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Abstract

The availability of accurate and fast artificial intelligence (AI) solutions pre-

dicting aspects of proteins are revolutionizing experimental and computational

molecular biology. The webserver LambdaPP aspires to supersede PredictPro-

tein, the first internet server making AI protein predictions available in 1992.

Given a protein sequence as input, LambdaPP provides easily accessible visual-

izations of protein 3D structure, along with predictions at the protein level

(GeneOntology, subcellular location), and the residue level (binding to metal

ions, small molecules, and nucleotides; conservation; intrinsic disorder; sec-

ondary structure; alpha-helical and beta-barrel transmembrane segments;

signal-peptides; variant effect) in seconds. The structure prediction provided by

LambdaPP—leveraging ColabFold and computed in minutes—is based on

MMseqs2 multiple sequence alignments. All other feature prediction methods

are based on the pLM ProtT5. Queried by a protein sequence, LambdaPP com-

putes protein and residue predictions almost instantly for various phenotypes,

including 3D structure and aspects of protein function. LambdaPP is freely

available for everyone to use under embed.predictprotein.org, the interactive

results for the case study can be found under https://embed.predictprotein.org/

Tobias Olenyi and Céline Marquet have equal first authorship.

Christian Dallago and Burkhard Rost have equal senior authorship.

Received: 4 August 2022 Revised: 9 November 2022 Accepted: 21 November 2022

DOI: 10.1002/pro.4524

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.

Protein Science. 2023;32:e4524. wileyonlinelibrary.com/journal/pro 1 of 11

https://doi.org/10.1002/pro.4524

https://orcid.org/0000-0002-6315-0458
https://orcid.org/0000-0002-8691-5791
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0001-6103-3306
https://orcid.org/0000-0002-3957-412X
https://orcid.org/0000-0001-8533-8163
https://orcid.org/0000-0001-8637-6719
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0003-0179-8424
mailto:lambda@rostlab.org
http://embed.predictprotein.org/
https://embed.predictprotein.org/o/Q9NZC2
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/pro
https://doi.org/10.1002/pro.4524


o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/

sacdallago/embed.predictprotein.org), and can be freely used and distributed

under the academic free use license (AFL-2). For high-throughput applications,

all methods can be executed locally via the bio-embeddings (bioembeddings.

com) python package, or docker image at ghcr.io/bioembeddings/bio_

embeddings, which also includes the backend of LambdaPP.
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1 | INTRODUCTION

1.1 | PP protein prediction since dawn of
internet

Launched 30 years ago, the PredictProtein (PP) web
server provides a comprehensive interface for protein
sequence analysis (Bernhofer et al., 2021; Rost
et al., 1994; Rost & Sander, 1992; Yachdav et al., 2014).
As the first internet server for predicting aspects of pro-
tein structure and function, it offers a broad overview of
predicted features. Among many innovations, PP intro-
duced the combination of evolutionary information
(EI) from multiple sequence alignments (MSAs) and
machine learning (Rost & Sander, 1993), a subset of arti-
ficial intelligence (AI), for protein prediction. Nature's
2021 method of the year (Marx, 2022), AlphaFold2
(Jumper et al., 2021), peaked the innovation by essen-
tially solving the protein structure prediction problem
with models approaching experimental high-resolution,
inspiring a new era of advancing methods (Ahdritz
et al., 2021; Baek & Baker, 2022; Mirdita et al., 2022) and
their application (Cardim-Pires et al., 2021; Kouba
et al., 2021; Zhao et al., 2021). AlphaFold2 came when
more sequences than ever before (2.1 billion proteins in
BFD; Steinegger & Söding, 2018) met new AI-optimized
algorithms and hardware. PredictProtein and AlphaFold2
work great in their domains and integrating both might
help in enabling experts and novices alike to experiment,
hypothesize, and generate novel insights quickly.

