-of-group theta synchrony (move-
positive relation to cue-related HFA changes during the  ment-related electrode vs non-movement-related elec-
movement interval (t statistic of B coefficient=2.10, FDR-  trode) relative to the remaining three HFA electrode
corrected p =0.041), but not during the instruction interval  groups during both the instruction (one-way ANOVA by
(p>0.15). During both time intervals, theta synchrony  group, F statistic > 4.9, ps < 0.003, post hoc t test move-
was heavily dependent on physical proximity (t statistic of  ment-related electrodes vs all other groups ts>2.5,
B coefficients >11.1, FDR-corrected ps <0.001) and ps<0.012; Fig. 8) and movement intervals (one-way
theta frequency similarity (t statistic of B coeffici-  ANOVA by group, F statistic > 6.6, ps < 0.001, post hoc t
ents > 7.3, FDR-corrected ps < 0.001). Inapost hoc anal-  test movement-related electrodes vs all other groups
ysis, we found that instruction-related synchrony also  ts>3.43, ps < 0.001, all ps FDR-corrected:; Fig. 8).
showed a weak positive relation with movement-related
HFA (t statistic of B coefficient=1.97, uncorrected
p =0.049). Discussion

Consistent with these results, movement-related elec- We studied iEEG recordings obtained as patients per-
trode group (HFA move) showed increased within-group  formed a simple instructed movement task. Our main goal
theta synchrony (between two movement-related was to test the hypothesis that theta oscillations
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Figure 8. Theta synchrony was greater near movement-related electrodes. We show mean pairwise theta synchrony during the in-
struction (blue) and movement (orange) time intervals in relation to HFA electrode groups. A, Average within-group synchrony for
each group (interactions between electrode pairs where both electrodes were members of the group). B, Average out-of-group syn-
chrony for each group (interactions between electrode pairs where only one electrode was a members of the group). Note the differ-
ent vertical axis range for A, B. Error bars indicate SEM across electrode pairs; * indicates p < 0.05 for post hoc test comparing
movement-related electrodes (HFA move) versus all other groups.
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synchronize regions containing neural populations that
are behaviorally relevant for voluntary movement. We
used HFA (70- to 200-Hz power), a known proxy of local
firing rates, to identify electrodes that were positioned
near neural populations that showed temporally specific
task-related neural activity (Manning et al., 2009; Ray and
Maunsell, 2011; Dubey and Ray, 2019), and studied their
anatomic relation to synchronous theta oscillations.

We found that HFA identified heterogenous neural re-
sponse functions throughout the brain, including distinct
responses from nearby brain regions. These results sug-
gest that HFA is local neural signal akin to measuring mul-
tiunit activity from neural populations near the electrode
(Dubey and Ray, 2019). We grouped electrodes based on
their response functions to study distributed neural popu-
lations that shared activity patterns. We observed two
prominent patterns of HFA increases. First, we identi-
fied instruction-related group that showed temporally
specific increases in activity following the instruction
cue, and second, a movement-related group that
showed temporally specific increases in activity during
movement. Instruction-related electrodes were widely
distributed across regions involved in the ventral visual
stream (occipital, temporal) and goal-directed and
movement-planning networks (prefrontal and perirolan-
dic regions), suggesting a relation to heterogeneous
functions that occur during instruction presentation
(sensory processing, goal-related and movement plan-
ning. On the other hand, movement-related electrodes
were heavily clustered in perirolandic regions, suggest
a prominent sampling of movement-generating neural
processes We most frequently observed neural activity
that distinguished between specific movements (left
hand vs right hand vs mouth/tongue) at movement-re-
lated electrodes, consistent with a role in selecting spe-
cific movements, consistent with prior studies (Crone et
al., 1998, 2006; Miller et al., 2007; Schalk et al., 2008;
Cogan et al.,, 2014; Korzeniewska et al., 2015). We
rarely observed neural activity that distinguished between
specific instructions, which is consistent with recent findings
in non-human primates suggesting that population-level
neural representations of specific movements only emerge
during movement generation (Kaufman et al., 2014; Elsayed
etal., 2016).

A challenge in measuring theta oscillations is that nar-
rowband theta power can conflate periodic theta oscilla-
tions and aperiodic low frequency power changes that are
thought to reflect a distinct underlying neural process
(Voytek and Knight, 2015; Donoghue et al., 2020).
Consistent with this view, we found, via multivariate re-
gression, that movement-related HFA changes were re-
lated to wideband low frequency power decreases, but
independent of theta power. These results are consistent
with a power spectrum “tilt” that has been widely ob-
served in iEEG studies (Miller et al., 2007; Burke et al.,
2015; Solomon et al., 2017), and may be related to “8”
desynchronization that has been observed in scalp and in-
tracranial EEG studies (Murthy and Fetz, 1992; Crone et al.,
1998, 2006; Hari et al., 1998; Ohara, 2002; Jenkinson and
Brown, 2011). However, instruction-related HFA changes
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were not related to wideband low frequency power, sug-
gesting that HFA increases are not always accompanied by
a power spectrum tilt. Further studies are needed to study
the behavioral and structural underpinnings of spectral tilt in
relation to HFA (Voytek and Knight, 2015; Gao et al., 2017;
Herweg et al., 2020).

