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Molecular dissection of CRC 
primary tumors and their matched 
liver metastases reveals critical 
role of immune microenvironment, 
EMT and angiogenesis in cancer 
metastasis
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Catherine F. Whittington1, Shripad V. Bhagwat1, Christoph Reinhard1, Robert Wild1, 
Do‑Hyun Nam3,5, Amit Aggarwal1*, Woo Yong Lee2,3* & Sheng‑Bin Peng1*

Metastasis is the primary cause of cancer mortality. The primary tumors of colorectal cancer (CRC) 
often metastasize to the liver. In this study, we have collected 122 samples from 45 CRC patients. 
Among them, 32 patients have primary tumors, adjacent normal tissues, and matched liver 
metastases. Thirteen patients have primary tumors without distant metastasis and matched normal 
tissues. Characterization of these samples was conducted by whole-exome and RNA sequencing and 
SNP6.0 analysis. Our results revealed no significant difference in genetic alterations including common 
oncogenic mutations, whole genome mutations and copy number variations between primary and 
metastatic tumors. We then assembled gene co-expression networks and identified metastasis-
correlated gene networks of immune-suppression, epithelial–mesenchymal transition (EMT) and 
angiogenesis as the key events and potentially synergistic drivers associated with CRC metastasis. 
Further independent cohort validation using published datasets has verified that these specific 
gene networks are up regulated throughout the tumor progression. The gene networks of EMT, 
angiogenesis, immune-suppression and T cell exhaustion are closely correlated with the poor patient 
outcome and intrinsic anti-PD-1 resistance. These results offer insights of combinational strategy for 
the treatment of metastatic CRC.

CRC is the third most common cancer in world with second highest cancer-related mortality worldwide1. In US 
alone, it is estimated that approximately 137,000 people are diagnosed, and more than 50,000 are dead from CRC 
each year. CRC primary tumors often metastasize to the liver, which accounts for most of CRC related death. 
The molecular mechanism of tumor metastasis remains poorly understood. It is believed to be a multiple step 
process that includes cells to detach from their original site and invade the neighboring submucosa, extravasate 
and survive in the vasculature and metastatic site, and eventually reestablish tumor in alien organ2. Prevention 
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of tumor metastasis is dependent upon the better understanding of the molecular mechanism governing this 
complicate process. However, the extensive interactions among tumor cells and tumor microenvironment (TME) 
have complicated the efforts in dissecting the metastatic process3. There is no convincing evidence to date sug-
gesting that the metastatic process links to specific genetic alterations in CRC​4.

Most of CRCs are epithelial in origin, and the TME composition changes as the tumor grows and spreads5. 
The TME consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), endothelial cells, immune 
cells, and many soluble factors required for cancer progression6. The interaction between tumor and adjoin-
ing stromal tissues is an important aspect of the tumorigenic process and drug response7,8. For example, it has 
been reported that epithelial CRC cells could induce changes of normal fibroblasts into CAFs via secretion of 
transforming growth factor β (TGFβ)9,10. At the same time, CAFs may secrete growth factors such as fibroblast 
growth factor (FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) to 
promote cancer cell proliferation and invasion11,12. Studies have also suggested that the stromal compartment 
plays an important role during cancer development and metastasis13. Besides TME-tumor interactions, EMT is 
a crucial process for metastatic cascade in which cancer cells transition from an epithelial cell type into a more 
invasive mesenchymal cell type for dissemination14. Recent studies have revealed that tumor cells and immune 
cells can reciprocally influence each, suggesting a potential role of immune microenvironment in EMT and tumor 
metastasis14,15. However, the understanding of each TME components contributing to the tumor metastasis and 
the dynamic cellular process remains elusive.

It has been a significant challenge for computational biology to deconvolute the genome-wide molecular net-
works. However, with recent advance in bioinformatic analyses, a few studies have demonstrated the feasibility 
to dissect the transcriptional networks from gene expression profiles16. Several methods are reported for such 
analyses, and one of them is called weighted gene co-expression network analysis17 (WGCNA). In the present 
study, we genomically characterized 109 samples from 45 human CRC patients, including primary tumors, their 
matched adjacent normal tissues and liver metastatic biopsies from 32 patients. We utilize WGCNA and cell-type 
deconvolution approaches to perform a virtual dissection of primary and metastatic CRC samples to allow us to 
identify tumor-specific, stromal cell-specific, and metastatic program-specific molecular modules with prognostic 
and biological relevance. We reveal molecular interactions among EMT, angiogenesis, and immunosuppression, 
three key drivers of cancer progression and their possible link to CRC metastasis.

Results
Patient and sample information.  Our patient cohort consisted of 45 CRC patients with 32 patients hav-
ing “trios” of primary CRC tumors (CWM, n = 32), adjacent normal samples (AN, n = 32) and patient-matched 
liver metastases (CLM, n = 32). Thirteen patients with primary tumors lacking any distant metastasis (CNM, 
n = 13) were included as baseline for comparison. The histology of all available samples was reviewed by a single 
pathologist blinded to sample identity. The clinical characteristics, patient follow up information and Micros-
atellite Instability (MSI) status of the patients in our cohort were summarized in Supplementary Table S1. We 
analyzed these samples using three genomics platforms: whole-exome sequencing for somatic mutations, array-
based methods for profiling somatic copy-number changes, and RNA sequencing for mRNA expression (Sup-
plementary Figure 1).

