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Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic
tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric
diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease
models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms
(“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement
requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications
within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation
(LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-
D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation
technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since
the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its
mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.

1. Introduction

Transcranial direct current stimulation (tDCS) is a noninva-
sive brain stimulation technique that promotes transient
polarity-dependent changes in spontaneous neuronal activ-
ity. This effect is mediated by the application of constant
low-amplitude electrical currents using epicranially posi-
tioned electrodes above a specific brain region of interest
[1-4]. The therapeutic use of low-amplitude electrical cur-
rents has a long historical track. Accordingly, both Greeks
and Romans used electric torpedo fishes for migraine treat-
ment, and in the 11 century, a similar therapeutic proce-
dure was attempted to handle epilepsy [5]. In the 19™

century, the application of galvanic currents was attempted
to heal melancholia [6]. Over the years, the scientific commu-
nity interest in brain stimulation grew, and several noninva-
sive brain stimulation techniques were developed such as
tDCS, deep brain stimulation, or transcranial magnetic stim-
ulation. The epicranial application of direct currents pro-
motes a weak electric field force and produces neuronal
membrane potential changes [7, 8]. These alterations occur
through sodium and calcium currents [1] modulating spon-
taneous neuronal activity [2]. The consequent regional neu-
ronal inhibition or excitation depends on the applied current
polarity [9, 10]. So, it was overall observed that cathodal cur-
rents produce inhibitory effects, and thus hyperpolarization,
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whereas anodal currents increase excitability in the form of
depolarization [2, 11] (Figure 1).

There is nowadays an ongoing discussion regarding the
factors that interfere with tDCS outcomes. The initial brain
resting state of each subject [12], his/her baseline perfor-
mance [13], specific individual variations in brain tissue
morphology [14], or even more particular details from the
experimental design or stimulation protocol used [15]
influence these outcomes. In vivo and in vitro studies are
consensual to demonstrate that tDCS-modulated cortical
excitability depends on several stimulation parameters, such
as duration and frequency of stimulation [16]; polarity,
intensity, and density of the applied current [17, 18]; and
electrode size and position in the scalp [18-20]. Despite that,
beneficial effects of tDCS in several brain disorders, such as
PD [21, 22], depression [23], stroke [24, 25], or autism [26,
27], have been documented, and there is growing evidence
proposing tDCS application in multiple other disease condi-
tions affecting cognition and neuroplasticity mechanisms.

Both preclinical and clinical studies have demonstrated
therapeutic effects of tDCS. Indeed, in human studies, anodal
tDCS applied intermittently in the prefrontal cortex (PFC)
during slow-wave sleep period, improved recall of declarative
memories (word pairs). The authors correlated these findings
with enhancement of slow oscillatory electroencephalogram
(EEG) activity (<3Hz, delta (§) waves), responsible for
neuronal plasticity facilitation [28]. Also, anodal tDCS over
dorsolateral prefrontal cortex (DLPFC) improved working
memory in PD patients and in major depression patients by
boosting cortical excitability [21, 23]. Accordingly, preclini-
cal animal studies reported that cortical anodal tDCS
improved spatial memory in both wild type (WT) [29] and
the AD rat model [30]. Beneficial effects were also found dur-
ing the early stage of traumatic brain injury (TBI) [31] and
following a pilocarpine-induced status epilepticus in normal
rats [32]. Moreover, improvements were also reported con-
cerning short-term memory in an animal model of attention
deficit hyperactivity disorder (ADHD) [33].

The molecular mechanisms underlying the tDCS-
mediated cognitive improvements and neuroplasticity pro-
cesses have become the focus of recent interest. Accordingly,
tDCS modulation over several cognition-related plasticity
genes and their signaling pathways has been studied. In this
review, we provide a state of the art on the application of
different protocols of tDCS in animal models highlighting
its effectiveness on neuroplasticity mechanisms and, conse-
quently, their related learning and memory processes. Since
the published systematic reviews focused on human applica-
tion of tDCS, here, we provide a comprehensive revision of
the effect of tDCS in in vivo rodent models of normal and
pathological brain functioning.

