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Abstract
Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis

in domains such as systems biology where, both for inference and for assessing prediction

uncertainties, it is essential to characterize the system behavior globally in the parameter

space. However, current methods based on local approximations or on Monte-Carlo sam-

pling cope only insufficiently with high-dimensional parameter spaces associated with com-

plex network models. Here, we propose an alternative deterministic methodology that relies

on sparse polynomial approximations. We propose a deterministic computational interpola-

tion scheme which identifies most significant expansion coefficients adaptively. We present

its performance in kinetic model equations from computational systems biology with several

hundred parameters and state variables, leading to numerical approximations of the

parametric solution on the entire parameter space. The scheme is based on adaptive Smo-

lyak interpolation of the parametric solution at judiciously and adaptively chosen points in

parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for mas-

sively parallel implementation, but affords higher convergence rates. This opens up new

avenues for large-scale dynamic network analysis by enabling scaling for many applica-

tions, including parameter estimation, uncertainty quantification, and systems design.

Author Summary

In various scientific domains, in particular in systems biology, dynamic mathematical
models of increasing complexity are being developed and analyzed to study biochemical
reaction networks. A major challenge in dealing with such models is the uncertainty in
parameters such as kinetic constants; how to efficiently and precisely quantify the effects
of parametric uncertainties on systems behavior remains a question. Addressing this
computational challenge for large systems, with good scaling up to hundreds of species
and kinetic parameters, is important for many forward (e.g., uncertainty quantification)
and inverse (e.g., system identification) problems. Here, we propose a sparse, deterministic
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adaptive interpolation method tailored to high-dimensional parametric problems that
allows for fast, deterministic computational analysis of large biochemical reaction net-
works. The method is based on adaptive Smolyak interpolation of the parametric solution
at judiciously chosen points in high-dimensional parameter space, combined with adap-
tive time-stepping for the actual numerical simulation of the network dynamics. It is
“non-intrusive” and well-suited both for massively parallel implementation and for use in
standard (systems biology) toolboxes.

This is a PLOS Computational BiologyMethods paper

Introduction
Chemical reaction networks (CRNs) form the basis for analyzing, for instance, cell signaling
processes because they capture how molecular species such as proteins interact through reac-
tions, for example, to form larger macromolecular complexes. In the limit of (sufficiently) high
copy numbers of the molecular species when stochasticity can be ignored [1], the dynamic
behavior of a CRN is described by a parametric, nonlinear deterministic system of ODEs of the
form (see, e.g., [2] and references therein):

dxðtÞ
dt

¼ f ðxðtÞ; uðtÞ;pÞ ¼ N vðxðtÞ; uðtÞ;pÞ ; xðt0Þ ¼ x0 ; ð1Þ

where xðtÞ 2 S ¼ IRnx
�0 is the vector of the non-negative concentrations of the nx molecular

species that depend on time t, f(x(t), u(t),p) is a system of nx functions that model the rate of
change of the species concentrations depending on the current system state x(t) and on the

parameter vector p ¼ ðpkÞ
np
k¼1 2 IR

np
�0 of dimension np which equals the number of kinetic

parameters (physical constants) associated with the biochemical reactions. The inputs uðtÞ 2
IRnu may be time-varying, for example, when external stimuli to signaling networks are being
considered. The initial conditions are given by x0. Here, we follow the notational conventions
of the application domain; the mathematical literature usually denotes states and parameters
by x and y, respectively. For CRNs, specifically, the right-hand-side f(x(t), u(t),p) can be
decomposed into two contributions: the stoichiometric matrix N 2 IRnx�nr that encodes how
species participate in reactions (its entries correspond to the relative number of molecules of
each of the nx species being consumed or produced by each of the nr reactions), and the vector
of nr reaction rates, or fluxes, vðxðtÞ; uðtÞ;pÞ 2 IRnr

�0.
Using ODE models Eq (1) to analyze cellular networks is challenging, in particular, because

np is large and the parameter values are usually unknown. For instance, enzyme kinetic param-
eter values are distributed over several orders of magnitude [3], making it often difficult to
ascertain even rough estimates when the parameter values cannot be determined experimen-
tally. In practice, parameter values need to be estimated from experimental observations such
as time-course data of species concentrations, which typically involves solving computationally
expensive global optimization problems [4]. In addition, mainly due to limited measurement
capabilities and a still prevailing shortage of quantitative experimental data, most of the estab-
lished (systems biology) models have ‘sloppy’ parameters. That is, their values are not suffi-
ciently constrained by the data used for estimation, or some parameters are even redundant,
for a given set of measurement data. These parametric uncertainties may propagate to large
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uncertainties in model predictions [5, 6]. In parameter estimation and uncertainty quantifica-
tion, one needs to determine how the system behavior x(t) depends on the parameters p, ideally
on the entire (physically feasible) parameter space. While local evaluations in parameter space
may suffice in certain cases, for instance, methods for Bayesian inference of model parameters
and topologies [7, 8] are global by design, making the last aspect a critical requirement.