A high degree of similarity in genomic alterations in CRC patients with and without distant 
metastases, and in primary tumors and the matched liver metastases.  To search for potential 
metastasis-related genetic alterations, we first investigated genetic mutations leading to deregulation of signaling 
pathways in CRC​18. These pathway genes showed a similar profile and frequency of mutations in these samples 
(Fig. 1A) except for four hypermutated samples. These four hypermutated samples were all in CNM group, and 
three of them were MSI using immunohistochemical (IHC) staining of tumor tissues to detect loss or down-
regulation of mismatch repair genes (including MSH2, MSH6, and MLH1; Supplementary Table S1). We noticed 
no significant difference in frequency of alteration in CRC associated genes in paired CWM samples versus the 
matched liver metastases (CLM) (Supplementary Table S2a & S2b). Similarly, we found no significant difference 
in the frequency of gene mutations between CWM and CNM if the four hypermutated samples are excluded 
from the comparison (Supplementary Table  S2a & S2b). When we included the four hypermutated samples 
in analysis, only the prevalence of gene BCL6 corepressor (BCOR) mutation was significantly higher in CNM 
group (Fisher test, p = 0.007). The most frequently mutated cancer genes were APC (77%), TP53 (76%), KRAS 
(42%), NRAS (15%), and PIK3CA (17%), in this cohort. Notably, mutations in APC, TP53, KRAS, NRAS and 
PIK3CA were more than 90% concordant between primary tumors and metastases (Supplementary Table S2c). 
Overall, we noted that the overall pattern of mutations detected in CNM, CWM and CLM patients was also 
highly similar (Supplementary Table  S2a & S2b), confirming the results observed in previous reports4,14,19. 
We then extended the scope of mutation interrogation from these CRC-specific pathway genes to the whole-
exome between 30 primary tumors (CWM) and their matched metastasis in livers (CLM) (2 pairs of samples 
were excluded after quality assurance). Hierarchical clustering analysis tightly aggregated primary tumor and 
matched metastasis together (Fig. 1B). The mutations from liver metastasis biopsies were highly similar to its 
matched primary tumors, but were divergent from each other among patients, suggesting that there was no sig-
nificant difference between primary and metastatic tumors.

We next analyzed the somatic copy number alteration (SCNA) by array-based comparative genomic hybridi-
zation (aCGH) in CNM, CWM and CLM samples. We estimated the frequency of the gain or loss of each gene to 
calculate an amplification (red, CN > 4.0) or deletion (blue, CN < 1.0) score in each sample as shown in Fig. 1C. 
The comparison of CWM versus CNM as well as CLM showed that they exhibited no significant differences in 
their SCNA profiles.
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Overall, our results demonstrated a high degree of similarity in genomic alterations in CRC patients with 
and without distant metastases, and in primary tumors and the paired metastatic biopsies, which is suggestive 
of relatively stable clonal evolution after tumor metastasis.

Transcriptional differences between primary and metastatic tumors or primary tumors with‑
out and with metastasis.  Given the absence of any significant genetic changes, we then compared the 
transcriptomic profiles between CWM and CNM, or between CWM and CLM by analyzing the RNA Seq data 
from 31 CLM-CWM paired samples (1 pair of samples did not pass the quality control) and 13 CNM sam-
ples using DESeq220. The distributions of the fold changes and p-values of genes in each group were shown in 
Fig. 2A, B as volcano plots. We identified 520 up-regulated and 133 down-regulated Differentially Expressed 
Genes (DEGs) in the CWM versus CNM with absolute fold change ≥ 2 and FDR ≤ 0.05. Using the same criteria, 
16 upregulated and 70 down-regulated genes in CLM group were identified from the pairwise comparison of 
CLM versus CWM (Supplementary Table S3). Functional analysis of the DEGs with 50 MsigDB cancer hallmark 
gene sets21 revealed distinct functional differences among groups. The gene set involving EMT and myogenesis 
was the most significantly upregulated pathway in CWM compared to CNM (Fig. 2C). Moreover, angiogenesis 
and inflammatory response were markedly enriched in CLM compared to CWM (Fig. 2D).

Figure 1.   Comparison of the genetic aberrations in the primary tumor and matched liver metastases. (A). 
Somatic variants identified in genes grouped by deregulated signaling pathways in CRC. Mutation—non-
synonymous single nucleotide or small indel mutation, Amplification—copy number amplification (CN >  = 4). 
Deep deletion—copy number deep deletion (CN <  = − 2). CNM—CRC with No Metastasis, CWM—CRC 
With Metastasis, and CLM—CRC Liver Metastases. The heatmap was generated using ComplexHeatmap58 
(R package, version 1.18.1). (B) Hierarchical clustering of whole genomic alterations, made with gplots (R 
package, version 3.0.1.1; https​://cran.r-proje​ct.org/web/packa​ges/gplot​s/index​.html), shows tightly aggregated 
primary tumor and matched metastasis regardless of clinical and/or pathological parameters. The mutations for 
cancer driver genes such as APC, TP53, KRAS etc. were clustered together that shared in most of primary and 
metastatic tumors, while the private mutations formed the patient-specific clusters. (C) No major difference 
was found in the frequencies of significant aberration in SCNAs of gain and loss areas between primary CRC 
and matched liver metastases in CRC patients. The plot was generated using Copynumber59 (R package, version 
1.24.0).

https://cran.r-project.org/web/packages/gplots/index.html
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Deconvolution of the transcriptional network shows TME‑enriched modules are strongly cor‑
related to metastasis.  Our transcriptomic comparison detected 653 differentially expressed genes from 
CWM versus CNM and 86 genes from CLM versus CWM. However, the magnitude of expression differences 
from CLM-CWM pairwise comparison was small, posing a challenge to inferring their biological differences. 
We then focused our analysis on searching potential candidate genes or pathways that may underlie the meta-
static process based on co-expression transcriptional network. Unlike the conventional single gene differential 
expression analysis, we used the weighted gene co-expression network analysis (WGCNA) to examine gene-
to-gene relationships and to identify modules of coordinately expressed genes in an unsupervised way17 (Sup-
plementary Figure S2). WGCNA used correlations to group genes into modules, and raised each correlation to 
a power, thus lending more weight to stronger, more reliable correlations. It then correlated these modules with 
binary vectors to clinical traits such as sample groups (CNM, CWM, and CLM) or metastatic status (yes or no). 
For example, a sample was assigned as 1 if it was metastatic or 0 if not. Therefore, a significant module-group 
correlation implies that samples from one specific group have higher expression than those of other groups.