2. Methods

2.1. Data Sources and Search. Studies included in this review
were identified by searching PubMed. The search was run
until 31 October 2019. The search terms were (“transcranial
direct current stimulation”) AND (mice OR mouse OR ani-
mal). Articles were firstly assessed based on their abstracts
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and titles, aiming to include studies that reported applying
tDCS to cognitive impairment in animal models. Simulta-
neously, the following exclusion criteria were adopted to
reject studies: (1) not written in English; (2) performing
reviews; (3) in human subjects; (4) in vitro models; (5)
employing other brain stimulation techniques (e.g., transcra-
nial magnetic stimulation (TMS), deep brain stimulation
(DBS), or transcranial alternating current stimulation
(tACS)); and (6) not explicitly describing the tDCS protocol
(stimulation area, number of sessions, frequency, intensity,
and pattern).

2.2. Data Extraction. A data extraction sheet was developed
seeking to retrieve relevant information from each study,
namely, study design, sample size, animal model, whether
additional therapy was performed, details of the tDCS proto-
col, outcome measures, and behavioral results.

2.3. Study Selection. The database search was elaborated
according to the PRISMA statement requirements [34]. 404
records were found, which underwent a preliminary screen-
ing (of titles and abstracts), with 314 records being excluded
because they did not meet the eligibility criteria. After the
full-text analysis of each of the 90 individual articles, 44
rodent studies focusing on tDCS effects over cognition and
neuroplasticity in both healthy and neuropathological animal
models were selected (Figure 2).

3. Results

3.1. Role of Anodal tDCS in Cognition Processing in Healthy
Animals. In healthy animals, studies demonstrated memory
improvement in association with induction of synaptic
plasticity mechanisms. In fact, tDCS to prefrontal cortex
improved monkey’s performance on an associative learning
task by altering low-frequency oscillations and functional
connectivity, both locally and between distant brain areas
[35]. Regarding rodent models, data are controversial regard-
ing fear condition. Right frontal anodal tDCS administered
24 h before behavioral task did not alter contextual and audi-
tory learning and memory [36]. Additionally, another study
described that while the anodal stimulation did not affect fear
retrieval, posttraining cathodal stimulation improved fear
memory retrieval [37, 38]. However, left prefrontal anodal
and cathodal tDCS impaired the acquisition of both contex-
tual and cued fear memory, which could be explained by
activity modulation of deep structures such as the amygdala
and hippocampus [39].

Concerning learning and memory, de Souza Custddio
and colleagues [29] reported better spatial working memory
performance following administration of anodal currents to
the medial prefrontal cortex (mPFC). In agreement, it was
described that administration of hippocampal anodal tDCS
improves learning and memory in the Morris water maze
and novel object recognition tests [40]. Moreover, memory
performance in the passive avoidance learning task was
enhanced by anodal stimulation [41]. Also, cortical cathodal
stimulation together with visuospatial memory training led
to cognitive improvement [42].
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FiGure 1: Illustration of transcranial direct current stimulation in the mice. Anodal stimulation depolarizes the neuronal membrane and
enhances excitability. On the other hand, cathodal stimulation hyperpolarizes the neuronal membrane and decreases excitability.

# of records identified through
Pubmed database searching: 404

# of records screened: 404

A 4

# of full-text articles
assessed for eligibility: 90

A 4

# of rodent studies included
in the qualitative synthesis: 44

# of records excluded: 314
(i) 220 reviews and methods
(ii) 8 in vitro studies
(iii) 36 human studies
(iv) 50 studies regarding other
brain stimulation techniques
(e.g., TMS, DB and tACS)

FIGURE 2: Search flow diagram (in accordance with PRISMA statement). Abbreviations: DB: deep brain stimulation; tACS: transcranial
alternating current stimulation; TMS: transcranial magnetic stimulation.

The revised in vivo animal model studies regarding tDCS
effects in memory and cognition of healthy animals are listed
below in Table 1.