We observed theta oscillations at widespread electro-
des throughout the brain, independent of local HFA
changes following instruction or movement. We meas-
ured theta oscillations at each electrode by assessing
whether the power spectrum contained narrowband
peaks beyond the background 1/f shape using a recently
described curve-fitting algorithm (Donoghue et al., 2020).
This method allowed us to identify electrodes that
showed periodic theta oscillations beyond asynchronous
low frequency power changes. These results suggest that
theta oscillations reflect a global neural signal, in contrast
to HFA that measures local neural activity.

We found that these theta oscillations showed more
phase synchrony over time than expected by chance. We
measured phase synchrony over time in 1-s intervals
throughout the trial rather than across trials in specific
time windows to measure ongoing oscillations rather than
event-related phenomena (Cohen and Donner, 2013;
although see David et al., 2006). We found that theta syn-
chrony was largely stable throughout each trial suggestive
of ongoing oscillations, and in contrast to HFA that
showed prominent within-trial dynamics.

We focused on phase-phase relations rather than other
connectivity measures such as Granger causality or spec-
tral coherence to mitigate the influence of asynchronous
power correlations on our analyses (Lachaux et al., 1999;
Herweg et al., 2020) and to relate our findings to previous
studies of theta synchrony (Lega et al., 2012; Burke et al.,
2013; Voytek et al., 2015; Solomon et al., 2017, 2019;
Donoghue et al., 2020). In keeping with recent literature,
we define “synchrony” between two signals to imply any
periodically coupled temporal relationship, but not to
imply a phase difference of zero, as would be expected
perfectly coupled oscillators (Mirollo and Strogatz, 1990).
Instead, our definition allows for variable offset phase dif-
ferences as might be expected from multiple uncoupled
oscillators or traveling waves (Zhang et al., 2018).

Theta synchrony showed a linear increase as a function
of logarithmic decreases in physical distance which is
consistent with previous findings (Lachaux et al., 1999)
and may suggest a small-world structure to network inter-
actions (Buzséki, 2006; Bassett et al., 2018). Taken together
with the global distribution of theta oscillations, and slow
fluctuations across trials, these data suggest that theta syn-
chrony may reflect dynamic functional connectivity between
brain regions (Bickel et al., 2018), rather than event related
neural activity. We also observed increased theta synchrony
between electrodes that showed similar theta oscillation fre-
quencies, which is consistent with the view that multiple os-
cillations are multiplexed within the theta frequency range
(Jacobs, 2014).

After accounting for the effects described above, we
found increased theta synchrony involving movement-
related electrodes (that showed movement-related increases
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in HFA). This result supports the view that synchrony between
theta oscillations plays a role in facilitating interactions be-
tween widespread behaviorally relevant neural populations
during action selection (Cavanagh and Frank, 2014; Herweg
et al., 2020). Our results provide an important complement
to recent scalp EEG data showing a behavioral link between
theta oscillations and sensory and motor functions (Tomassini
et al., 2017). By showing that theta oscillations synchronize re-
gions containing neural populations that are active when ini-
tiating instructed movement, our data provide an anatomic
link between theta oscillations and movement-related neural
populations in the human brain. Our data build on a large
body of body of literature linking theta oscillations to human
behavior in various domains, including perception (VanRullen,
2016), attention (Helfrich et al., 2018; VanRullen, 2018), spatial
navigation (Jacobs, 2014), memory (Herweg et al., 2020), and
decision-making (Cavanagh and Frank, 2014), and disease
(Cavanagh et al., 2017; Singh et al., 2018).

In conclusion, we studied intracranial neural recordings
patients with drug-refractory epilepsy performed a simple
instructed motor task. We found that HFA measured dis-
tinct neural responses from nearby neural populations,
suggesting a local signal. In contrast, theta oscillations
were widespread and synchronous, suggesting a global
neural signal. Theta synchrony was increased near neural
populations that showed movement-related increases in
local activity, suggesting that theta oscillations coordinate
distributed neural representations during action selection.

Future directions

Future studies should assess how theta synchrony fluc-
tuates over time in relation to bottom-up arousal systems
(Joshi et al., 2016; Stitt et al., 2018) and top-down cogni-
tive control signals (Cavanagh et al., 2012) during higher
cognitive functions such as learning (Montague et al.,
1996; Ramayya et al., 2015), decision (Gold and Shadlen,
2007) and memory (Ratcliff, 1978), and assess mechanis-
tic interactions to local neural populations via phase am-
plitude coupling (Galifianakis et al., 2013; Helfrich et al.,
2018). Additionally, the application of graph-theoretic
methods may be useful in studying global changes in
theta synchrony in relation to cognitive states (Bassett et
al., 2018).

Limitations

We did not measure reaction times during the task and
have limited ability to relate these neural signals to specif-
ic behavior. We had sparse electrode coverage across
the nine subjects and have a limited ability to make claims
about specific anatomic correlations of the observed neu-
ral responses beyond the region of interest analysis per-
formed in the study. The opportunity to obtain human
intracranial neurophysiology requires studying patient
populations that may show systematic differences in neu-
ral structure and function relative to healthy individuals. In
this case, increased functional connectivity from epilepsy
(Bettus et al., 2008) may contribute to overestimating
theta synchrony. However, it is unlikely to explain the HFA
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results, or the relation between theta synchrony and
movement-related HFA.
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