WGCNA analysis identified 26 modules of co-expressed genes, and the expression of representative genes 
in each module was mathematically summarized as an eigengene value17. The eigengene value of 26 modules in 
each group is displayed as a heatmap (Fig. 3A, left panel) and was tested for group difference. Eleven modules 

Figure 2.   Transcriptional differences between the primary tumor and matched liver metastases. (A&B) 
Volcano plots for CWM versus CNM (A) and CLM versus CWM (B) were made using ggplot2 (R package, 
version 3.2.1; https​://cran.r-proje​ct.org/web/packa​ges/ggplo​t2/index​.html). The distribution of the gene 
expression log2 fold changes (FC) versus -log10 p-values are shown. Genes with absolute fold change ≥ 8 and 
False Discovery Rate (FDR) < 0.001 are labeled with gene symbol and indicated in red color. P and FDR values 
are generated using R package “DESeq2”20 with Benjamini–Hochberg testing correction. (C&D) Summary plots 
for the over representation analysis (ORA) of cancer hallmark pathways21 for CWM versus CNM (C) and CLM 
versus CWM (D). The enrichment score (− log10 (p value)) is calculated for the Differential Expressed Genes 
(DEGs) present in each pathway using hypergeometric test. DEGs are identified with absolute fold change ≥ 2 
and FDR < 0.05 between log2 normalized expression in the comparison of CWM versus CNM (C) or CLM 
versus CWM (D). Only the pathways with FDR ≤ 0.05 are displayed in the plot.

https://cran.r-project.org/web/packages/ggplot2/index.html


5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10725  | https://doi.org/10.1038/s41598-020-67842-5

www.nature.com/scientificreports/

showed statistically significant in CNM-CWM (FDR ≤ 0.05, Student’s t-test) and 2 modules in CLM-CWM 
comparison (FDR ≤ 0.05, Student’s paired t-test). Only one module, GM6, showed the significant difference in 
both CNM-CWM and CLM-CWM comparison (Supplementary Table S4). The relationship of each module with 
phenotype—“Metastasis” was measured as correlation coefficient (Fig. 3A). Seven modules have positive cor-
relation and 6 modules have negative correlation with “Metastasis” (p ≤ 0.01). Hierarchical clustering of modules 
and Metastasis status showed two large branches (Fig. 3A, right panel). Branch 1 consisted of “Metastasis”—and 
modules GM1 to GM6, GM9 and GM12. We noticed that 6 out of 8 modules in Branch 1 were positively corre-
lated with metastasis status and were upregulated in either CWM or CLM, or both groups. Branch 2 comprised 
of the remaining modules, and most were negatively correlated with metastatic status and were downregulated 
in either CWM or CLM, or both. Positive correlation and clustering with “Metastasis” status in Branch 1 are 
suggestive of these modules having positive effects on “Metastasis.”

Enrichment analysis identified over-represented Gene Ontology (GO) terms for each module. The most 
significant GO biological processes or molecular functions, which were identified to positively correlated with 
metastasis were extracellular matrix organization, angiogenesis, and growth factor binding (GM1), inflammatory 
response/immune response (GM2), lymphocyte activation/adaptive immune response (GM3), and digestive 

Figure 3.   Deconvolution of 26 transcriptional modules and its correlation with clinical phenotype—Metastasis. 
(A) Left panel: heatmap shows the relative expression levels (eigengene expression) of each module; Middle 
panel: The module—phenotype “Metastasis” correlation coefficients with p values; The correlation with a p 
value ≤ 0.01 is highlighted with yellow color. Right panel: The hierarchical clustering dendrogram of module 
eigengenes and the phenotype “Metastasis”. GM 1—6, GM9 and GM12 are closely clustered with “Metastasis” 
status in branch 1. (B) Heatmap shows relative expression levels of each module in the FACS-purified cells 
from 14 primary CRC samples (Top panel; data from GSE39396) and the single-cell RNA seq from 11 primary 
CRC tumors (Bottom panel; data from GSE81861). (C) Deconvolution of immunity-related modules shows 
immune cell specific expression patterns: transcriptome data for purified adaptive and innate immune cells 
(immunome) were downloaded from GEO (GSE3982). (D) Overlap of the previously described EMT (E.EMT 
and M.EMT) and angiogenesis (MS1-MS3), T cell exhaustion (T.Exh), and Immune cell—specific signature 
with co-expression modules (the solid part of a given bar), along with the distribution of a random signature 
of equivalent size (the hollow part of a given bar) (overlap = signature genes/module genes, as a percentage). 
GM1-GM3 are used here as examples. The p values are generated with Chi-Square Test. The heatmaps were 
plotted using R package gplots (version 3.0.1.1; https​://cran.r-proje​ct.org/web/packa​ges/gplot​s/index​.html ).

https://cran.r-project.org/web/packages/gplots/index.html
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system development/fibroblast proliferation (GM6). The most significant GO terms identified on negatively 
correlated modules were response to type I interferon (GM4), ribosome (GM7), and cell division and DNA 
replication (GM16) (Supplementary Table S4 & S5).

In order to characterize the cell-type specificity of each gene module, we used available data from FACS-
purified cells generated from 14 primary CRC samples to compare the module enrichment in various cell 
subpopulations9 (data from GSE39396). As shown in Fig. 3B, three modules, GM18, GM22 and GM24, were 
highly enriched in epithelial tumor cells. Six modules, GM1, GM2, GM3, GM4, GM6, and GM13 showed strong 
TME—stromal cell enrichment that including endothelial cells, CAFs and leukocytes (FDR ≤ 0.05; one-way 
ANOVA test; Supplementary Table S6). The similar cell-type enrichment patterns for most of 26 identified 
modules were observed in a single-cell CRC RNA seq data22 (data from GSE81861), which further validated 
our observation (Fig. 3B, bottom panel). To further understand the immune cell related modules, we deconvo-
luted gene modules that showed leukocyte-specific modules using purified immune cell subsets23 (data from 
GSE3982). This included cells from both myeloid lineage such as dendritic cells (DCs), eosinophils, mast cells, 
macrophages, natural killer cells (NK), and neutrophils and lymphoid lineage such as B cells, NK cells, T helper 
1 (Th1), T helper 2 (Th2), T central memory (Tcm), and T effector memory (Tem) cells. We observed that genes 
of module GM2 were highly expressed in the myeloid phagocytic cells including macrophages and dendritic cells 
(Fig. 3C), GM3 was enriched in lymphoid NK cells, T cells, and B cells, and GM5 was enriched for neutrophils 
and eosinophils. In contrast to GM2, the genes of GM4 were highly expressed in three types of immune cells 
(macrophages, dendritic cells, and neutrophils), which is suggestive of GM4 being a pro-inflammatory module.