1.2 | EI + AI top, but not without
caveats

Since the release of PredictProtein, the amount of non-
annotated sequences has been rapidly increasing (Rost &
Sander, 1996; Steinegger & Söding, 2018). In fact, the
sequence-annotation gap continues to grow despite

experimental advances, e.g., experimental residue bind-
ing annotations are currently added for only two
sequence-unique proteins per month for any organism
and any ligand (Littmann, Heinzinger, Dallago,
Weissenow, et al., 2021). AI models mitigate this gap.
Until 2020, almost all state-of-the-art prediction methods
had implemented the concept introduced by PP, namely
inputting MSAs into AI. Although super-fast tools relying
on algorithmic and hardware advances sped up MSA
generation (Buchfink et al., 2021; Mirdita et al., 2019),
bio-databases continue outgrowing the pace at which
computer hardware accelerates (Moore, 1965; Steinegger
et al., 2019; Theis & Wong, 2017). This challenge cannot
be resolved by advancing computers. On top, MSAs are
not always informative, especially for small sequence
families, or proteins of the Dark Proteome (Perdigao
et al., 2015).

1.3 | Protein language models (pLMs)
solving problems?

Developments in representation learning (Bengio
et al., 2013), particularly in natural language processing
(Chowdhary, 2020), let to encoding latent protein infor-
mation including aspects of evolutionary information.
Protein language models (pLMs) based on deep learning
large sets of unannotated sequences to generate numeri-
cal representations (embeddings) (Bepler & Berger, 2019;
Elnaggar et al., 2021; Heinzinger et al., 2019; Madani
et al., 2020; Ofer et al., 2021; Rives et al., 2021). Embed-
dings from pLMs have been successfully used as input to
downstream protein prediction tools (Bileschi et al., 2022;
Heinzinger et al., 2022; Hie et al., 2022; Littmann, Bordin,
Heinzinger, Schütze, et al., 2021; Littmann, Heinzinger,
Dallago, Olenyi et al., 2021; Littmann, Heinzinger, Dal-
lago, Weissenow, et al., 2021; Marks et al., 2021; Marquet
et al., 2021; Meier et al., 2021; Singh et al., 2022; Stärk
et al., 2021; Weissenow et al., 2022; Zhou et al., 2020).
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Some pLM-based methods still appear inferior to top
MSA-based methods (Elnaggar et al., 2021; Littmann,
Heinzinger, Dallago, Olenyi, et al., 2021; Weissenow
et al., 2022), others bested those (Almagro Armenteros
et al., 2017; Bepler & Berger, 2021; Elnaggar et al., 2021;
Høie et al., 2022; Ilzhoefer et al., 2022; Lin et al., 2022;
Littmann, Heinzinger, Dallago, Weissenow, et al., 2021;
Marquet et al., 2021; Stärk et al., 2021). Performance has
risen so much that sequence-specific pLM-based predic-
tions now can capture some aspects of structural and
functional dynamics better than much more accurate
family-averaged solutions even from AlphaFold2 (Lin
et al., 2022; Weissenow et al., 2022; Wu et al., 2022).

1.4 | pLM-based protein predictions for
the web

Thirty years ago, PredictProtein offered the first access to
a variety of MSA-based AI solutions. Similarly, Lamb-
daPP now makes state-of-the-art solutions for
embedding-based predictions available. The server out-
puts predictions for the entire query protein (per-protein)
and for each of its residues (per-residue, Figure 1). All
results are linked to 3D structure visualizations, currently
retrieved from the AlphaFold Database (release
4, 07/2022 created using AlphaFold Monomer v2.0 pipe-
line) (Varadi et al., 2022) or if unavailable predicted using
ColabFold (v2.1.14) simplifying AlphaFold2 at similar
performance (Mirdita et al., 2022). Currently the only
non-pLM method in the LambdaPP frame, it will soon be
complemented by pLM-based solutions (Lin et al., 2022;
Weissenow et al., 2022; Wu et al., 2022). As novel AI tools