3.2. Beneficial Role of tDCS in Brain Diseases. Overall, reports
using animal models of brain diseases described a beneficial
role of tDCS in the mitigation of memory symptoms of neu-
rologic conditions such as Alzheimer’s disease (AD) or trau-
matic brain injury (TBI). More recent studies demonstrated

that tDCS rescued AD-related cognitive symptoms, namely,
spatial memory and motor skills [30, 43, 44]. The repetitive
stimulation with anodal tDCS in the AD-like dementia rat
model reduced the time interval animals needed to reach
a food pellet and also decreased the number of errors in
the attempt [43]. The same research group showed later
that the abovementioned protocol rescued spatial learning
and memory in a Af, , -lesioned AD rat model [30].
Moreover, the impact of tDCS on cognitive performance
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of streptozotocin-induced diabetic rats has been evaluated.
Both anodal and cathodal stimulations in the prefrontal
cortex restored memory impairment [45, 46] together with
restoration of LTP [45]. Other authors evaluated the poten-
tial therapeutic effects of tDCS in memory impairment in
an animal model of ADHD. It was found that this neuro-
modulation technique was able to improve short- and
long-term memory deficits in the spontaneous hypertensive
rats (SHR) but not in their control, Wistar Kyoto rats [33,
47]. In addition, no changes were detected in working
memory of these control rats following administration of
tDCS [47].

Anodal tDCS also ameliorated behavioral and spatial
memory function in the early phase after TBI when it was
delivered two weeks postinjury. However, earlier stimulation
only improved spatial memory [31]. In a later phase of TBI, it
was possible to observe motor recovery as well as spatial
memory improvement following repeated anodal tDCS
[48]. A growing number of studies has been reporting prom-
ising effects of neurostimulation in models of addictive disor-
ders, by reducing craving and maladaptive pervasive learning
[49]. In fact, repeated anodal stimulation in mouse frontal
cortex decreased nicotine-induced conditioned place prefer-
ence and further improved working memory [50]. Same
polarity currents also could prevent cocaine-induced loco-
motor hyperactivity and place preference conditioning [51].
In addition, it has been reported that cathodal stimulation
has an anticonvulsive effect [16, 32, 52-54]. Indeed, the
administration of hippocampal tDCS rescued cognitive
impairment by reducing hippocampal neural death and
supragranular and CA3 mossy fiber sprouting in a lithium-
pilocarpine-induced status epilepticus rat [32]. Other neuro-
plastic effects were evidenced in the reversion of motor
symptoms in PD by tDCS administration. The application
of anodal currents enhanced graft survival and dopaminergic
re-innervation of the surrounding striatal tissue and pro-
nounced behavioral recovery [55].

Despite the fact that many studies reported recovery from
memory deficits following tDCS stimulation, there are some
opposing reports in animal models of disease affecting cogni-
tion. In a recent study from Gondard and collaborators using
a triple transgenic (3xTg) mouse model of AD, it was evi-
denced that a neurostimulation was not able to ameliorate
memory symptoms [56]. To reconcile this discrepancy, pre-
vious authors have suggested the importance of choosing
an optimal current intensity in order to modulate cortical
excitability since LTP alterations were dependent on current
intensity [57].

The reports regarding tDCS effects in cognition and
memory in animal models of brain disease are listed in
Tables 2 and 3.

3.3. Effect of tDCS on Cellular and Molecular Neuroplasticity
Mechanisms. Neuronal network reorganization underlies
neuroplasticity processes like developmental synaptogenesis,
or neurogenesis and synaptic turnover later on, which ulti-
mately contributes to optimal brain development and aging,
as well as functional recovery upon trauma [58]. Interest-
ingly, several reports using genetic engineered animals, phar-
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macologically induced animal models of disease, or in vitro
techniques enlightened the potential of direct current stimu-
lation (DCS) to interact with a myriad of neuroplasticity-
related processes such as neuroinflammation [59, 60], neural
stem cell migration [59], neurite growth [61], or neurogen-
esis [62]. Moreover, both human and in vivo animal studies
evidenced a tDCS-induced effect on memory and learning
[28, 35, 63]. However, the underlying cellular and molecular
mechanisms remain to be elucidated.