We also overlapped TME-related modules with well-defined signatures for angiogenesis24, EMT25, immune-
phenotypes26 and T cell exhaustion27 to further refine the module functional annotation28 (overlap = number 
of signature genes/ number of genes in module). GM1 overlapped with EMT (p < 0.001) and angiogenesis 
(p < 0.001). GM2 overlapped with M0, M1 and M2 macrophages (p < 0.001), resting or activated dendritic cells 
(p < 0.001), and neutrophils (p < 0.001). GM3 overlapped with different types of T cells and NK cells (p < 0.001), 
B memory cells and M1 macrophages (p < 0.001) (Fig. 3D). The later had predominant functional profile that 
was related to infiltrating B cells and cytotoxic (CD8+) T cells (Supplementary Table S4).

Transcriptional networks decipher the ecosystem of CRC metastasis.  Cancer cell invasion and 
metastasis are regulated by tumor ecosystem29. The TME-enriched gene modules identified in this study give us 
a unique opportunity to examine the metastatic tumor ecosystem.

GM1 presents the molecular programs that facilitate cell migration and invasion: Functional annotation indi-
cated the largest module GM1 was associated with multiple biological processes, including EMT, angiogenesis, 
ECM remodeling and growth factor-releasing mechanism (Supplementary Table S4 & S7; Supplementary Figure 
S3A). As shown in Fig. 4A, GM1 was up-regulated in CWM and then slightly down-regulated in CLM. Correla-
tion analysis showed that the expression of GM1 was significantly correlated with the signature of EMT (R = 0.96, 
p = 1e−44; Fig. 4B) and angiogenesis (R = 0.97, p = 2e−46; Fig. 4B). IHC staining of a neovascularization marker 
(CD31) and EMT markers (E-cadherin and Vimentin) in tumor tissues (Fig. 4C) provided the similar expression 
trajectories of EMT and angiogenesis presented by GM1.

GM2 and GM3 institute innate and adaptive metastatic immune environment, respectively: We showed that 
GM2 was highly expressed in the phagocytic cells (macrophages, neutrophils, and dendritic cells) and GM3 
was mainly enriched in T cell population. As shown in Fig. 4A, the GM2 genes were upregulated in CWM and 
consistently extended to CLM, (Fig. 4A). By examining the gene composition of GM2 and GM3, we observed 
enrichment of known immunosuppressive genes in modules GM2 and GM326,30 (Supplementary Table S4 
& S7; Supplementary Figure S3B & 3C). For example, some immune inhibitory genes, LILRB1-4, LILRA2, 
SIRPB1, TLR1-2, TLR4-8, VSIG4, TSC22D3, PDCD1LG2, HAVCR2, and LAIR1 were included in GM2, whereas 
GIMAP4, GIMAP6-8, IL10RA, LAG3, KLRB1, IL2RA, IL2RB, CTLA4, and PDCD1 were bonded in GM3. 
Although GM3 genes as a group showed no statistically significant difference, many of the important genes 
mentioned above were enriched in CWM. We also observed that GM1, GM2 and GM3 were highly correlated 
to each other (Fig. 4B), suggesting these modules may constitute a biological program of invasiveness in the 
metastatic microenvironment.

GM6 is strongly associated with the role of CAF: We found that GM6 was the most correlated and closely 
clustered module with metastasis in our analysis. Cell type deconvolution showed that GM6 was predominantly 
enriched in the FACS-purified CAFs and the fibroblasts in the single cell RNA sequencing of primary CRC 
(Fig. 3A, B). The expression of GM6 genes was significantly high in CWM (Fig. 4A). Stromal marker (alpha-
SMA) IHC staining also showed that CWM had the highest stroma content compared to other two groups 
(Fig. 4C). GM6 contained FGFR1, MMP2, FGF7, FOXF1, PDPN, and WNT5A (Supplementary Table S4 & S7; 
Supplementary Figure S3F). These six genes were previously found to express in CAFs and promote metastasis 
in different types of tumors31–33.

GM4 recapitulates the immune microenvironment of MSI: The microsatellite instability (MSI) subset of CRC 
exhibits an active Th1/CTL immune microenvironment, likely due to the recognition of a high number of tumor-
neoantigens34. We notified that GM4, a module highly expressed in CD45+ leukocyte (Fig. 3B), was significantly 
up regulated in 3 MSI samples compared to the rest of samples (Fig. 5A). Since we only had 3 MSI samples in 
this study, we re-examined the expression of GM4 in an independent dataset that had 78 MSI samples35 (data 
from GSE13294). We found that GM4 was indeed highly expressed in MSI samples (Fig. 5B). The data suggested 
that module GM4 captured the biological specifics for the immune microenvironment of MSI CRC subset. 
Further functional enrichment analysis suggested that the major biological function of module GM4 was type 
I interferon signaling pathway (Supplementary Table S5). Going through the gene composition of this module, 
we identified several interferon signaling pathway members and immune genes such as CD274 (PD-L1), B2M, 
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IDO1, STAT1, JAK1, BTN3A1-3 and HLA class (Supplementary Table S4 & S7; Supplementary Figure S3D). 
As shown in Fig. 5C, D, GM4 was strongly correlated with “hot” tumor T cell inflamed signature36 (R = 0.83, 
p = 5e−21) and local immune cytolytic Activity37 (R = 0.74 and p = 7e−15).