leveraging embeddings emerge, e.g., predicting CATH
(Sillitoe et al., 2021) classes (Heinzinger et al., 2022),
LambdaPP will be updated to extend its breadth. All fea-
ture prediction methods integrated into the LambdaPP
webserver currently use ProtT5 (Elnaggar et al., 2021)
that, in our hands, outperformed ESM-1b (Rives
et al., 2021) and others (Alley et al., 2019; Bepler &
Berger, 2019; Elnaggar et al., 2021; Heinzinger
et al., 2019) for numerous applications (Bernhofer &
Rost, 2022; Heinzinger et al., 2022; Littmann, Bordin,
Heinzinger, Schütze, et al., 2021; Littmann, Heinzinger,
Dallago, Olenyi, et al., 2021; Littmann, Heinzinger, Dal-
lago, Weissenow, et al., 2021; Marquet et al., 2021; Stärk
et al., 2021; Weissenow et al., 2022). This consistency also
increases speed as the generation of embeddings becomes
a limiting step.

2 | RESULTS

2.1 | Access of server

All methods are available through embed.predictprotein.
org where users submit amino acid sequences up to 2000
residues. This limit speeds-up response-time (embedding
computation is non-linear in protein length). Formats
currently handled are: FASTA sequence, UniProt acces-
sion number, UniProt protein name (The UniProt
Consortium et al., 2021), or a string of residues (“AA for-
mat”). Results are displayed immediately if cached, if not
they are computed on the fly within seconds for pLM-
based methods. There is no queuing system, as it takes
longer to generate the display items on the frontend than

FIGURE 1 LambdaPP pipeline. Starting with an amino acid sequence, LambdaPP orchestrates the prediction of (1) protein structure

using ColabFold (Mirdita et al., 2022), (2) per-protein features: gene ontology (GO) annotations using goPredSim (Littmann, Heinzinger,

Dallago, Olenyi, et al., 2021), subcellular location using LA (Stärk et al., 2021); (3) per-residue features: binding residues using

bindEmbed21DL (Littmann, Heinzinger, Dallago, Weissenow, et al., 2021), conservation using ProtT5cons (Marquet et al., 2021), disorder

using SETH (Ilzhoefer et al., 2022), secondary structure using ProtT5-sec (Elnaggar et al., 2021), helical and barrel transmembrane

(TM) regions using TMbed (Bernhofer & Rost, 2022); and (4) variant effect scores using VESPAl (Marquet et al., 2021).
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to compute the predictions in the backend. Protein 3D
structures are fetched from the AlphaFold Database
(Varadi et al., 2022) when inputting UniProt accessions,
or predicted by ColabFold (Mirdita et al., 2022) through a
first come, first serve queue (completing within 30 min for
protein with 350 residues). Due to limited GPUs, Colab-
Fold predictions are restricted to proteins shorter than
500 residues, but work is underway to transition to pLM-
based 3D structure prediction providing fast and accurate
predictions for longer sequences. All results are cached
for 10 days before being deleted to conserve disk space
and respect data privacy. Users can download results.

2.2 | Frontend and interface

The main LambdaPP interface displays the predictions in
thematically ordered sections. Leveraging the neXtProt
feature viewer (Schaeffer & Teixeira, 2017), per-residue
predictions are displayed in one view-pane (Figure 2).
The neXtProt plugin enables to display categorial fea-
tures, e.g., binding, transmembrane-regions, and second-
ary structure as colored regions, and continues features,
e.g., disorder, variance effect, and conservation, as line
plots. An interactive connection between residue-level
features and 3D structure maps predictions onto 3D visu-
alization while displaying additional information in tool-
tips. The protein-level section visualizes subcellular
location through colored images (Dallago et al., 2020;

Stärk et al., 2021) and GO-term predictions as lists of pre-
dicted GO-terms along with scores reflecting reliability
(RI) and links to the reference protein used for the anno-
tation transfer (Littmann, Heinzinger, Dallago, Olenyi,
et al., 2021). The Single Amino acid Variant (SAV) effect
section features the predictions of how much point muta-
tions (SAVs) negatively affect molecular function. By
default, the effect is predicted for all 19 non-native SAVs,
i.e., all point mutants irrespectively of their reachability
through single nucleic variants (SNVs or SNPs). Finally,
the predicted 3D structure is visualized in the structure
section, using the Mol* plugin (Sehnal et al., 2021). To
facilitate exploring predictions, we offer two alternative
interfaces: the print-page, which displays several residue-
level features in a print-ready form, and the interactive
page, which displays the neXtProt feature viewer and 3D
structure prediction in a single panel to allow easier
interactive exploration. These alternative displays are
reached from the main interface by clicking on the sug-
gested alternative display buttons.