In systems biology (most of the ensuing considerations apply beyond systems biology), two
broad classes of approaches to computational quantification of parametric uncertainty can be
distinguished. So-called local methods rely on parameter sensitivities

skðt;pÞ ¼
@xðtÞ
@pk j

p¼p0

ð2Þ

that provide first-order approximations of the systems’ behavior when the k-th parameter, pk,

has small variations around the nominal parameter set p0 ¼ ðp0kÞ
np
k¼1. Parameter sensitivities

allow for an assessment of, for instance, metabolic network behavior in response to small
parametric perturbations [9]. However, as systems biology models are typically highly non-
linear, and calibrations to noisy data may access parameter values that are far from p0, the
scope of local approximations is limited. For example, the response of the two-dimensional
example model shown in Fig 1A appears ‘simple’, but a first-order approximation of the
response becomes increasingly inaccurate with increasing distance from the nominal parame-
ter set (Fig 1B).

Sampling-based methods, in contrast, attempt to cover the entire parameter space. For large
networks, high-dimensional parameter spaces need to be explored, and due to the so-called
“curse of dimensionality” [10], this entails sample numbers (and thus, computation time) that
increase exponentially with the dimension of the parameter space. In addition, limited prior
knowledge on parameter regimes and location of disconnected regions in parameter space
often limit targeted or adaptive sampling strategies. State of the art Monte-Carlo methods have
been reported to cope with up to 50 model parameters [8, 11], but present CRN models in sys-
tems biology may have several hundred parameters [12]. Hence, not only for the efficient
computational forward and Bayesian inversion analysis of large-scale models representing
entire cells [13], but also for pathway models [14], efficient computational methods with math-
ematically founded, favorable scaling of work versus accuracy with respect to the model size
are lacking.

One possible avenue for developing more efficient computational methods consists of
exploiting specific features of the application domain (models), which proved successful for
determining local parameter sensitivities [15]. For CRNmodels which arise in systems biology
such as Eq (1), one can exploit that many cellular reaction networks are only weakly connected.
This is reflected in sparse (but not block diagonalizable) stoichiometric matrices N, and in the
scale-free structure of many large-scale networks that comprise a few hubs with many connec-
tions, whereas most species have few connections [16]. In addition, if one considers only mass-
action kinetics, the reaction rates can be written as

vðxðtÞ; uðtÞ;pÞ ¼ diag ðpÞrðxðtÞÞ þ OuðtÞ;

where O 2 N
nr�nu defines the input-to-rate mapping and ρ(x(t)) is a vector of monomials in the

states x(t) [17], revealing an overall affine parameter dependence of f(x(t), u(t),p).
Here, we propose a novel, adaptive deterministic computational methodology for handling

parametric uncertainty for high dimensional parameter spaces with particular attention to
large, parametric nonlinear dynamical systems in CRN models. We exploit recent mathemati-
cal results [18] stating that responses of systems models with sparse and affine dependence on
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Fig 1. Example model. A: The function f(x, y) = exp(x) + y plotted in the region −1� x, y� 1. B: Absolute
difference between the original function (A) and the first order approximation fðx; yÞ � fð0; 0Þ
þx @fðx;yÞ

@x jð0;0Þ þ y @fðx;yÞ
@y jð0;0Þ ¼ 1þ x þ y. C:Outline of the algorithm for the proposed adaptive sparse

interpolation method.D: The 11 interpolation points computed by the Smolyak algorithm for five (k = 0. . .4)
iterations for an error tolerance of 5 × 10−8. Possible Smolyak grid points up to the same level of hierarchy are
shown as black dots. E: Absolute difference between the original function (A) and the Smolyak approximation
based on the interpolation points in (D), computed for 441 uniformly distributed points in −1� x, y� 1.

doi:10.1371/journal.pcbi.1004457.g001
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these parameters can be captured by sequences of polynomial approximations such that the
approximated responses converge to the exact responses with rates that are independent of the
dimensions of the parameter and state space. The presently proposed approach adaptively
exploits this sparsity. It provably allows to adaptively scan system responses across the entire,
high-dimensional parameter space with less instances of (possibly costly) forward simulations
than with sampling methods to reach prescribed numerical accuracies of the responses. It also
allows to build parsimonious parametric surrogate models that are valid over the entire param-
eter space. To demonstrate our methodology’s performance, we apply it to three published sys-
tems biology models, where the numerical results support the theoretical prediction of
dimension-independent convergence rates beyond the rate 1/2 for Monte-Carlo sampling
methods.