The TME‑enriched modules were strongly associated with tumor progression and clinical out‑
come.  We next examined whether these TME-enriched and metastasis-positively correlated modules (GM1, 
GM2, GM3, GM5, and GM6) were progressively up or down regulated throughout tumor progression. We plot-
ted the eigengene values of these specific modules across different stages of patients with adenoma or colorectal 
cancer38 (data from GSE37364). As shown in Fig. 6A, the TME-enriched modules except GM3 were significantly 
down-regulated in adenomas and then were progressively upregulated in carcinomas (p ≤ 0.05). This is sugges-
tive of progressive upregulation of TME-enriched modules recapitulating the molecular processes that underlie 
the transformation of colon tissue from benign adenoma to malignant carcinoma.

The close association of TME-enriched modules and tumor metastasis motivated us to evaluate the prognostic 
relevance of these modules using Kaplan–Meier analysis with clinical outcome (Supplementary Table S1). For 
most of the CRC patients involved in this study, we collected long term survival data. We performed “mean” 
split on module eigengene to create a dichotomized indicator representing “High” and “Low” module expres-
sion groups. As shown in Fig. 6B in 45 patients with available follow-up survival data, patients with high scores 
of GM1, GM2, GM3, and GM5 were significantly associated with poor survival (log-rank test; the p value was 
0.024, 0.05, 0.039, and 0.031, respectively). Similarly, the high score of GM6 in these patients trended towards 
poor survival (p = 0.1).

Immune checkpoint blockade resulted in durable antitumor activity in many advanced malignancies. How-
ever, efficacy of these agents in solid tumors including MSS CRC has been limited. We further analyzed published 

Figure 4.   The expression changes of TME—enriched modules in CNM, CWM and CLM. (A) Boxplots 
show the relative expression levels of GM1-3 and GM6. The p value is generated from group comparison. 
(B) Scatterplots show that GM1 is highly correlated with recently published angiogenesis signature24 and 
EMT signature25. GM1 also has a strong correlation with immunity-related module GM2 and GM3. (C) 
Representative IHC staining of stroma, angiogenesis and EMT markers in tumors of CNM, CWM and CLM.
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clinical data39 (GSE78220) and revealed that GM1 was highly expressed among non-responding patients rela-
tive to responding pretreatment patients (Fig. 6C), and melanoma patients with high GM1 expression also had 
poor overall survival to anti-PD-1 therapy (Fig. 6D). Our analysis suggested that GM1 might be associated with 
resistance to current PD-1/PD-L1 immune checkpoint blockade therapy.

Construction of a global transcriptional network has identified molecular links of metasta‑
sis‑associated modules.  We further constructed a global transcriptional network to illustrate the biologi-
cal connections among these gene modules. As shown in Fig. 7A, this network had one large component com-
plex connected to one mid-sized component complex and several clusters. The mid-sized component complex 
mostly consisted of cell cycle genes enriched in module GM16. Several clusters in this network reflected shared 
functionality due to distinct, but related processes—such as DNA damage repair, ligation, translation, and tran-
scription. Importantly, the TME-enriched modules such as EMT and angiogenesis (GM1), innate (GM2) and 
adaptive immunity (GM3), CAF activation (GM6), MSI-enriched type I IFN signaling (GM4), and chemotaxis 
(GM5) were all intertwined together to form the largest component complex in this global network (Fig. 7A, B). 
This global transcriptional network revealed putative functional interactions and gene modules associated with 
metastatic process, and the size of each complex in the network indicated its importance in tumor metastasis.

To further identify interactive relationship and the potential key regulators among cancer gene modules, we 
examined the intra–modular connections among GM1, GM2, and GM3. Interestingly, we noticed that ZEB2, a 
known transcriptional factor associated with EMT, was a key hub gene that connected these modules40 (Fig. 7B). 
ZEB2 has recently been shown to be required for terminal differentiation of T cells41,42 and the maturation of NK 
cells43. ZEB2 has also been identified in transcriptional analyses as a potential transcriptional factor involved 
in dendritic cell44 and macrophage development45. Additionally, we also observed that a hub gene, FLI1 that 
connected module GM1 with GM3 (Fig. 7C). FLI1 is a member of the ETS transcription factor family, and ETS 
factors are essential for maintaining vascular homeostasis and immune system regulation. Of the 29 recognized 
ETS factors, nine are known to regulate genes involved in immunity46. Our network analysis indicated a key 

Figure 5.   MSI-enriched immunity and module GM4. (A & B) GM4 is highly expressed in three MSI samples 
(A) and validated in an independent dataset (B) data from GSE13294). The p value is generated from group 
comparison (Welch’s t-test) and is listed in the legend box. (C & D) Scatterplots show that GM4 is highly 
correlated with T cell inflamed signature (C) and Cytolytic score signature (D).
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regulatory role of FLI1 played in the connection of angiogenesis and T cell function. Additionally, we found 
that Hematopoietic lineage cell-specific protein 1 (HCLS1), an actin regulatory protein, also was a hub gene that 
bridges GM2 and GM3 (Fig. 7D).

To illustrate the potential driving forces of metastasis in CRC, we hypothesized and constructed a diagram 
to illustrate the contribution of six gene modules in CRC metastasis (Fig. 7E). These categories were abstracted 
mainly based on the expression and functional identities of the representative genes, related cell-type specifici-
ties, and gene ontology of TME related modules.

Discussion
The molecular mechanisms of cancer metastasis remain elusive although numerous efforts have been attempted 
to address them. In this study, we have identified that TME-enriched modules are positively correlated with 
metastasis and are highly expressed in metastatic groups (CWM and/or CLM). The results imply that the tumor 
microenvironment components, such as immune-suppression, EMT and angiogenesis, are associated with dis-
semination and distant metastasis of CRC.