2.3 | Backend and programmatic access

Users can retrieve prediction results programmatically
through the bio-embeddings REST API (details: api.
bioembeddings.com/api). This interface allows, e.g., to
create ProtT5 embeddings of proteins with up to 2000 res-
idues (hardware not model restriction), and to retrieve

FIGURE 2 LambdaPP output for TREM2_HUMAN. Panel a: residue level features: secondary structure, transmembrane topology,

disordered residues, small molecule, nucleic or metal binding residues, residue conservation and average variation (Bernhofer & Rost, 2022;

Elnaggar et al., 2021; Ilzhoefer et al., 2022; Littmann, Heinzinger, Dallago, Weissenow, et al., 2021; Marquet et al., 2021); panel b: sequence-

level features: predicted subcellular localization (Stärk et al., 2021), and an excerpt of predicted GO-annotations (Littmann, Heinzinger,

Dallago, Olenyi, et al., 2021); panel c: effect of SAVs (wildtype sequence on x-axis, mutations on y-axis; darker color = higher effect)

(Marquet et al., 2021); and panel d: predicted 3D structure (Mirdita et al., 2022). Interactive version at https://embed.predictprotein.org/o/

Q9NZC2.
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the full spectrum of available annotations as generated
by the backend, i.e., to download all predictions in JSON
format. The backend could be hosted entirely on a stan-
dard workstation equipped with a workstation GPU
(e.g., Quadro RTX 8000 46GB RAM), delivering results in
seconds compared to minutes or hours for multi-node
and cluster-based PP (Bernhofer et al., 2021). However,
to counter machine faults and guarantee availability, the
hosted LambdaPP runs on different servers at the LCSB
in Luxembourg and the TUM in Munich and can process
one request at a time, on average, in 4 s for proteins of
350 residues. The hosted backend can be manually scaled
to respond to parallel requests during high demand.

2.4 | Availability for local deployment

To take advantage of the methods feature on LambdaPP
locally, advanced users can rely on the bio-embeddings
package (Dallago et al., 2021) (bioembeddings.com).
Along with various use cases, it provides a docker image
(ghcr.io/bioembeddings/bio_embeddings) for easy
deployment on local machines. We recommend installing
bio-embeddings locally to avoid length restrictions
imposed on LambdaPP.

2.5 | Use case: Triggering receptor
(Q9NZC2)

We demonstrated the LambdaPP workflow using the trig-
gering receptor expressed on myeloid cells 2 (UniProt
accession: Q9NZC2) protein and compared results to the
expert curated UniProtKB entry (The UniProt
Consortium et al., 2021). We selected Q9NZC2, as it is
associated with Polycystic lipomembranous osteodysplasia
with sclerosing leukoencephalo-pathy (PLOSL2) and has
diverse annotations in different regions (all at Figure S1).

Per-protein: LambdaPP trivially listed most Uni-
ProtKB GO annotations with high reliability because
the protein was in goPredSim's lookup set. Subcellu-
lar location was correctly predicted as cell-mem-
brane, and the structure from the AlphaFold
Database (Varadi et al., 2022) aligned well with the
structures of 5ELI (Alexander-Brett & Kober, 2015;
Kober et al., 2016) (RMSD: 0.45 Å) and 5UD8
(Sudom et al., 2016, 2018) (RMSD: 0.37 Å;
Figure S4).
Per-residue: LambdaPP marked the first 17 residues
as signal peptides, matching the automatic (rule-
based) UniProtKB annotation (one residue shorter).
The transmembrane stretch matched with the

