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Abstract. Human cells were transfected with a mouse 
vimentin cDNA expression vector containing the hor- 
mone response element of mouse mammary tumor vi- 
rus. The distribution of mouse vimentin after induc- 
tion with dexamethasone was examined by indirect 
immunofluorescence with antivimentin antibodies 
specific for either mouse or human vimentin. In stably 
transfected HeLa ceils, which contain vimentin fila- 
ments, addition of dexamethasone resulted in the ini- 
tial appearance of mouse vimentin in discrete areas, 
usually perinuclear, that always corresponded to areas 
of the human filament network with the most intense 
fluorescence. Within 20 h after addition of dexametha- 
sone, the mouse and human vimentin immunofluores- 
cence pattern s were identical. However, in stably 
transfected MCF-7 cells, which lack vimentin fila- 
ments, induction of mouse vimentin synthesis resulted 
in assembly of vimentin filaments throughout the 
cytoplasm without any obvious local concentrations. 

Transient expression experiments with SW-13 cell sub- 
clones that either lack or contain endogenous vimentin 
filaments yielded similar results to those obtained with 
MCF-7 and HeLa transfectants, respectively. Further 
experiments with HeLa transfectants were conducted 
to follow the fate of the mouse protein after synthesis 
had dropped after withdrawal of dexamethasone. The 
mouse vimentin-specific fluorescence was initially lost 
from peripheral areas of the cells while the last detect- 
able mouse vimentin always corresponded to the hu- 
man filament network with the most intense fluores- 
cence. These studies are consistent with a uniform 
assembly of vimentin filaments throughout the 
cytoplasm and suggest that previous observations of 
polarized or vectorial assembly from a perinuclear 
area to more peripheral areas in cells may be at- 
tributable to the nonuniformly distributed appearance 
of vimentin filaments in immunofluorescence mi- 
croscopy. 

I 
NTERMEDIATE filaments are believed to be the most sta- 
ble component of the cytoskeleton of mammalian cells. 
Studies of the physical characteristics of the subunit pro- 

teins and subunit protein assembly have shown that inter- 
mediate filaments have properties that differ substantially 
from those of microtubules and microfilaments (for reviews 
see Steinert and Roop, 1988; Klymkowsky et al., 1989; Sar- 
ria and Evans, 1989). Unlike microfilaments and microtu- 
bules, most of the intermediate filament protein in cells is 
found in an insoluble, filamentous form, with only a very 
small fraction of the total present in a soluble form (Soellner 
et al., 1985). Pulse-chase studies with vimentin-type fila- 
ments have indicated that newly synthesized intermediate 
filament protein is first present in this small soluble pool but 
is then rapidly incorporated into the insoluble filaments 
(Blikstad and Lazarides, 1983; Soellner et al., 1985). Al- 
though these reports differ slightly concerning the degree of 
subsequent exchange of subunit protein between the soluble 
and filamentous forms, once assembled, intermediate illa- 
ments would appear to be less dynamic structures than mi- 
crofilaments or microtubules. 

The cytoplasmic network of intermediate filaments ap- 
pears to form close associations with the nucleus and plasma 

membrane (Goldman et al., 1985; 1986). Although the illa- 
ments are believed to be apolar structures, some studies have 
raised the possibility that the assembly and dynamics of the 
intermediate filament network in cells may be a process with 
an intrinsic polarity with respect to the nucleus and plasma 
membrane (see Robson, 1989). Eckert et al. (1982a) initially 
observed that the in vitro assembly of keratin protein onto 
detergent-extracted epithelial cytoskeletons appeared to oc- 
cur preferentially in areas of cytoplasm around the nucleus. 
It was also shown that antibody-induced keratin filament col- 
lapse resulted in perinuclear filament aggregates (Eckert et 
al., 1982b). Based on these observations and the appearance 
of keratin filaments in motile cells, Eckert and Caputi (1985) 
proposed that intermediate filaments are assembled at 
specific perinuclear distribution centers. Albers and Fuchs 
(1987) transiently expressed a truncated mutant keratin 
cDNA in cells that disrupted the endogenous keratin fila- 
ment network. In ceils recovering after this transient expres- 
sion, the newly formed normal keratin filaments appeared 
first in a perinuclear location. In contrast, microinjection of 
polyadenylated RNA from epithelial cells into heterologous 
epithelial (Franke et al., 1984) and nonepithelial (Kreis et 
al., 1983) cells has been shown to result in keratin filament 