By systematically and unbiasedly analyzing the exome and RNA sequencing and SNP6.0 data, we assessed any 
potential molecular mechanisms that might associate with CRC metastasis. First, we observed a high degree of 
similarity in genomic alterations between CWM and CNM or between paired CWM and CLM, although consid-
erable genetic heterogeneity was observed within the group. Typically, mutations found in metastases were also 
present in the matched primary tumors. Second, we compared the transcriptome profiles among the groups and 
found that EMT was the most significant difference between CWM and CNM. Applied co-expression network 
analysis, we found that the molecular modules associated closely with metastasis were majorly TME-related. We 
showed that GM1, a gene module associated with many TME events, and GM6, a gene module associated with 

Figure 6.   The association of TME—enriched module expression, tumor progression and patient outcome. 
(A) Boxplots show the relative expression of TME-enriched modules in 27 of adenomas with low or high 
grade (labeled as “CAD_Low” or “CAD_High”) and 25 of carcinoma samples with Duke stage AB or CD 
(labeled as “CRC_AB” or “CRC_CD”) (data from GSE37364). The expression trajectory of each module is 
indicated by a dot blue line. The p value is generated from group comparison (Welch’s t-test). (B) Kaplan–
Meier analysis comparing survival of patients having either high or low TME-related module scores. The 
dichotomized indicator representing “High” and “Low” module expression was created by “mean” split on 
module summarized scores. Patients with high scores of GM1, GM2, GM3, and GM5 were associated with poor 
disease-free survival (PFS). (C) Patients (data from GSE78220) with high GM1 expression in melanoma have 
poor anti-PD-1-treated response (boxplot) and poor overall survival (Kaplan–Meier curve). Log-rank test and 
Kaplan–Meier survival curves were plotted using R package survival (version 2.44.1.1; https​://cran.r-proje​ct.org/
web/packa​ges/survi​val/index​.html ).

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
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CAFs, were enriched in metastatic tumors. Deconvolution of leukocyte-enriched modules with gene signatures of 
purified immune cells, we identified that GM2 was enriched for myeloid cells, GM3 for lymphoid cells, and GM5 
for neutrophil. We also revealed that GM1, GM2, GM3 and GM6 were closely correlated with CRC metastasis. 
Our approach identified a set of transcriptional networks and biomarkers that were specific for a certain cell 
types from a mixture of tumor and stromal tissues, which overcame the major hurdle in the analysis of tumor 
gene expression data. It may shed some light on understanding the role of each cell type and its contribution 
to the metastatic process. Third, we asked whether any key gene critical for tumor metastasis can be identified 
from the global transcriptional network. The current study provided a set of insights from our identification of 
hub genes central to each network, including transcription factors, which would not have been identified using 
conventional approaches. For example, our approach identified ZEB2 as a key hub gene linked to an integrated 
network that orchestrates the molecular processing of metastatic cascade.

Interestingly, we revealed that GM4 was significantly upregulated in our MSI CRC samples and an inde-
pendent CRC cohort35. MSI resulted from defects in the DNA mismatch repair system47. Growing evidence 
showed that MSI colorectal carcinomas were associated with high-level immune infiltrates48. Our study found 
that GM4 enriched patients were tightly correlated with inflamed or local immune cytolytic phenotype tumors, 
consistent with previous observations30. The immune-inflamed phenotype was characterized by the presence 

Figure 7.   Global co-expression network architecture in CRC metastasis. (A) Node color corresponds to 
each module identified. The size of each subnetwork reflects the number of genes in each module. This 
network with one larger component, connected to one mid-sized component, and several small islands. The 
mid-sized component mostly consists of cell cycle genes. Several small islands positioned next to each other 
for DNA repair, ligation, translation and transcription. The TME—enriched modules such as EMT and 
angiogenesis, innate immunosuppression, T cell exhaustion are intertwined and interacted together to form 
the largest component in this global network. (B–D) Interconnectivity analyses on transcriptional factors 
that regulate EMT, angiogenesis, immunosuppression, and T and B exhaustion: ZEB2 is highly connected 
immunosuppression module GM2 to EMT and angiogenesis module GM2. Genes plotted in brown, 
blue, grey and magenta are unique to the top neighbors of the T cell and B cell exhaustion (GM3), innate 
immunosuppression (GM2), angiogenesis and EMT (GM1) networks, respectively; ZEB2 is at the center of plots 
(B). FLI1 bridges GM1 to GM3 (C). HCLS1 links GM2 to GM3 (D). All network graphs (A–D) were produced 
using Cytoscape56 (version 3.1.1.). (E) A chart to illustrate the hypothetical driving forces of metastasis in CRC 
TME.
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of both CD4 and CD8 expressing T cells in the tumor parenchyma, and these immune cells were positioned in 
proximity to the tumor cells36. This profile suggests the presence of a pre-existing anti-tumor immune response 
in MSI CRC cancers. Indeed, clinical responses to anti-PD-L1/PD-1 therapies occurred most often in patients 
with MSI inflamed tumors48.

We showed that GM2, a myeloid cells gene module, and GM3, a T cell gene module, were positively corre-
lated with tumor metastasis. Some immune inhibition markers (LILRB1-4, LILRA2, SIRPB1, TLR1-2, TLR4-8, 
LAPTM5, VSIG4, TSC22D3, PDCD1LG2, HAVCR2, and LAIR1) in GM2 were up-regulated in metastatic group 
CWM / CLM, which evidenced the existence of inhibitory effects on antigen-presenting cell phenotype and sub-
sequent T-cell responses in metastatic TME49. We also notified that some GM3 characteristic genes (GIMAP4, 
GIMAP6-8, IL10RA, LAG3, KLRB1, IL2RA, IL2RB, CTLA4 and PDCD1) were upregulated in CWM, and these 
genes were associated with T cell and B cell negative regulation and immune exhaustion49.

Our transcriptional comparison demonstrated that EMT and angiogenesis were the most significant pathway 
differences between CWM versus CNM and CLM versus CWM, respectively. Accumulated reports suggest that 
EMT is a key process in which cancer cells transit into highly invasive cells for dissemination, while the accom-
panied angiogenesis is important for tumor development, as tumors must establish a blood supply for growth14. 
Although tumor cells are believed to engage in tumor angiogenesis, studies have shown that the tumor micro-
environment and infiltrating immune cells are also important for regulating tumor angiogenesis. The infiltrating 
immune cells are crucial for regulating the formation and the remodeling of blood vessels in the tumor50. GM1 
defined in this study captures the overall dynamic transcriptional programs and the reciprocal interactions of 
tumor cells with ECM, CAF, mesenchymal tumor cells, endothelial cells, and tumor-associated macrophages.