UniProtKB transmembrane stretch (four residues
shorter; Figure S5).
Binding: UniProtKB has no annotation of metal ion,
small molecule, or nucleic acid binding, while bin-
dEmbed21DL predicted two metal ions and one
small-molecule binding residues with high reliability
which might be interesting targets for future experi-
ments (Littmann, Heinzinger, Dallago, Weissenow,
et al., 2021).
Disorder and conservation: UniProtKB also annotates
no intrinsic disorder. Yet, the predicted high disorder
content for loop regions next to the transmembrane
segment and the high order content outside corre-
lated well with AlphaFold 2's predicted Local Dis-
tance Difference Test (pLDDT), reflecting the
confidence for the 3D prediction with pLDDT > 70
typically considered reliable (Figure S6; Piovesan
et al., 2022; Wilson et al., 2022). For sequence conser-
vation, we compared the predictions shown by
LambdaPP to those from ConSurfDB (Ben Chorin
et al., 2020) obtained for 5ELI (Alexander-Brett &
Kober, 2015; Kober et al., 2016) (mean squared error
[MSE] � 9) and 5UD8 (Sudom et al., 2016, 2018)
(MSE � 4; Figure S7).
SAV effects: The predictions of the effects of single
SAVs upon molecular function showed a similar
trend as the UniProtKB annotations: Q9NZC2 seems
susceptible to mutation effects. Zooming into resi-
dues relevant for binding to PLOS2, e.g., a mutation
at residue position 126 (V > G) suggests a strong
mutation effect (score 71). Residues marked in
LambdaPP with high scores could be an interesting
target for future mutational assays (e.g., residues at
position 35, 85, 105).

2.6 | Interactive selection

When users select predicted residue features on the next-
Prot viewer, the selection is transferred into the 3D
viewer (Figure S3). This eases the identification of rele-
vant structural regions. For instance, selecting the pre-
dicted signal peptide for Q9NZC2 (Figure S3), highlights
the region on 3D structure and allows to verify the pre-
diction visually.

2.7 | Use case: predicting a long protein

We selected a hypothetical ice nucleation protein from
Pseudomonas syringae (ICEV_PSESX, O33479) due to its
length, its remarkable AlphaFold2 structure prediction
(Figure 3a), and its possibly interesting ice-binding
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properties (Cid et al., 2016). Most of the structure is pre-
dicted with very high confidence (pLDDT > 90; con-
firmed by predicted low disorder). Another region with
low AlphaFold2 pLDDT correlates with predicted low
conservation and high disorder (residues 111–165,
Figure 3a: loop next to top left). Three residues are pre-
dicted as metal binding (41, 208, 1196), and 13 as small
molecule binding (173–175, 189–192, 222, 238–239, 253–
254, 590, 606).

Disaccord: ProtT5Sec predicted secondary structure
differed partially from AlphaFold2 either suggesting
alternative conformations or prediction inconsistencies.
Similarly, GO annotations (CC: nucleus, BP: regulation
of transcription by RNA polymerase II, MF: double-
stranded DNA binding) are predicted with low reliability
(RI: 0.24) and differ from those inferred by homology in
UniProtKB (CC: cell outer membrane, MF: ice-binding).
While low reliability is a good indicator that the predicted
features should be taken with a grain of salt, the result
remains interesting given the lack of proteins with reli-
able GO annotations for GOPredSim. This could point to
understudied biological functions.

2.8 | Use case: annotating family and
function for an unknown protein

A plant protein with UniProt ID Q9S828 remains unchar-
acterized by experiment. AlphaFold2's 3D prediction sug-
gests it folds into a new superfamily (Bordin et al., 2022).
The predicted pLDDT of the 3D structure (very low 1–29,
low 30–33, very low 34–45, low 46–48) matches partially
with UniProtKB disorder annotations (Abriata
et al., 2018; Ahdritz et al., 2021; Alexander-Brett &
Kober, 2015; Alley et al., 2019; Almagro Armenteros
et al., 2017; Baek & Baker, 2022; Ben Chorin et al., 2020;
Bengio et al., 2013; Bepler & Berger, 2019, 2021; Berezin

et al., 2004; Bernhofer et al., 2021; Bernhofer &
Rost, 2022; Bileschi et al., 2022; Bordin et al., 2022;
Buchfink et al., 2021; Cardim-Pires et al., 2021;
Chowdhary, 2020; Cid et al., 2016; Dallago et al., 2020,
2021; Dass et al., 2020; El-Mabrouk & Slonim, 2020;
Elnaggar et al., 2021; Heinzinger et al., 2019, 2022;
Henikoff & Henikoff, 1992; Hie et al., 2022; Høie
et al., 2022) and LambdaPP-included disorder predictions
(residues 1–39; N-terminal region looping to the lower
left (Figure 3b)). This region is also predicted as poorly
conserved.