3.3.1. Modulation of the Excitatory/Inhibitory Network. To
date, animal experimental evidence highlighted tDCS influ-
ences on synaptic plasticity, through alterations in the
functional connectivity of cognition-related areas [35] and
by modulation of excitatory/inhibitory network tonus
[64], which may involve both the GABAergic and gluta-
matergic systems. Accordingly, a study conducted with
older adults remarked an anodal stimulation effect in
gamma-aminobutyric acid (GABA) levels [65]. Similarly, in
human healthy volunteers, an anodal tDCS effect in motor
learning was correlated with a decrease in GABA levels, an
outcome known to be a determinant factor in the promotion
of long-term potentiation- (LTP-) dependent plasticity and
therefore learning [66, 67].

Several preclinical studies probed LTP enhancement fol-
lowing direct current stimulation. Anodal DCS enhanced
LTP in both mouse cortex [68] and rat hippocampal slices
[69, 70]. Further, this neurostimulation method increased
local field potential (LFPs) amplitudes in primary somato-
sensory cortex of rabbits [63]. Also, other works demon-
strated that neurostimulation-enhanced hippocampal LTP
was associated with better spatial memory performance
along with an increase in brain-derived neurotrophic factor
(BDNF) expression levels [40]. An opposite effect on LTP
and LFPs was obtained with administration of cathodal cur-
rents. In agreement, a report from Sun et al. [71] evidenced
that cathodal currents applied in mouse neocortical slices
induced field excitatory postsynaptic potential depression.
This type of LTD was smothered by application of an
mGluR5 negative allosteric modulator [72]. These findings
support a possible modulatory effect of tDCS on mGluR5-
mTOR signaling [72]; these molecular pathways are recog-
nized to disturb cognition-related synaptic plasticity.

Further evidence supporting tDCS effect on LTP-like
mechanisms was recently brought to light by Stafford et al.
[73]. These authors observed that a single anodal tDCS
increased both the phosphorylation at the S831 of GluAl
subunit and the translocation of a-amino-3-hydroxy5-
methyl-4-isoxazole propionic acid receptors (AMPARs)
from cytosolic to synaptic fractions in the hippocampus.
These data could be favoring learning enhancement, as this
translocation has been associated with hippocampal LTP
induction [72]. Accordingly, others reported a spatial work-
ing memory enhancement after anodal stimulation over left
medial PFC that was lost with the administration of the
AMPAR antagonist perampanel (PRP). In contrast to
cathodal currents, anodal currents enhanced intracellular
calcium (Ca**) intake in cell cultures including astrocytes
[74-76], a process associated with AMPAR phosphorylation
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Neural Plasticity

nd trafficking to postsynaptic density [77] and ultimately,
allowing LTP facilitation, a cellular correlate of learning
and memory.

3.3.2.  Activation of Neuroplasticity-Associated Gene
Expression. Neurostimulation could have long-lasting effects
in memory as data from different studies evidenced [40].
Authors have been argued that tDCS cognition modulation
is associated with neuroplasticity-associated gene expression
alterations [78]. One of the neuroplasticity-associated genes,
known to be essential for hippocampal LTP, is BDNF [79].
Several studies elucidated the role of BDNF in memory mod-
ulation by tDCS. In fact, it was reported that anodal currents
could increase BDNF expression [68], and its activation via
tropomyosin receptor kinase (Trk) receptors [80], triggering
NMDAR opening, and inducing a later phase LTP (L-LTP)
facilitation [81]. Accordingly, Yu et al. [41] found that the
administration the Trk inhibitor ANA-12 prevented the
anodal tDCS-induced hippocampal CA1 LTP increase. Other
studies, using the same polarity currents, revealed a link
between the upregulation of BDNF and cAMP response ele-
ment binding protein/CREB-binding protein (CREB/CBP)
[40] involved in LTP and memory formation [82]. Also, the
application of cortical anodal currents in frontal cortex was
able to upregulate BDNF together with striatal dopamine
[33]. The upregulation of BDNF following neurostimulation
was associated with the augmentation of expression levels of
immediate early genes (IEGs), such as c-fos and zif268 [69].
Moreover, Kim et al. [78] confirmed that repetitive anodal
tDCS in right sensorimotor cortex of healthy rats promoted
a significant increase of mMRNA levels of plasticity-
associated genes, namely, BDNF, cAMP response element
binding protein (CREB), synapsin I, Ca®*/calmodulin-
dependent protein kinase II (CaMKII), activity-regulated
cytoskeleton-associated protein (Arc), and c-fos. It was also
demonstrated that sensory evoked cortical responses were
boosted after tDCS via alpha-1 adrenergic receptor-
mediated astrocytic Ca**/IP3 signaling, thus involving also
glia and the adrenergic system [75]. Anodal tDCS actions
in glia were further confirmed by Mishima et al. [76]. Using
a mouse model lacking Ca** uptake in astrocytes, the inositol
trisphosphate receptor type 2 (IP3R2) knockout (KO) mouse
and also an adrenergic receptor antagonist, they confirmed
decreased microglia motility along with soma enlargement
in tDCS stimulated animals [76].