Methods

Overview
We propose an adaptive deterministic algorithm that relies on constructing sparse interpola-
tion and quadrature grids in high-dimensional parameter spaces as outlined in Fig 1C. It relies
on so-called Smolyak sparse grids [19] that exploit that for functions in high dimensions, not
all parameter points are equally important to approximate the function. The Smolyak method
can employ different sequences of univariate quadrature formulae; here, we focus on the gener-
ation of grid points using the Clenshaw-Curtis method (CC; see S1 Text for details). Corre-
spondingly, the principle of our adaptive Smolyak sparse grids method is to start from a single
parameter point and to iteratively evaluate the effect of adding neighboring points in certain
directions of the parameter space, until we fall below a predefined numerical error tolerance.
Note that here and in the following, ‘error tolerance’ refers to numerical accuracy and not to
model properties such as robustness. This principle is illustrated in Fig 1D for the two-dimen-
sional example model, where k denotes the iteration. In particular, the directions in which the
most points are added correspond to the parameters for which the model is the most respon-
sive. Once the points to be added (‘activated’) are determined for one iteration, simulations to
determine the function values are independent of each other, allowing for a parallelization of
computations. Note, that the effect of adding points in more than one parameter space direc-
tion simultaneously is not evaluated, since this is (often) computationally intractable. However,
for certain functions such as the example model, the approximation resulting from few (five, in
this case) iterations may be highly accurate over the entire domain in parameter space (Fig 1E).
In the following, we focus on why subsets of CRN models allow for sparse interpolation and
quadrature with dimension-independent convergence (numerical error tolerance) properties,
and for mathematical details we refer the reader to the S1 Text and to [18, 20]. Note also that
an implementation of the method (for model 1 discussed in the Results section) is available as
S1 File.

Models with mass-action kinetics
We consider models of the form of Eq (1) with reactions based on mass-action kinetics. For
physically realistic reactions with at most two educts and a bounded parameter domain, this
implies: vjðx; u;pÞ ¼ pjrjðxÞ þ

Pnu
k¼1 ojkuk ¼ pjxlxm þPnu

k¼1 ojkuk, j = 1, . . ., nr, for some given

indices (depending on j) l,m 2 [1, . . ., nx], where the parameters pj � 0 and pj 2 [aj, bj]. To
save space we write x≔ x(t) and u≔ u(t). The right-hand-side of the ODE for state variable xi,
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i 2 [1, . . ., nx], is:

fiðp; x; uÞ ¼
X
j�1

nijvj ¼
X
j�1

nijpjrjðxÞ þ
X
j�1

nij

Xnu
k¼1

ojkuk; ð3Þ

where nij and oij are the elements on row i and column j of N and O, respectively. For models of
the form of Eq (3), the solution x(t,p) may be approximated with a surrogate model based on
truncated polynomial expansions in parameter space.

Parameter scaling
The adaptive sparse quadrature approach requires parameter ranges that are of unit size, and
symmetric about zero. To this end, we rescale the parameters by an affine reparametrization:

pj ¼ bj�aj
2

p~ j þ bjþaj
2
, where p~ j 2 ½�1; 1�. Then, with �:jðxÞ ¼ n:j

ðbj�ajÞ
2

rjðxÞ, denoting by n:j the jth
column of N, Eq (3) takes the form:

fið�Þ ¼
X
j�1

~pj�ijðxÞ þ
X
j�1

nij

bj þ aj
2

�j þ
X
j�1

nij

Xnu
k¼1

ojkuk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:�i0ðx;uÞ

ð4Þ

where the last two terms summarized by ϕi0(x, u) are independent of the model parameters.
The domain of the parameters is then given by the Cartesian product U ¼ ½�1; 1�np .

Adaptive Smolyak sparse grids
Assume an infinite number of terms in Eq (4). Now let σ be the maximal value of s for whichX1

j¼1
j Ljjs < 1 holds, where Lj is the Lipschitz constant of ϕj (i.e.,

k�jðxÞ��jðx0Þk
kx�x0k � Lj for 8x 2 U

(x0), where U(x0) is the neighborhood of any feasible state vector x0). The approximation error
(difference between the original model and the computational surrogate model) is then
bounded by CM−r, whereM denotes the number of forward simulations, r ¼ 1

s � 1 and 0< σ

< 1 and C> 0 is a constant that is independent of the system size [18]. Furthermore, the
Lipschitz constants for ϕj(x) can be made arbitrarily small by adjusting the distance between aj
and bj due to the rescaling of the parameter range. The performance of the adaptive Smolyak
method typically improves once we constrain admissible parameter ranges to small neighbor-
hoods near nominal values.