LambdaPP suggests that Q9S828 might be a serine–
threonine kinase (GO:0004674), involved in the phos-
phorylation of peptidyl-serine (GO:0018105) and contrib-
ute to flower development (GO:0009908). Compared to
the broader UniprotKB annotations (GO:001630,
GO:0016310), functional annotations provided by Lamb-
daPP allow hypothesizing about the protein's functional
role in the plant and design targeted experiments to vali-
date the predictions.

3 | CONCLUSIONS

LambdaPP importantly advances into the next generation
of protein prediction, providing the first lightning fast,
all-round protein prediction server based almost exclu-
sively on embeddings from one protein language
model—ProtT5, accompanied by high-quality 3D struc-
ture predictions from the AlphaFold DB or ColabFold.
The web interface allows detailed analyses without
requiring users to chip-in high-end servers, AI knowl-
edge, or programming skills. The sub-minute turnaround
time from sequence input to predictions of 15 different
per-residue and per-protein features coupled with an
intuitive user interface allow users to quickly generate an
overview for any desired protein sequence, in turn

FIGURE 3 Remarkable AlphaFold2

predictions. Panel a (lower left triangle)

displays the 3D structure predicted by

AlphaFold2 for the ice nucleation

protein ICEV_PSESX. The protein

contains 1165 residues and is available

through LambdaPP as part of AFDB.

Panel b (upper right triangle) showcases

the AlphaFold2 prediction of what

might constitute a novel superfamily for

the plant protein with the UniProt

identifier Q9S828_ARATH.
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allowing hypothesis generation and analysis. Thereby,
LambdaPP might become valuable for bridging the
sequence-annotation gap through predictions from high-
quality methods, allowing researchers to prioritize experi-
ments and curation efforts.

4 | MATERIALS AND METHODS

LambdaPP computes protein language model (pLM) rep-
resentations (embeddings) using ProtT5 (Elnaggar
et al., 2021) from single amino acid sequences. More spe-
cifically, the embeddings are derived exclusively from the
encoder-part of ProtT5 in half-precision, i.e., from float32
to float16 model weights, speeding up inference and
improving performance of subsequent models (Elnaggar
et al., 2021). These embeddings are input to all methods
provided via LambdaPP except ColabFold (Mirdita
et al., 2022). Per-protein features predicted solely with
ProtT5 embeddings as input currently include subcellular
location (Stärk et al., 2021), and Gene Ontology terms
(GO) (Littmann, Heinzinger, Dallago, Olenyi,
et al., 2021). Per-residue predictions solely with ProtT5
embeddings as input include: conservation (Marquet
et al., 2021); helical transmembrane regions, transmem-
brane beta barrels, along with signal peptides
(Bernhofer & Rost, 2022); binding for various ligands
(Littmann, Heinzinger, Dallago, Weissenow, et al., 2021);
intrinsically disordered regions (Ilzhoefer et al., 2022);
secondary structure (Elnaggar et al., 2021). LambdaPP
also predicts the effect of introducing single amino acid
variants (SAV) in the input sequence upon molecular
function, which uses the predicted conservation with a
BLOSUM62-score (Henikoff & Henikoff, 1992) of the
SAV as input (Marquet et al., 2021). Additionally, the 3D
structure for the query-sequence is currently predicted
with ColabFold (Mirdita et al., 2022) implementing
AlphaFold2 (Jumper et al., 2021), however pLM-based
alternatives are in development and will be available
online soon (Weissenow et al., 2022).