© The Rockefeller University Press, 0021-9525/90/08/553/13 $2.00 
The Journal of Cell Biology, Volume 111, August 1990 553-565 553 



assembly dispersed throughout the cytoplasm, not indicating 
a particular localization for filament assembly. 

Observations on the assembly of modified filament pro- 
teins in cells have appeared to support the concept that inter- 
mediate assembly may take place specifically in a perinuclear 
location. Vikstrom et al. (1989) microinjected biotinylated 
vimentin into fibroblasts that contained a preexisting vimen- 
tin filament network and found that with time after injection, 
the modified vimentin was first detected in filaments near the 
nucleus and then gradually later in filaments that extended 
into more peripheral areas of the cytoplasm. Similarly, A1- 
bers and Fuchs (1989) transiently expressed a modified kera- 
tin cDNA in epithelial cells and reported that the modified 
keratin protein was detected initially in filaments at a perinu- 
clear location and then progressively along the cytoplasmic 
filaments more distant from the nucleus. These studies sug- 
gested that intermediate filament assembly may take place in 
a perinuclear location and progress in a vectorial or po- 
larized manner toward the cell periphery. One significant 
concern in the interpretation of these results involves the fact 
that in most cells intermediate filaments are not uniformly 
distributed in the cytoplasm at the level of immunofluores- 
cence and are often seen as perinuclear accumulations. Be- 
cause it might be expected that filament protein incorporated 
uniformly into assembled filaments would also be first de- 
tectable in immunofluorescence in areas with the highest 
preexisting filament concentration, it is difficult to differen- 
tiate between polarized and uniform subunit assembly on 
this basis. 

Recently, Ngai et al. (1990) reported that expression of a 
chicken vimentin cDNA in mouse fibroblasts resulted in 
incorporation of the newly synthesized chicken vimentin 
into the existing mouse filament network at discrete sites 
throughout the cytoplasm. However, intermediate filaments 
are dynamic structures with a finite half-life (Albers and 
Fuchs, 1987; 1989). Therefore, experiments to localize new- 
ly synthesized vimentin in this background of a preexisting 
filament network are difficult to interpret. 

These studies involve the characterization of regulatable 
expression of a mouse vimentin cDNA in human cells in the 
presence and also in the absence of a preexisting human 
vimentin filament network. This approach allows for not 
only detection of newly synthesized vimentin incorporated 
into assembled intermediate filaments, but also the study of 

Figure 1. In vitro transcription 
and translation of mouse vimen- 
tin cDNA containing plasmids 
pFB4.2 and pFB7.2. Transcrip- 
tion was initiated using the phage 
T7 promoter. The resulting RNA 
was translated in a reticulocyte 
lysate system. The translation 
products were analyzed on a 
7.5,% SDS-polyacrylamide gel. 
The figure shows the [35S] au- 
toradiograph of the in vitro trans- 
lated proteins separated by SDS- 
PAGE. The position of purified 
vimentin (V) and molecular 
weight standards (Sigma SDS- 
6H) are indicated. 
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Figure 2. Map of the vimentin cDNA expression plasmid pSP64- 
MMTV-VimS used in transfection studies. The map gives the loca- 
tion of the restriction sites derived from the original pSP64 poly- 
linker. 

de novo assembly and the fate of the assembled mouse fila- 
ment protein in cells after its synthesis has ceased. 