For CRN models the number of reaction terms in Eq (3) is finite, but possibly (very) large.
Then the error bound CM−r obtained in [18] in the infinite-dimensional case is valid, with C
and r independent of the system size. Importantly, the convergence rate r is independent of the
dimension of the parameter space (the number of model parameters). It depends only on the
sparsity σ 2 (0,1) afforded by a system’s kinetic description. Here, the term sparsity does not
refer to sparsity in the CRN connectivity graph, but to the frequency of appearance of large
coefficients in (generalized) polynomial chaos expansions (‘gpc’ expansions, for short) of the
parametric systems’ responses; it is mathematically encapsulated as “p-summability of the gpc
coefficient sequence”. This has recently been established for high-dimensional CRNmodels
based on mass-action kinetics [18]. There, a large number of “almost” decoupled subsystems
increases sparsity in polynomial expansions of parametrized system responses, which is favor-
able for performance of our adaptive Smolyak algorithms. This convergence rate should be
compared to that of conventional tensor product interpolation methods, which decreases with
the dimension np of the parameter space. For illustration, consider the following linear model
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(see [20] for numerical experiments):

dx
dt

¼
X1
j¼1

pjj
�sx þ u; ð5Þ

where s> 1, and the number of parameters is infinite. By comparing Eq (5) to Eq (3) we have
that: ϕj(x) = j−s x. Therefore the Lipschitz constant Lj for ϕj(x) is j

−s, and:

X1
j¼1

jLjjs ¼
X1
j¼1

ðj�sÞs ¼
X1
j¼1

j�ss: ð6Þ

It is well known that the series
P1

j¼1 j
�q converges for q> 1 [21]. Therefore the sum in Eq (6)

converges for sσ> 1 and for s > 1
s
. Note that the larger the value of s, the smaller the potential

values of σ, and the larger the convergence rate: r ¼ 1
s � 1.

Surrogate models
With the final surrogate model, we can compute the expected value (and possibly higher
moments) for modeled system properties. Typically, system properties that have not been (or
cannot be) experimentally measured are of interest. The expected value of a quantity F(p), in
the rescaled parameter region U, reads:

E½FðpÞ� ¼
Z
U

FðpÞpðpjDÞdp ¼
Z
U

FðpÞ pðDjpÞpðpÞ
pðDÞ dp ð7Þ

where D are the experimental data, p(pjD) is the posterior distribution given data D, p(Djp) is
the likelihood, and p(p) is the prior distribution. We assume additive, Gaussian observation
noise. The measurement model for K experimental observables and nt time instances is of the
form: y = h(p) + η, η*N(0,Γ). The likelihood then takes the form of a (inverse) covariance-

scaled least squares functional pðD j pÞ 	
Ynt

k¼1
expð� 1

2
ðyk � hkðpÞÞTG�1

k ðyk � hkðpÞÞ, where
yk 2 D is the data at observation time tk. Marginalizing over the parameter space, we compute
the evidence p(D) as

pðDÞ ¼
Z
U

pðD;pÞdp ¼
Z
U

pðDjpÞpðpÞdp: ð8Þ

Such an explicit computation of the evidence is computationally inexpensive for surrogate
models based on sparse gpc approximations (it may not be necessary for all applications, how-
ever). Sparsity in the parametric solution of Eq (1), with the right-hand-side defined in Eq (3),
implies sparsity in the parametric posterior distribution. Hence, the integral in Eq (8) (and Eq
(7)) computed with an output-adapted sparse grid withM points converges with rate CM−r

where C> 0 and r depends only on the sparsity σ, as discussed above. This should be compared
to the Monte Carlo approach (e.g. [22]). Here, the expected value of F(p) is estimated by the
finite sample average

EM½FðpÞ�≔
1

M

XM
i¼1

FðpiÞ ð9Þ

where the sequence of parameter samples pi, i = 1, . . .,M is i.i.d drawn from the posterior dis-
tribution p(pjD) (e.g., see the randomized Metropolis-Hastings Markov chain Monte Carlo
(MH-MCMC) method [23]). The asymptotic convergence rate of the sample average Eq (9) as
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the numberM of samples (i.e., the number of forward simulations) tends to1 is bounded by

k EM½FðpÞ� � E½FðpÞ� kL2 � M�1=2k FðpÞ kL2 : ð10Þ
The (mean square w.r.t. the prior) convergence rate 1/2 (to be distinguished from the actual
computational work, which increases linearly with the number of parameters) Eq (10) is also
independent of the dimension of the parameter space. However, this rate is low (at most = 0.5,
implying in particular that error reduction by a factor 1/2 mandates four times as much work)
compared to the convergence rate afforded by the adaptive Smolyak process.

Results
To validate the implementation of the dimension-adaptive Smolyak algorithm and to quantify
its performance for CRNmodels, we applied it to three published systems biology models that
range from small-scale to one of the highest-dimensional current models using in silico gener-
ated data.

Model 1: Glucose uptake in yeast
The availability of nutrients plays a major role for the survival, growth, and proliferation of
microorganisms such as the yeast Saccharomyces cerevisiae. Glucose specifically is imported
into the cells and directly processed in the glycolytic pathway. Yeast prefers glucose over other
carbon sources such as fructose and mannose and it therefore possesses intricate mechanisms
for glucose sensing. However, the initial mechanisms for glucose sensing and activation have
often turned out to be more difficult to elucidate than downstream components and their func-
tions [24].