4.1 | Per-protein: Gene ontology (GO)

The method goPredSim (Littmann, Heinzinger, Dallago,
Olenyi, et al., 2021) predicts GO terms by transferring
annotations from the closest neighbor in a lookup dataset
of proteins with known GO annotations (Littmann, Hein-
zinger, Dallago, Olenyi, et al., 2021). The closest neighbor
is defined by the smallest pairwise Euclidean distance
calculated between the ProtT5 embeddings of the lookup
set and the target. The distance is converted to a Reliabil-
ity Index (RI) ranging from 0 (weak prediction) to

1 (confident prediction). RI values above 0.35 for biologi-
cal process ontology (BPO), 0.28 for molecular function
ontology (MFO), and 0.29 cellular component ontology
(CCO) suggest reliable results. Replicating CAFA3 (Zhou
et al., 2019), goPredSim reached Fmax (BPO): 38 ± 2%,
MFO: 52 ± 3%, and CCO: 59 ± 2% using ProtT5 embed-
dings (Bernhofer et al., 2021; Littmann, Heinzinger, Dal-
lago, Olenyi, et al., 2021). Tested on proteins annotated
after February 2020 and confirmed by CAFA4 (El-
Mabrouk & Slonim, 2020), results were slightly better
(github.com/Rostlab/goPredSim—performance-
assessment).

4.2 | Per-protein: subcellular location

For a given protein sequence, light attention (LA) predicts
where in a cell a protein functions, i.e., its subcellular
location or cellular compartment (Stärk et al., 2021). Ten
subcellular localization classes are differentiated as
mapped in DeepLoc (Almagro Armenteros et al., 2017).
The LA network architecture using ProtT5 embeddings as
input significantly outperformed MSA-based state-of-the-
art (SOTA) methods by about eight percentage points
(Q10). For this task, ProtT5 embeddings (Elnaggar
et al., 2021) significantly outperformed all other pLM
embeddings as input for the same architecture (Alley
et al., 2019; Bepler & Berger, 2019; Elnaggar et al., 2021;
Heinzinger et al., 2019; Rives et al., 2021).

4.3 | Per-residue: ligand-binding

bindEmbed21DL (Littmann, Heinzinger, Dallago,
Weissenow, et al., 2021), a two-layer convolutional neural
network (CNN) exclusively inputting ProtT5 embeddings,
predicts residues binding to metal ions, nucleic acids, or
small molecules, distinguishing the three classes. The
pLM-based method substantially outperformed its MSA-
based predecessor (F1 = 47 ± 2% vs. F1 = 34 ± 2%)
(Schelling et al., 2018) on binding annotations from Bio-
LiP (Yang et al., 2013). The seemingly low F1-score hid
that the method often outperformed human annotations,
in the sense that all strongly predicted (high reliability)
residues annotated as non-binding investigated in detail
appeared to reveal missing annotations rather than pre-
diction mistakes.

4.4 | Per-residue: conservation

ProtT5cons (Marquet et al., 2021) is a two-layer CNN,
predicting the degree to which a residue is conserved in
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an MSA without using an MSA as input. The conserva-
tion level is scaled from 0 (highly variable) to 8 (highly
conserved) similarly to ConSurf-DB (Ben Chorin
et al., 2020). ProtT5 embeddings outperformed those from
the pLM ProtBERT and performed on par with the ESM-
1b (Rives et al., 2021) pLM embeddings. While only
taking embeddings as input, the performance of ProtT5-
cons was similar to ConSeq (Berezin et al., 2004) using
MSAs (two-state Matthews Correlation Coefficient
(MCC) (embeddings) = 0.596 ± 0.006 vs. MCC
(ConSeq) = 0.608 ± 0.006) when compared to conserva-
tion levels of ConSurf-DB.