Materials and Methods 

Isolation of a Mouse Vimentin cDNA 

Total cellular RNA was isolated from mouse L-929 cells by the guanidinium 
thi0cyanate procedure of Han et al. (1987) and poly A+ RNA selected by 
oligo (dT)-cellulose chromatography. This RNA was used for DNA synthe- 
sis using a commercial eDNA synthesis kit (Pharmacia Fine Chemicals, 
Piscataway, NJ) to produce a recombinant library in the phagemid lambda- 
ZAP (Stratagene Corp., La Jolla, CA). The library was screened by replica 
filter hybridization using a 32p-labeled hamster vimentin eDNA, pVim-1 
(Quax-Jeuken et al., 1983) (girl of Dr. H. Bloemendal). A number of posi- 
tive recombinants were obtained and two were selected for further study. 
Both were found to contain inserts of '~1.8 kb that hybridized with the pV'lm-1 
probe (data not shown). When produced as the excised plasmid form 
(Bluescript SK-), the plasmids pFB4.2 and pFBT. 2 yielded restriction maps 
indicating identical vimentin inserts in opposite orientations. Both plasmids 
were linearized with Xba I and the inserts transcribed in vitro using T7 RNA 
polymerase. The resulting RNA was then translated in a reticulocyte lysate 
system containing [35S]methionine followed by analysis of the 35S-labeled 
proteins by SDS-PAGE (Laemmli, t970). Molecular weight markers from 
a commercial kit were used as a reference (SDS-6H; Sigma Chemical Co., 
St. Louis, MO). As shown in Fig. 1, pFB4.2 yielded a single labeled 57-kD 
protein species which comigrated with purified mouse vimentin, whereas 
pFB7.2 yielded only background reticulocyte proteins. A comparison of the 
restriction maps ofpFB4.2 and pFB7.2 (not shown) with the hamster vimen- 
tin sequence (Quax et al., 1983), and the in vitro transcription/translation 
data indicate that pFB4.2 contained a full-length vimentin cDNA sequence 
in the sense orientation with respect to the T7 promoter. 

Construction of Regulatable Vimentin cDNA 
and Glucocorticoid Receptor-Neomycin Resistance 
Expression Vectors 

The plasmid pFB4.2 was digested with Eco RI and the excised 1.8-kb vi- 
mentin eDNA insert was purified. The ends were made flush with T4 DNA 
polymerase, Barn HI linkers were added, and the cDNA was inserted into 
the Barn HI site of the ptasmid pSP64-MMTV. This plasmid is a pSP64- 
based plasmid containing the promoter and hormone response element of 
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mouse mammary tumor virus and the polyadenylation signal of murine sar- 
coma virus (gift of E van der Hoorn). A plasmid containing the 1.8-kb in- 
sert in the sense orientation, was designated pSP64-MMTV-VimS (Fig. 2). 

For use in cotransfection experiments, a plasmid designated pRGRN was 
constructed, pRGRN contains the rat glucocorticoid receptor eDNA and 
the neomycin phosphotransferase gene as separate transcription units, each 
under the control 'of the Rous sarcoma virus promoter. To construct 
pRGRN, the Barn HI site of the rat glucocorticoid receptor expression vec- 
tor pRSVGR (Miesfeld et al., 1986) (gift of K. Yamamoto) was converted 
to an Mlu I site. The RSV promoter and glucocorticoid receptor gene were 
excised from the resulting vector by digestion with Mlu I. This MIu I frag- 
ment was inserted into the plasmid pRSVneo (gift of B. Howard) at the 
unique Mlu I site to create pRGRN. 

Cell Culture and DNA Transfection 

HeLa cells (ATCC CCL 2.2) and SW-13 cells (ATCC CCL 105) were ob- 
tained from the American Type Culture Collection (Rockville, MD). MCF-7 
cells were obtained from Dr. D. Edwards. Cells were grown in monolayer 
culture in a 1:1 mixture of Ham's Fl2:Dulbecco's MEM containing 5% FBS. 