We revealed that GM6 was strongly correlated with metastasis and highly enriched in CAF. It is becom-
ing increasingly clear that CAF is one of the crucial components in TME. It promotes tumor growth through 
stimulation of tumor cell proliferation, enhanced angiogenesis, and ECM remodeling51. Moreover, CAFs mediate 
tumor-promoting inflammation and modulate the components of the inflammatory microenvironment that 
facilitates tumor initiation, progression, and metastasis52.

In conclusion, we have identified TME gene modules of EMT, angiogenesis, CAFs, and immune suppression, 
as the key events closely associated with CRC metastasis, suggesting that tumor metastasis is a complex process 
engaging tumor cells, immune cells, endothelial cells and their interactions in tumor microenvironment. It is 
necessary to explore a strategy of combining targeted therapy, immunotherapy, and anti-angiogenic therapy for 
effective treatment of metastatic CRC.

Materials and methods
Sample preparation.  Thirty-two matched liver metastases, CRC primary tumors, and normal tissues were 
collected at Samsung Medical Center (SMC). Thirteen CRC primary tumors without distant metastasis and 
matched normal tissues were also collected as a control at SMC. Licensed pathologists confirmed the histologic 
diagnoses and estimated all the formalin-fixed paraffin-embedded samples with purity of ≥ 40% according to 
H&E staining. Written informed consent was obtained from all participants. All methods were carried out in 
accordance with relevant guidelines and regulations, and all experimental protocols done in the study were 
approved by Samsung Medical Center. The whole-exome and RNA Sequencing, and SNP6.0 analysis were con-
ducted for all samples (Supplementary Figure S1).

Immunohistochemistry.  Immunohistochemistry (IHC) was performed on 4  μm sections of formalin-
fixed, paraffin-embedded tissue. Bond-max autoimmunostainer (Leica Biosystem, Melbourne, Australia) with 
Bond Polymer refine detection (DS9800, Vision Biosystems, Melbourne, Australia) and Ventana BenchMark 
XT automated slide processing system (Ventana Medical Systems) were used according to the manufacturer’s 
protocol. The primary antibodies were mouse monoclonal antibodies for alpha-SMA (DAKO, 1:1,000 dilution), 
E-cadherin (4A2, Cellsignaling, 1:200 dilution), CD31 (DAKO, 1:200 dilution), Vimentin (DAKO, 1:1,000 dilu-
tion) and CD8 (SP57) rabbit monoclonal antibody (Ventana, 1:200 dilution). The results were evaluated by 
pathologist without prior knowledge of the clinicopathological or molecular data.

Whole‑exome sequencing.  Genomic DNA for all samples was hybridized using Agilent SureSelect 
Human All Exon v4 (51 Mb) kit. The enriched DNA fragments were sheared to 150-200 bp and subjected to 
standard Illumina Genome Analyzer library preparation according to Illumina’s protocol. Sequencing depth of 
120X for tumor and 80X for normal for the whole-exome was generated on Illumina Hiseq 2000 platform.

Somatic mutation analysis.  Genomics reads were aligned to the human reference genome (hg19) with 
BWA-MEM (https​://bio-bwa.sourc​eforg​e.net/). Somatic single nucleotide variant (SNV) was detected by Var-
Scan2 (https​://varsc​an.sourc​eforg​e.net/). The preliminary parameters were set as (1) minimum supporting reads 
in tumor ≥ 8; (2) minimum supporting reads in normal ≥ 6; (3) minimum allele frequency in tumor ≥ 0.1; (4) 
maximum allele frequency allowed in normal ≤ 0.1; 5) p value ≤ 0.05. To further reduce the false positive of SNV 
sites, we filtered SNV sites by more stringent criteria: (1) site with Fisher’s exact test p value ≤ 0.05; (2) minimal 
distance between the SNV-base and the read end (or beginning) ≥ 5; (3) site should pass 3 more statistical tests 
for base quality, mapping quality, and strand bias.

To identify somatic indels, gap allowed alignment was performed using Burrows-Wheeler Aligner (BWA) 
as described previously; indels were then identified using the GATK package (https​://www.broad​insti​tute.org/
gatk/) in a somatic mode based on the local realignment results. The windows size is set by 300 bp.

https://bio-bwa.sourceforge.net/
https://varscan.sourceforge.net/
https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/
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Mutation annotation.  ANNOVAR (https​://www.openb​ioinf​ormat​ics.org/annov​ar/) was used to anno-
tate all mutations. The mutations deposited in COSMIC (v64 release) and dbSNP (v135 release) database were 
marked by their mutation ID. We utilized the method of Youn and Simon53 to predict the significance of gene 
mutations, and a mutation score was calculated based on BLOSUM80 in the following order: missense < inframe 
indel < mutation in splice sites < frame shift indel = non-sense.

Copy number analysis.  Patient’s DNA were run on Affimetrix’s Genome-Wide Human SNP 6.0 microar-
ray, according to the protocols recommended by its manufacturer (https​://www.affym​etrix​.com/suppo​rt/techn​
ical/bypro​duct.affx?produ​ct=genom​ewide​snp_6). Then, the raw SNP6 CEL image files generated from the above 
SNP6 run were used as the input to run GenePattern’s Affymetrix SNP6 Copy Number Inference Pipeline (https​
://www.genep​atter​n.org/affym​etrix​-snp6-copy-numbe​r-infer​ence-pipel​ine). This pipeline generated segmented 
copy number regions across the whole genome for each sample. Entrez gene models were used to assign copy 
number to genes located on a segmented copy number region. For this study, gene’s copy numbers were classified 
into 5 categories: deletion (CN < 1.0), loss (1.0 ≤ CN < 1.85), diploid (1.85 ≤ CN ≤ 2.15), gain (2.15 < CN ≤ 4.0), 
and amplification (CN > 4.0). When a gene contains more than one copy number region, the number which 
is most deviate from 2 is selected. However, if a gene contains a segment of CN < 1.0, such gene is classified as 
Deletion.