A predictive model of glycolysis would therefore be of great interest and efforts have already
been made in this direction [25]. However, although the stoichiometric properties of glycolysis
are well characterized, the kinetics of individual reactions are difficult to infer. A model for the
first steps of glycolysis, characterized by facilitated diffusion of glucose into S. cerevisiae cells,
has been presented in [26]. In a detailed version of this model with 9 states and 10 parameters,
which serves as our small-scale test case, glucose import is inhibited by glucose-6-phosphate
(G6P) (see Fig 2A, S1 Text for details, and S1 File for an implementation of the adaptive Smo-
lyak method for this model).

In the forward analysis, we focused on the effects of changes in parameters on the dynamics
of metabolite concentrations (internal and external glucose, internal G6P) that can be mea-
sured with state of the art experimental methods such as mass spectrometry [27]. The adaptive
Smolyak interpolation of the corresponding model states shows a convergence rate of 1 with
respect to the number of ODE solves needed (Fig 2B; see also S1 Text) to achieve the given
accuracy (2 × 10−5) in terms of the difference between the original and surrogate model uni-
formly over the parameter space. To investigate how the accuracy of our algorithm compares
to a first-order approximation, we conducted a local sensitivity analysis and observed a gain in
accuracy of two orders of magnitude, at comparable work (Fig 2C and S1 Text).

Importantly, with the Smolyak method it is also possible to efficiently compute other system
characteristics on the entire parameter domain with a prescribed accuracy. We conducted
numerical studies on the inverse problem in the context of Bayesian parameter estimation. In
the glucose model, such estimation may aim at identifying the concentration of individual car-
rier complexes over time, which are significantly more difficult to measure with available
experimental methods. For Bayesian inference, the adaptive Smolyak algorithm shows a similar
convergence behavior as in the forward problem (Fig 2D). However, for some levels of noise in
the artificial data we observe a slightly worse convergence rate (approximately 0.65 over 105
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Fig 2. Analysis of the glucosemodel. A:Model for glucose uptake in S. cerevisiae cells. Protein E transports glucose (Glc) between the external (e) and
internal (i) regions of the cell membrane. Glucose-6-phosphate (G6P) inhibits the uptake of intracellular glucose at the membrane. Model parameters such as
association (ki) and dissociation (k

−i) constants are indicated next to the corresponding reaction arrows.B: Estimated maximal (absolute) errors in the
interpolation (Clenshaw-Curtis, CC) over three state variables (external and internal glucose, and G6P), and over time, w.r.t. the number of ODE solves in the
parameter region ±0.25p0 (normal space).C: Absolute error over time for the first order (FO) approximation and the sparse grid (CC) solution, from
comparisons to the exact ODE solution at a randomly chosen parameter point in ±0.25p0 (normal space). The result is representative in the investigated
parameter region (cf. S1 Text). Approximation errors (log10) for external glucose are represented by blue (CC) and black (FO) diamonds, and for G6P by blue
(CC) and black (FO) squares.D: Estimated maximal (absolute) errors in the normalization constant for Bayesian inference for the same settings as in (B). E:
Comparison of convergence rates for the adaptive Smolyak approach (green) and MH-MCMC (black). For MH-MCMC the normalized error was computed as
the maximal (absolute) error between approximation and exact solution (approximated by 100.000 samples), at the time points in (C), for the six state
variables involving transporter E (A). The red (blue) line indicates a convergence rate of 0.5 (1.2). F:Computed index sets for� 700 iterations of the adaptive
Smolyak algorithm for interpolation (CC, ±0.25 � p0), w.r.t. the 10 model parameters. Each dot represents an increased number of grid points in the direction
of the corresponding parameter and the color indicates the order of the interpolation formula: black = 1; green = 2; red = 3.G: Activation of indices (that is,
number of grid points) per parameter direction, normalized by the number of iterations. Parameter identifiers correspond to (F) and (A), respectively.

doi:10.1371/journal.pcbi.1004457.g002
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ODE solves; Fig 2E), because parameter sets with high posterior probability constitute a small
part of the total parameter space. We also compared these results to those obtained from run-
ning a Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC) algorithm on the same
data, resulting in the same posterior distributions and showing that our implementation is
accurate. Notably this was achieved with significantly less computational effort than with
MH-MCMC (Fig 2E). These results indicate the potential of the Smolyak algorithm for the effi-
cient forward analysis and Bayesian inversion. However, the difference in performance
between the algorithms can be expected to be significantly larger for high-dimensional
applications.

Finally, we focused on the biological interpretation of the numerical results with respect to the
mechanisms for glucose transport that are most relevant (under our particular choices of obser-
vations for the forward problem and the selected domain in parameter space). Fig 2F shows the
activation of indices (grid points) per parameter dimension in the forward problem. Visually, it
is apparent that different parameters required different numbers of interpolation points and
interpolation orders. We quantified this behavior by an index activation, that is, the total order of
active interpolants normalized by the number of iterations. While overall the index activation is
rather homogeneous (Fig 2G), the approximation of the model behavior depends substantially
less on parameters k3 and k−3, which relate to the forward and backward directions of the reac-
tion for binding of intracellular G6P to the glucose bound carrier (E-Glc) at the inner region of
the cell membrane (see Fig 2A). This reaction is part of a hypothesized inhibition of glucose
transport by G6P [26], indicating that the reaction may not exist in reality (under the conditions
assumed for the numerical analysis). In contrast to first-order sensitivity analysis, this result is
not pertinent to a nominal model parametrization only. More generally, this indicates that the
proposed Smolyak sparse grid method can be employed for the detailed analysis of parameter
dependencies (and eventual model order reduction) of systems biology models.