SW-13 cells express vimentin in a mosaic pattern (Hedberg and Chen, 
1986). SW-13 ceils were subcloned as described by Hedberg and Cben 
(1986). 50 subelones were obtained and examined for human vimentin con- 
tent by immunofluorescence microscopy. 25 of the subclones were found to 
be essentially vimentin negative, 22 were mosaics with a significant number 
of positive and negative cells, and 3 subclones were obtained that appeared 
to contain essentially only cells with prominent vimentin filament networks. 
A subelone of the vimentin-positive cells, designated SW-13/cl.1 vim + and 
vimentin negative cells, designated SW-13/cl.2 vim- were selected for fur- 
ther study. 

Stable cell lines were obtained by cotransfecting 0.6--0.8 x 106 cells in 
10-cm dishes with 40/~g pSP64-MMTV-VimS and 1.0 #g pRGRN by cal- 
cium phosphate precipitation ;(Graham and van der Eb, 1973) and 15% 
glycerol shock (Parker and Strak, 1979). Stable transfectants were selected 
in medium containing 400 #g/mi G-41g. Individual colonies were recovered 
and examined for mouse vimentin filament content in the presence and ab- 
sence of l0 -7 M dexamethasone by indirect immanefluorescence. After 
2-3 mo of continuous culture in 400 #g/ml G-418, stable cell lines were 
then maintained in medium containing 200 t~g/ml G-418. Although prelimi- 
nary experiments indicated that G-418 had no effect, all experiments were 
conducted in the absence of this antibiotic. Transient transfections were per- 
formed under similar conditions without cotransfection with pRGRN or 
G-418 selection. 

Indirect Immunofluorescence 

Cells were plated on sterile glass cover slips. The cells were rinsed briefly 
in PBS and then fixed in 70:30 acetone/methanol (voi/vol) at -20°C for 
10 rain. The cover slips were rinsed in PBS, and processed for indirect im- 
munofluorescence as described by Franke et al. (1978). Rabbit anti- 
vimentin (Moscinski and Evans, 1987), and monoclonal anti-vimentin (V-9; 
Boehringer Mannheim Biochemicals, Indianapolis, IN) were used as pri- 
mary antibodies. The rabbit anti-vimentin serum (diluted 1:100) visualized 
intermediate filaments in mouse cells, but did not detect filaments in a vari- 
ety of vimenfin containing human cells. Conversely, the commercial mono- 
clonal anti-vimentin (2 ~,g/ml) visualized intermediate filaments in human 
cells but did not detect filaments in vimentin-containing mouse L-929 or 
3T3 cells. Fluorescein-conjugated anti-rabbit and lissamine-rhodamine- 
conjugated anti-mouse antisera (Boehringer Mannbeim Biochemicals) were 
used as second antibodies, respectively. All antibodies were diluted in PBS 
containing 1% ovalbumin and 1% normal goat serum. The cover slips were 
mounted in Aqua-mount (Lerner Laboratories, Pittsburgh, PA) and viewed 
on a n Olympus microscope equipped with epifluorescence optics. Photo- 
graphic exposures were made for 15-20 s using Kodak T-Max 400 film and 
the film processed with an exposure index of 1,200 using Kodak HC-IIO 
developer. For all figures, the photographs represent identical exposures 
and photographic processing conditions. 