In poststroke recovery, it was found that anodal currents
significantly increased the GAP-43 and the microtubule-
associated protein 2 (MAP-2) expression around the infarct
area [56]. These neuronal growth-promoting proteins are
overexpressed during dendritic remodeling and axonal
regrowth throughout the acute phase of stroke [83, 84].
Anodal stimulation also modulated pannexin-1 (PX1) hemi-
channel levels [85, 86] and, following an ischemic insult, neu-
rostimulation decreased rat PX1 mRNA and, consequently,
augmented dendritic spine density in the surrounding areas
of cerebral infarction; these cellular outcomes were associ-
ated with the improvement of motor function [85]. Some
authors proposed that tDCS-induced improvement of stro-
ke/TBI symptoms might be due to increase of BDNF expres-
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sion and associated with choline/creatine ratios in the
perilesional cortex [31].

Opverall, tDCS methodology was able to modulate molec-
ular pathways involved in the regulation of cognition-related
synaptic plasticity mechanisms (Figure 3). The revised in vivo
animal studies regarding tDCS-induced effects in the cellular
and molecular mechanisms of memory and learning are
listed in Table 4.

4. Discussion

This systematic review collected several studies that confirm
the potential effects of tDCS on neuronal activity and synap-
tic plasticity. Here, we documented a variable combination of
stimulation protocols, stimulation areas, and healthy and dis-
ease animal models. Most of the existent literature is focused
on human application of tDCS. The comprehensive revision
of the effect of tDCS on rodent models of normal and patho-
logical brain functioning does therefore provide a novel con-
tribution to the field. Overall, the revised studies indicated
that tDCS was able to modulate synaptic plasticity and, con-
sequently, learning and memory processes [87, 88].

Memory formation and consolidation are recognized to
rely on activity-dependent modifications, such as LTD and
LTP [89], both dependent on the activation of calcium-
dependent kinases (e.g., CaMKs), which in turn control the
trafficking of NMDARs and AMPARs [90]. Despite the wide
set of stimulation protocols, tDCS-induced modulation of
NMDAR signaling and synaptic protein upregulation result-
ing in LTP and cognitive enhancement have been consis-
tently reported in animal studies. Anodal tDCS increased
AMPAR synapse translocation [73, 89] and induced spatial
memory improvement by involving both CREB and BDNF
expression alterations [53]. Also, an increase in hippocampal
and cortical mRNA levels of c-fos, synapsin, CaMKII, and
Arc was observed poststimulation [78].

Similar results highlighting tDCS effects in neuroplasti-
city were obtained with in vitro studies. Accordingly, Ranieri
and coworkers [69] probed that anodal currents increased
NMDAR-dependent LTP in hippocampal CA3-CA1 synap-
ses [69], in part, due to production of BDNF [68]. In addi-
tion, it was demonstrated that tDCS-induced hippocampal
BDNF release is dependent on histone acetylation of BDNF
gene promoters [40]. Overall, the abovementioned works
provide positive evidence for the effect of tDCS on cognitive
function enhancement.

Although tDCS impaired the acquisition of both contextual
and cued fear memory [39], there are no studies on possible
cascades/proteins involved in tDCS-induced neuroplasticity
alterations following fear memory changes. Nevertheless, a
very recent paper demonstrated chronic repetitive TMS of
the ventromedial prefrontal cortex reversed stress-induced
behavior impairments with an increase of c-fos activity [91].