Model 2: Epidermal growth factor receptor (EGFR) signaling
To investigate how our method performs for larger, more typical current systems biology mod-
els, we applied it to a model of the EGFR pathway response for the first two minutes upon EGF
stimulation [28]. This model was used to explain why EGFR phosphorylation peaks at� 30s
and returns to low levels at 1–2 min after stimulation, whereas the phosphorylation of other
key proteins increases monotonically. Briefly, the model captures short-term signaling induced
by EGF in an ‘upstream’ set of reactions leading from EGFR—EGF binding to active (phos-
phorylated) EGFR dimers. The interactions of the active receptor with its cytoplasmic target
proteins consists of three coupled cycles of reactions involving Grb2, Shc, and PLCγ, respec-
tively. Theses cycles feed downstream signaling to targets such as Ras and PI3K [28].

The model has 50 kinetic parameters, whose values were determined based on previous
reports and biochemical considerations, leading to a reasonable description of the experimental
observations [28]. To identify potential targets for external modification of the pathway behav-
ior (e.g., through drugs), it is interesting to investigate the sensitivity of the pathway response
to the kinetic parameters. In [28], the system behavior in response to parametric perturbations
was reported to be stable “over a wide range of values”, but in the analysis all rate-constants
were simultaneously multiplied by a constant factor (×2), which only leads to a “scaling of the
time”. With our method, it is possible to investigate the response to variations in any combina-
tion of the parameters. This is a major advantage, since information about the importance of
parameters and all the possible response patterns is generated.

The estimated error of the adaptive Smolyak interpolation suggests for this problem a con-
vergence rate of 0.75 with respect to the numberM of ODE solves needed (Fig 3A). This rather
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moderate (but still superior to Monte-Carlo sampling) rate results from near isotropic refine-
ment of the sparse interpolant in the 50-dimensional parameter space. This is indicated by the
sets of activated indices for the adaptive Smolyak algorithm (Fig 3B), where virtually all param-
eter dimensions require higher-order approximations. Over extended parameter domains, we
again find that our method yields results that are approximately two orders of magnitude more
accurate than those obtained by first-order parameter sensitivities (Fig 3C).

The isotropic refinement for sparse grids questions earlier beliefs on generally ‘sloppy’mod-
els in systems biology and in other domains [5, 29] that essentially relied on computing local
parameter sensitivities. The analysis of ‘sloppy’models uses a quadratic approximation of the
average squared changes in the model states χ2(p) at a nominal parameter point. More specifi-
cally, the metric for parameter influences proposed are the absolute eigenvalues λ of the (qua-
dratic) Hessian matrix; high (low) eigenvalues indicate influential (non-influential)
parameters. As illustrated in Fig 3D, however, compared to the exact χ2(p) that can be

Fig 3. Analysis of the EGFRmodel. A: Estimated maximal absolute error for the adaptive interpolation for states 1–23 with respect to the number of ODE
solves (Smolyak, CC, in the region ±0.25 � p0, normal space),B: Computed index sets for 4000 iterations of the adaptive Smolyak algorithm for interpolation
(CC, ±0.25 � p0), w.r.t. the 50 model parameters. Each black dot represents an increased number of grid points in the direction of the corresponding
parameter.C:Maximal absolute errors for the 23 state variables for sparse grids (blue) and FO approximation (black).D: Illustration of dependencies of
averaged squared changes in model states (χ2(p)) as a function of a single parameter p. A quadratic approximation of the model response to parameter
changes around the nominal point (red) can lead to large inaccuracies compared to the exact response when model responses are not symmetric (case 1), or
when the local and global behavior are very different (case 2). E: Comparison of rank-ordered characterizations of parameter influences by quadratic
approximation (eigenvalues of the Hessian matrix) and by the sparse grid method (index activation, as in Fig 2G). Pearson’s correlation ρ and corresponding
P-value are given at the top; red dots highlight the seven most influential parameters identified by sparse grids. F: Sloppiness of model parameters as
evaluated by the eigenvalues of the Hessian matrix (quadratic approximation at the nominal point) and by the activation frequency of indices (sparse grid
computation). In both cases, distributions were centered by the mean in log10 space.