Preparation and Analysis of rsS]labeled 
Triton-insoluble Cytoskeletons 
Cells were labeled with 25-50 ~Ci/ml [35S]methionine for 2 h in methio- 
nine-free medium containing 1% FBS. Triton-insoluble cytoskeletons were 
prepared by the method of Zackroff and Goldman (1979) as previously de- 
scribed (Evans, 1984). In experiments with SW-13 cells, DNase I was de- 

leted from the Triton-KC1 solution to preserve filamentous actin as an inter- 
hal marker. Triton-insoluble cytoskeletons were analyzed by one (Laemmli, 
1970) and two-dimensional gel electrophoresis (O'Farrell, 1975). All sec- 
ond dimension SDS-PAGE contained 7.5 % acrylamide. After electmphore- 
sis, gels were stained with Coomnssie blue and destained as previously de- 
scribed (Evans, 1984). The gels were dried and autoradiographed on Kodak 
XAR x-ray film at -70°C. In some experiments, [35S]labeled proteins were 
directly qnantitated in dried gels using an imaging scanner (System 200; 
Bioscan, Inc., Washington, DC). The gels were scanned for 20 min per lane 
using the tm>-dimensional analysis program. Background was subtracted 
using a nonradioactive portion of the gel. The [ass] radioactivity for each 
gel lane and within individual protein peaks was determined using the man- 
ual mode. 

Results 

Expression of Murine Vimentin in 
Human Cells That Contain an Endogenous 
Vimentin Filament Network 

HeLa cells contain an endogenous vimentin filament net- 
work in addition to keratin filaments (Moll et al., 1982; 
Quinlan et al., 1985) (Table I). Stable lines of HeLa cells 
transfected with the steroid-regulated vimentin expression 
plasmid .were produced and screened for dexamethasone- 
dependent murine vimentin expression by immunofluores- 
cence with an antibody specific for rodent vimentin. Fig. 3 
shows double immunofluorescence of one transfectant cell 
line, HeLa/1C3, stained with rodent-specific (FITC) and 
human-specific (RITC) antivimentin antibodies with time af- 
ter treatment with 10 -7 M dexamethasone. There was no 
detectable expression of the transfected murine vimentin in 
the absence of dexamethasone and, as is common for cells 
in culture, the endogenous human vimentin filament staining 
pattern was nonuniform, with most cells exhibiting more 
concentrated vimentin filament staining in a perinuclear lo- 
cation (Fig. 3, A and B). 4-6 h after treatment with dexa- 
methasone, many cells exhibited small focal patches of stain- 
ing with the anti-mouse vimentin antibody, usually, but not 
always, in a perinuclear location (Fig. 3, C and D). Compari- 
son of the location of the expressed mouse vimentin with the 
immunofluorescence staining pattern of the human vimentin 
filaments showed that the first detectable mouse protein al- 
ways colocaiized with the area of the most intense staining 
of the preexisting filament network. The mouse vimentin 
then appears to progressively colocalize with more periph- 
eral areas of the human vimentin network until by 20 h after 
dexamethasone treatment, the mouse and human anti-vimentin 
immunofluorescence staining patterns were virtually identi- 
cal (Fig. 3, G and H). These observations indicated that the 
expressed mouse vimentin is rapidly incorporated into the 
human filament network. 

Table I. Intermediate Filament Proteins 
Expressed in Human Cell Lines Used in Vimentin 
eDNA Transfection Studies 

Vimentin Keratin 

MCF-7 - + 
HeLa + + 
SW-13/cl. 1 vim + + - 
SW-13/cl.2 vim- - - 
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Figure 4. Polyacrylamide gel analysis of Triton-insoluble proteins from [3sS]methionine-labeled HeLa/1C3 cells. HeLa/1C3 and untrans- 
fected HeLa cells were cultured with or without 10 -7 M dexamethasone for 24 h and then radiolabeled with [35]methionine for 2 h. Triton- 
insoluble cytoskeletons were prepared and analyzed by PAGE. The figure shows the ass autoradiographs. (A) Two-dimensional gel analy- 
sis of Triton-insoluble proteins from untreated (1) and dexamethasone-treated (2) HeLa/1C3 cells. (B) SDS-PAGE of untreated (lanes 1 
and 3) and dexamethasone treated (lanes 2 and 4) HeLa/1C3 cells (lanes I and 2) and untransfected HeLa cells (lanes 3 and 4). The positions 
of vimentin (V) and cytokeratins (KZ KS, K/7, K/8, and K/9) are indicated. 