Cortical anodal currents have been shown to be mostly
excitatory and support memory enhancement and neuro-
plasticity. The literature is also consistent with the notion
that the stimulation over the cortical region functionally
involved in a certain cognitive task increases performance
in that specific task. Marshall et al. demonstrated that anodal
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FIGURE 3: Schematic illustration of molecular mechanisms underlying the effect of anodal transcranial direct current stimulation (tDCS) on
neuronal physiology. The neurostimulation in the target cortical area depolarizes neuronal membrane and glutamate released in presynaptic
neuron and binds in NMDA and AMPA receptors (see book chapter Rozisky et al., 2015). Consequently, there is intracellular Ca*"
upregulation in the postsynaptic neuron, which can activate protein kinases that in turn modulate numerous neuronal signaling pathways
(such as the mTOR pathway) leading to transcriptional changes. The tDCS also activates molecular cascades to promote BDNF
production. As a long-term mechanism, gene transcription is modulated leading to the formation of new proteins that in turn lead to
facilitation of LTP and improvement of cognition. Abbreviations: AMPA: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF:
brain-derived neurotrophic factor; CBP: CREB-binding protein; CREB: cAMP response element binding protein; GSK3: glycogen synthase
kinase 3; LTP: long-term potentiation; mTOR: mammalian target of rapamycin; NMDA: N-methyl-D-aspartate; TrkB: tropomyosin

receptor kinase B.

currents over the PFC, a region involved in memory encod-
ing, during slow wave sleep improved declarative memory
[28]. However, it was described that cortical cathodal stimu-
lation simultaneously with training task was able to increase
visuospatial working memory, in spite of the fact that it was
associated with decreased excitability [42]. This suggests that
modulatory effects of tDCS were influenced by the polarity-
dependent electrical dynamics established between the stim-
ulated area and its related neuronal networks. In agreement,
a recent report observed an inhibitory effect in motor learn-
ing tasks following anodal currents in the cerebellum; the
anodal excitatory effect over the Purkinje cell activity led
to an overall inhibition of downstream structures, reducing
as a result the vestibulo-ocular reflex gain [90]. Similar par-
adoxical results have been observed in humans. Recently,
Moliadze and collaborators [92] reported that tDCS-
induced neural modulation depended on several parame-
ters, namely, the age. In fact, an excitatory effect was seen
in young subjects, but not in the older participants.
Nowadays, TMS, another important noninvasive brain
stimulation technique, is useful for evaluating excitability in
the primary motor cortex (M1) and conductivity along the
cortical-spinal tract. This technique has been amply used in
rehabilitation of stroke patients [93] and in neuropsychiatric

disorders, namely, depression [94]. tDCS and TMS are
undergoing the most active investigation and share a capacity
to modulate regional cortical excitability, and both are well-
tolerated by children and adults [95]. However, TMS has
been already approved for clinical use and tDCS is still
undergoing investigation as a plausible therapy for a range
of neuropsychiatric disorders [95]. The rational, in part, for
this is because data on the efficacy and safety of tDCS are
sparse and employ heterogeneous stimulation protocols.
Indeed, there is a paucity of strictly conducted randomized,
sham controlled clinical trials, and case considerable follow-
up periods, which makes it difficult to use these results to
inform clinical practice concerning the putative beneficial role
of tDCS. Moreover, tDCS effects seem to be clearly dependent
on structure, connectivity, and function of the target brain
region. Importantly, these outcomes were intrinsically corre-
lated with GABAergic neurotransmission which raises the
issue that one has to take into account that during develop-
ment GABA can act as an excitatory neurotransmitter [96].

5. Conclusions

There is growing evidence that tDCS modulates brain activity
and, consequently, enhances synaptic plasticity and cognitive
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Neural Plasticity

performance. Overall, reports from laboratory animal
research present tDCS as a promising noninvasive brain
stimulation technique. The presented evidence is therefore
consistent with human studies suggesting that this technique
is useful to mitigate neurologic symptoms of several brain
disorders, thus improving learning and memory. Further
research is needed so that this technique can be fully trans-
lated into optimal therapeutic strategies.
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