doi:10.1371/journal.pcbi.1004457.g003

Efficient Characterization of Parametric Uncertainty

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004457 August 28, 2015 11 / 16



computed with our proposed algorithm, the quadratic approximation may be inaccurate when
the model response is asymmetric, or when it changes qualitatively distant from the nominal
parameter point. The rank-ordered metrics (eigenvalues λ for the quadratic approximation
and index activation for the sparse grids, respectively) for the EGFR signaling model correlate
significantly, but only poorly (Pearson rank correlation ρ = 0.29, P = 0.04; Fig 3E). The most
influential parameters identified by the adaptive Smolyak method, however, yield a biologically
consistent interpretation. These parameters pertain to receptor autophosphorylation and
dephosphorylation (k3, V4, and K4 in the notation of [28]) as well as active receptor interactions
with its direct binding partners Shc (k13 and k15) and PLCγ (k5 and k7). This indicates that con-
trol of active receptor by (auto)phosphorylation dominates the model behavior. In contrast,
the quadratic approximation would allocate the control to upstream receptor- ligand interac-
tions (k1, k−1, k2, k−2 are associated with the largest absolute eigenvalues). We find another sug-
gested characteristic of ‘sloppy’models, namely that eigenvalues spread across many decades
[5], also in the EGFR model, but global analysis with a narrowly distributed spectrum of index
activations (Fig 3F) again questions the accuracy of local approximations, and interpretations
thereof.

Finally, in the Bayesian inverse problem, which consists of computing the conditional
expectation of the first state, unbound EGF, under given (artificial) noisy, observational data,
the convergence rate was improved to approximately 1 (S1 Text). The improved convergence
rate compared to the MH-MCMCmethod shows the potential of the proposed, adaptive Smo-
lyak approach in particular for larger CRN models with several hundreds of state and parame-
ter variables. We attribute a decrease in the convergence rate for larger parameter variations in
the EGFR model (see S1 Text) to the more pronounced impact of nonlinearities in the model.
In practical applications such as the Bayesian inference of pathway topologies for EGRF signal-
ing in [8] using models of similar size, however, we expect substantial gains in performance
compared to sampling-based methods.

Model 3: Coupled signaling pathways
To investigate how the adaptive sparse Smolyak method performs in high-dimensional param-
eter spaces we analyzed a model of the epidermal growth factor (EGF) and heregulin (HRG)
activated response in the mammalian ErbB signaling pathways and in the MAPK and Akt cas-
cades [14]. Briefly, the model, formulated entirely in mass-action kinetics, can be seen as a sub-
stantial extension of the EGFR model [28] above. It encompasses all four receptor species
(ErbB1-4) and their complex interactions explicitly. Degradation pathways via endosomes are
represented as well as downstream signaling through the mitogenic Ras/MAPK and the pro-
survival PI3K/Akt pathways. Especially the detailed modeling of combinatorial interactions
between and at receptor species lead to a model that encompasses 500 states and 229 parame-
ters, making it one of the most complex systems biology models developed to date. In [14], the
authors focused again on short-term signaling, and they found that first-order parameter sensi-
tivities are highly context (molecular feature and stimulation condition) specific. However, the
model parameters were estimated in a region 2.5 orders below and above the nominal values in
log-space. Due to the challenges of parameter identification in high-dimensional, nonlinear
ODE models, Chen et al. [14] took a pragmatic approach: model parameters were repeatedly
estimated, and patterns in the optimization results were then used to infer model properties in
order to cope with the issue of identifying parameters in large parameter spaces, as well as the
non-identifiability of the model given the experimental data. However, such an approach does
not guarantee that the results represent true model properties—they could be strongly biased.
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A detailed sensitivity analysis of this model revealed extreme parameter sensitivities (up to
1015), which is summarized in the sensitivity profile Fig 4A. The sensitivity profile is an indica-
tor for the sensitivity of the model w.r.t. each parameter, computed as the maximum absolute
value of the sensitivity, at the nominal parameter point, over states and time. Such high sensi-
tivity values render a computational forward analysis, as well as Bayesian inference, infeasible
even for moderate parameter variations. To cope with such sensitivities, we therefore initially
restricted the range of investigated values for each parameter to ±0.01 of the nominal parame-
ter point (p0). In this region we observe a similar convergence behavior for the adaptive Smo-
lyak interpolation and quadrature as for the two smaller models (Fig 4B). For the
computational forward analysis, a gain in accuracy of two orders compared to the first-order
approximation and a convergence rate of 1.5 can be achieved (see S1 Text). While we refrain
from interpretation of the computational results because of the ill-conditioned model, these
performance measures indicate that the proposed adaptive Smolyak method can also make
large-scale systems biology models amenable to improved (Bayesian) parameter identification.