Previous studies have made similar observations of an ini- 
tial perinuclear localization of newly synthesized (Albers 
and Fuchs, 1989) or microinjected (Vikstrom et al., 1989) 
intermediate filament proteins. These observations have 
been interpreted as indicating that the assembly-disassembly 
of intermediate filaments occurs as a polarized or vectorial 
process. However, if the assembly-disassembly of interme- 
diate filament subunits with the preexisting human filament 

network was uniform per filament length, then the first place 
that newly synthesized mouse vimentin subunits would have 
been detectable would have been in areas of cytoplasm with 
the greatest concentration of filaments. Because the filaments 
are usually found in greatest concentration around the nu- 
cleus, it is difficult to differentiate betwee n these two possi- 
bilities in these types of studies. 

To demonstrate that the murine vimentin expressed in 

Table II. Effect of Dexamethasone on Vimentin Synthesis in HeLa Cells Transfected with the Steroid Inducible Mouse 
Vimentin eDNA Vector 

HeLa/1 C3 HeLa 

[35S] Total* V/K* [35S] Total V/K* 

- + - -  + - -  + - -  + - -  + - -  + 

cpm • cpm 

Vimentin 8,407 11,143 6.1 8.0 8,424 6,685 6.1 6.5 
Keratin-8 11,877 9,666 8.7 6.9 .7 1.2 13,893 11,381 9.9 7.6 .6 .6 

HeLa/1C3 and untransfected HeLa cells were treated with dexamethasone, labeled with [35S]mcthionine, and Triton-insoluble cytoskeletons prepared as described 
in Fig. 4. The [35S]labeled proteins were separated by SDS-PAGE. One-dimensional polyacrylamide gels, including the gel used to produce the autoradiograph 
shown in Fig. 4 B, were directly scanned for [35S] radioactivity as described in Materials and Methods. Values represent the average from duplicate SDS-gels 
obtained from the same experiment, ( - )  untreated and (+) dexamethasone treated. 
* Percent total gel lane radioactivity in the indicated protein band. 
~: Ratio of vimentin to keratin-8 [35S] radioactivity. 

Figure 3. Expression of marine vimentin in HeLa/1C3 cells with time after induction with dexamethasone. HeLa/1C3 cells were obtained 
after stable transfection of HeLa cells with pSP64-MMTV-VimS and pRGRN. The figure shows double immunofluorescence staining pat- 
terns obtained with rabbit anti-mouse vimentin (FITC) (A, C, E, and G) and mouse monoclonal anti-human vimentin (RITC) (B, D, E 
and H) antibodies for untreated cells (A and B ), and cells 4 h (C and D), 8 h (E and F), and 20 h (G and H) after the addition of dexameth- 
asone. 
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Figure 6. Expression of murine vimentin in MCF-7/1B2 ceils with time after induction with dexamethasone. MCF-7/1B2 cells were obtained 
after stable transfection of MCF-7 cells with pSP64-MMTVoVimS and pRGRN. The figure shows the anti-mouse vimentin indirect im- 
munofluorescence pattern of untreated cells (A), and cells 6 h (B), 8 h (C), and 24 h (D) after the addition of 10 -7 M dexamethasone. 