RNA sequencing.  RNA-Seq was performed on an Illumina HiSeq. 2000 with the Illumina TruSeq RNA 
Sample Preparation Kit v2 as described previously54. Paired-end sequencing with a read length of 100 bp and 
targeted read depth of 50 million reads/sample was performed. Data were filtered to remove genes with fewer 
than 5 counts across 80% of the samples from the analysis. The resulting data were quantile-normalized and 
summarized across samples. Co-expression network analysis was carried out using genes with relatively high 
signals (15,208 genes, signals > 5 units across 80% of the samples).

All differentially expressed gene analysis was conducted using the DESeq2 package20. Fold change (FC) from 
comparisons were calculated to show up- or down-regulation of genes between CLM and CWM or CWM and 
CNM. Raw p-values were adjusted separately for each comparison using the False Discovery Rate (FDR) with 
Benjamini–Hochberg testing correction. Differentially expressed genes (DEGs) were identified from comparisons 
when FDR < 0.05 and |FC|≥ 2.

Analysis of transcriptional gene networks by weighted co‑expression network construction 
method.  Transcriptional co-expression networks were constructed using the weighted gene co-expression 
network analysis (WGCNA) Bioconductor method as described previously55. To minimize the bias in our analy-
sis, we constructed this co-expression network in an “unsupervised” manner. We only excluded RNA-Seq low 
count genes (the lower quartile of the whole transcriptome) and did not filter any genes based on any clinical or 
pathological features, which resulted in modules’ gene composition up to the genome scale (total 15,208 genes). 
Pearson correlation coefficients were calculated for all possible pairs of genes across all samples. The correlations 
matrix was raised to a soft threshold power 6 based on the criterion of approximate scale-free topology, thus 
producing a weighted network17 (weighted correlation = correlation6). The weighted network was transformed 
into a network of Topological Overlap (TO)—an advanced co-expression measurement that considered not only 
the correlation of 2 genes with each other but also the extent of their shared correlations across the weighted 
network17. The modules were then constructed and identified from the resulting topological overlap matrix 
at several different dissimilarity correlation thresholds, and the threshold of 0.10 was used to merge module 
boundaries for afterward analysis (Supplementary Figure S2). For each gene, we determined its connectivity 
within its module of residence by summing up the TOs of the gene with all the other genes in the module. As 
each module comprises highly correlated genes, their condensed representative expression will be summarized 
by eigengene profiles55 (the red lines in Supplementary Figure S2c & 2d). The eigengene, the first principal com-
ponent of a given module, may therefore effectively summarize the principle pattern within the cellular tran-
scriptome with minimal loss of information55. The summarized module expressions were then correlated with 
a matrix of clinical variables and the resulting correlation matrix was visualized as a heat map (Supplementary 
Figure S2b). This dimensionality-reduction approach also facilitated correlation of modular eigengenes with 
clinical traits. The analysis was performed using R package WGCNA55 (version 1.66). All network graphs were 
produced using Cytoscape56 (version 3.1.1.). A full list of genes by module constructed appears in Supplemen-
tary Table S7.

Gene ontology enrichment analysis.  We analyzed each module for enrichment in genes with particular 
Gene Ontology (GO) and compared with the background list of all genes in the whole genome for functional 
annotation of modules on the basis of their gene composition. Twenty-six modules of genes were identified 
(Supplementary Table S4). Immunity, angiogenesis, metabolism and cell proliferation were most significant cat-
egories among these 26 modules. Although the expression patterns in each module were different, many of the 
modules shared similar GO categorizations, suggesting that some modules may be functionally related.

Module analysis.  Fisher’s Exact Test used to assess the significance of overlap between modules as 
described28. The expression profiles were summarized by module eigengenes (ME). Pearson’s correlation coeffi-
cient between MEs was calculated and used to hierarchically cluster modules28. A one-way ANOVA method was 
used to distinguish the expressed modules among CNM, CWM, and CLM group comparison (Supplementary 
Table S4). Hub genes were identified and ranked by intra-modular connectivity as defined previously17. To cal-

https://www.openbioinformatics.org/annovar/
https://www.affymetrix.com/support/technical/byproduct.affx?product=genomewidesnp_6
https://www.affymetrix.com/support/technical/byproduct.affx?product=genomewidesnp_6
https://www.genepattern.org/affymetrix-snp6-copy-number-inference-pipeline
https://www.genepattern.org/affymetrix-snp6-copy-number-inference-pipeline
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culate the overlap of signatures with modules derived from network analysis, we used the formula described by 
Mckinney et al28. This formula allowed correction for variable module size: [(signature genes overlapping with 
module genes, n)/(genes in the module, n)] × 100. As a control, the overlap of randomly selected signatures of 
equivalent size was used and showed adjacent to the above plots.

Statistical analyses and visualization.  Welch’s two-sample t test was used to calculate t-statistics in 
R57. GOstats (R package, Version 3.5.2) was used to identify enriched GO terms in a ranked list by the mini-
mum hypergeometric score. A one-way ANOVA was used to identify module expression among CNM, CWM, 
and CLM groups. For all applicable statistical tests, a p value of 0.05 was the threshold for significance. All 
heatmaps were generated by using heatmap.2 of gplots (R package, version 3.0.1.1; https​://cran.r-proje​ct.org/
web/packa​ges/gplot​s/index​.html) except Fig. 1A, which was graphed by ComplexHeatmap58 (R package, ver-
sion 1.18.1). The volcano plots in Fig. 2A & 2B were generated using ggplot2 (R package, version 3.2.1; https​://
cran.r-proje​ct.org/web/packa​ges/ggplo​t2/index​.html ). The copy number alteration in Fig.  1C was visualized 
using Copynumber59 (R package, version 1.24.0).
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