4.5 | Per-residue: intrinsic disorder

SETH (Ilzhoefer et al., 2022), a two-layer CNN, predicts
the degree of intrinsic disorder of a residue as defined by
the chemical shift Z-scores (CheZOD) (Nielsen &
Mulder, 2020), where values below eight signify disorder
and values above eight signify order. Different pLMs
were compared (ProtT5: Elnaggar et al., 2021; ProSE:
Bepler & Berger, 2021; ESM-1b: Rives et al., 2021; Prot-
BERT: Elnaggar et al., 2021; SeqVec: Heinzinger
et al., 2019) with ProtT5 numerically outperforming the
others. SETH outperformed all existing SOTA approaches
in terms of mean AUC (area under the receiver operating
characteristic curve) and Spearman correlation (0.72
± 0.01 for SETH vs. 0.67 ± 0.01 for next best method
ODinPred (Dass et al., 2020)) as well as similar current
solutions operating on ESM-1b embeddings (Redl
et al., 2022).

4.6 | Per-residue: secondary structure

ProtT5-sec (Elnaggar et al., 2021), a two-layer CNN,
reached a Q3 (three state per-residue accuracy) of 81
± 1.6% for the CASP12 (Abriata et al., 2018) test set and
Q3 of 84 ± 0.5% for a larger data set NEW364 (Elnaggar
et al., 2021) competitive with, or even surpassing, top
methods relying on MSAs.

4.7 | Per-residue: Transmembrane
helices and strands

TMbed predicts for each residue one of four classes:
alpha helical transmembrane (TM) region, transmem-
brane beta strand, signal peptide, or other (Bernhofer &
Rost, 2022). For proteins with TM regions, it also predicts
the inside/outside orientation within the membrane,
i.e., on which side of the membrane the N-terminus

begins. The model uses a four-layer CNN combined with
a Gaussian filter and a Viterbi decoder. When applied to
a non-redundant test set, TMbed correctly predicted 94
± 8% of beta-barrel transmembrane proteins (TMPs) and
98 ± 1% of alpha-helical TMPs at false positive rates <1%.
Furthermore, TMbed placed on average 9 out of 10 trans-
membrane segments within five residues of the experi-
mental observation. TMbed performed on par with or
better than SOTA methods. It stood out in terms of its
low false positive rate and speed; both making TMbed
well suited for high-thruput annotation and filtering,
such as annotating millions of AlphaFold2 models.

4.8 | Per-residue: Variant effect and
μ-variation

To predict the effect of SAVs, VESPAl (Marquet
et al., 2021) takes the nine-state conservation prediction
by ProtT5cons, and the BLOSUM62 substitution matrix
(Henikoff & Henikoff, 1992) as input for a logistic regres-
sion. The simple architecture of VESPAl was close in per-
formance to SOTA MSA-based methods (Laine
et al., 2019; Riesselman et al., 2018), and the embedding-
based ESM-1v (Meier et al., 2021) on 39 deep mutational
scanning (DMS) experiments (with 135,665 SAV) that
had not been used for development. The per-residue
μ-variation describes the average effect score of the
19 possible substitutions for the respective wild type.

4.9 | 3D structure prediction

LambdaPP also includes SOTA MSA-based 3D structure
predictions. If UniProt accessions are used as an input,
the 3D structure is retrieved from the AlphaFold Data-
base (AFDB) (Varadi et al., 2022). If the structure is una-
vailable in AFDB or the input is not a UniProt accession
number, ColabFold (Mirdita et al., 2022) is employed to
predict the 3D structure, easing access to AlphaFold2
(Jumper et al., 2021). Toward this end, MSAs are gener-
ated by searching with MMseqs2 (Mirdita et al., 2019)
against UniRef 30 and ColabFoldDB (The UniProt
Consortium et al., 2021). For single predictions, this com-
bination is 20–30 times faster than the original
AlphaFold2 at little loss of performance on the CASP14
(Kryshtafovych et al., 2021) targets (Mirdita et al., 2019).
Further parameters are an early stop criterion of a predic-
tion certainty (pLDDT) above 85 or below 40, a default
recycle count of 3 and a compilation of only the best per-
forming out of five AlphaFold2 models. As the goal of
LambdaPP is to provide a single reference for pLM-based
predictions, 3D structure will soon be predicted using
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tools recently presented in the literature (Lin et al., 2022;
Weissenow et al., 2022; Wu et al., 2022), which allows
structure prediction to happen in seconds rather than in
minutes, at accuracy comparable with MSA-based
methods.
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