We next generated noisy observational data of Akt, Erk, and ErbB phosphorylation at three
to four time points for a parameter point in the investigated region. The estimated error of the
algorithm indicates a convergence rate of 1–1.5 for the normalization constant of the Bayesian
posterior (see S1 Text). In this computation, the adaptive Smolyak algorithm identifies the
indices with the largest estimated contribution to the quantity of interest, which can be used in
subsequent steps to adaptively enlarge the scanned parameter regions for the less-significant
parameters. Hence, we propose the following heuristic strategy for adaptations of the parame-
ter domain: we simply enlarge the parameter variations for all parameters not activated at the
current stage of the algorithm. In analyzing model 3, many of the parameters were never acti-
vated by the algorithm, indicating that parameter ranges can be made even larger (arbitrarily
large for redundant parameters not affecting the response variables). As shown in S1 Text, we
obtained promising results with our heuristic strategy, despite the underlying model’s

Fig 4. Analysis of coupled signaling pathways. A: Sensitivity profile: maximum of the derivative of each state variable w.r.t. each of the parameters
(dxidpj

; i ¼ 1; . . . ; nx; j ¼ 1; . . . ; np) for all simulated time points and for all 500 state variables. B: Estimated maximal absolute error for the adaptive interpolation

for all 500 state variables with respect to the number of ODE solves in the region p0 ± 0.01p0. Error curves for adaptively expanded regions show a similar
trend (see S1 Text).

doi:10.1371/journal.pcbi.1004457.g004
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sensitivity issues. We are not aware that sampling-based analysis of a systems biology model of
the present scope has ever been achieved.

Discussion
We propose a sparse, adaptive interpolation scheme for the efficient deterministic computa-
tional treatment of parametric uncertainty in complex, nonlinear systems. The methodology is
particularly suitable for nonlinear parametric CRNmodels which commonly appear in compu-
tational systems and cell biology. Our numerical analysis of three CRN models that represent
the scope of (current) model complexity indicates that the error convergence rate of our
method is generically superior to that of Monte Carlo methods, in terms of the number of for-
ward simulations required to reach a prescribed error tolerance. Moreover, MC approaches
converge only in mean-square (cf. Eq (10)), whereas the presently proposed methodology
delivers “worst-case”, sup-norm convergence rates.

As expected, the efficiency of our method increases when many parameters contribute insig-
nificantly to the model response. When the feasible parameter ranges are narrowed to small
neighborhoods of the nominal value due to high sensitivities, our adaptive sparse tensor sam-
pling scheme is superior to the widely used (local) first-order approximations. Also for “well-
behaved”models that are equally sensitive to all parameters we observe a higher convergence
rate with the Smolyak based approach. In our test problems, the proposed method consistently
achieves relative numerical accuracy of five to seven decimals in typical quantities of interest in
prediction and Bayesian inference for CRNs. While this accuracy may be considered excessive
given the often substantial levels of measurement uncertainty in available data, we assert that
high, certified relative numerical accuracy is necessary to clearly distinguish computational
(e.g., numerical) errors from modeling errors (e.g., erroneous hypotheses on the CRN or on
kinetic rate laws), and measurement noise. Our analysis of the EGFR model, for example, dem-
onstrated that numerical parameter dependencies with certified accuracy imply a biological
interpretation of sensitive network parts that is different from low-order approximations with-
out such guarantees. Moreover, the postulated prevalence of ‘sloppy’models in systems biology
may need re-evaluation in the light of our findings of nearly isotropic model responses to
parameter changes.

Our adaptive Smolyak interpolation method also has several other attractive features. Our
method as well as MCMC will exactly characterize parametric dependencies in the limit of infi-
nite samples or grid points. However, unlike MCMC, the sparse interpolation process provides
a reduced surrogate model upon termination. This model can be quickly evaluated at additional
parameter points. Already for moderate-sized models, such as the ERK model, the proposed
sparse grid evaluation uses 28 times less CPU time than the ODE solver. Since the surrogate
model is based on tensorized polynomial expansions, the computation of distribution
moments via (Smolyak) integration of the surrogate model over the parameter space is trivial,
thereby overcoming a common computational bottleneck of Bayesian analysis. For example,
future work could consider Bayesian parameter estimation for the coupled signaling model to
increase the model’s realism.

Further improvements of our Smolyak based method could focus on a systematic approach
for increasing the feasible range of parameter values. We took first steps in this direction in the
analysis of model 3, where the parameter ranges were iteratively extended, with promising
results. Another interesting direction is to construct reduced models in an automated fashion,
based on sensitivity analysis and quasi-steady state approximations, in different parts of the
parameter space. The glucose model provided one example of this approach, identifying mech-
anisms that are potentially not relevant for overall glucose transport kinetics. The reduced
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models could then be analyzed in greater detail, e.g. in larger parameter ranges than the origi-
nal model.

Our proposed methodology can extend the range of (biochemical) models that are amena-
ble to computational analysis, and thereby the complexity of cellular networks that can be
addressed with mathematical models. More generally, recent mathematical results on sparsity
in gpc expansions of the parametric system responses for affine-parametric models predict that
the proposed methodology can achieve convergence rates larger than 1/2 in terms of the num-
ber of forward simulations, free from the so-called “curse of dimensionality” [18]. Sparsity in
polynomial chaos expansions of parametric responses due to sparse connectivity patterns in
model descriptions appears also in nonlinear models of complex systems in other applications.
Our presently proposed methodology for their efficient computational analysis extends, there-
fore, beyond CRNs from systems biology.
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