HeLa/1C3 ceils was not an altered gene product and to gain 
some appreciation for the relative amount of species-specific 
vimentin produced in these cells, an analysis of [35S]methi- 
onine-labeled Triton-insoluble cytoskeletons from untreated 
and dexamethasone treated HeLa/1C3 cells was performed. 
Preliminary studies had indicated that murine and human 
vimentin are indistinguishable on the basis of two-dimen- 
sional gel mobility, and that the anti-vimentin antisera that 
exhibit species specificity in immunofluorescence, cross- 
reacted in preliminary immunoblotting experiments. Further- 
more, as shown in Fig. 4, dexamethasone treatment of the 
HeLa/1C3 cells for 24 h produced no obvious qualitative dif- 
ference in the two-dimensional PAGE [35S] autoradiograms 
of cell lysates or Triton-insoluble proteins compared with 
similar preparations from untreated cells. However, as shown 
in Table II, estimation of the amount of vimentin synthesis 
by direct quantitation of [35S] Triton-insoluble proteins sep- 
arated on SDS-PAGE, indicated that the relative amount of 

vimentin synthesized during a 2-h pulse was selectively in- 
creased in HeLa 1C3 cells after dexamethasone treatment, 
compared to the rate of psS] incorporation into either cyto- 
keratin proteins present in these preparations or total sample 
protein. Dexamethasone treatment appeared to actually de- 
crease the relative incorporation of [35S]methionine into ker- 
atin-8 in HeLa 1C3 cells and both vimentin and keratin-8 in 
untransfected HeLa controls (Table ID. These experiments 
indicate that HeLa cells transfected with the murine vimentin 
cDNA vector can be induced to express a significant amount 
of murine vimentin that is indistinguishable from the endog- 
enous human gene product on the basis of size and charge. 

Loss of  the Mouse Vimentin from the Vimentin 
Filament Network in HeLa/1C3 Cells after Removal 
of  Dexamethasone 

After removal of the inducer from HeLa/1C3 cell cultures, 

Figure 5. Loss of the transfected mouse vimentin cDNA product from the endogenous vimentin filament network with time after removal 
of dexamethasone. HeLa/1C3 cells were treated with 10 -7 M dexamethasone for 2 wk. The inducer was then removed from the growth 
medium (0 time) and cells cultured in the absence of dexamethasone. The figure shows the double immunofluorescence staining patterns 
obtained with rabbit anti-mouse vimentin (FITC) (A, C, E, and G) and mouse monoclonal anti-human vimentin ( ~ ) ,  6B, D, F,, and 
H) antibodies for cells at 0 time (A and B), 24 (C and D), 48 (E and F), and 72 h (G and H) after the removal of dexamethasone. 
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Figure 7. Two-dimensional gel anal- 
ysis of Triton-insoluble proteins 
from [35S]methionine labeled MCF- 
7 vimentin transfectants. The figure 
shows the autoradiograph of prepa- 
rations from MCF-7/1B2 cells (A and 
B) and an MCF-7 transfectant clone 
that did not express detectable vi- 
mentin in immunofluorescence (C 
and D). Triton-insoluble proteins 
were prepared from cells that were 
untreated (A and C) and treated with 
t0 -7 M dexamethasone (B and D). 
The positions of vimentin (I/) and 
cytokeratins (K8, K/8, and K/9) are 
indicated. 

the fate of the mouse vimentin that has been incorporated 
into the human network can be followed with time. If  vimen- 
tin filament assembly is a polarized process directed outward 
from a perinuclear region, it would be anticipated that the 
mouse protein should appear to be lost initially from areas 
around the nucleus, as newly assembled human vimentin is 
incorporated, and should be last detected in more peripheral 
areas of the filament network. Conversely, if vimentin fila- 
ment assembly is a more uniform process, then it would be 
anticipated that the mouse protein should appear to be lost 
initially from areas of human filament network with the least 
fluorescence intensity and should be last detected in areas of 
the human filament network with the greatest fluorescence 
intensity. Fig. 5 shows the anti-mouse and anti-human vi- 
mentin double immunofluorescence staining pattern of HeLa/ 
1C3 cells with time after removal of dexamethasone. In this 
experiment, the cells had been cultured for 2 wk in the pres- 
ence of 10 -7 M dexamethasone and the mouse and human 
anti-vimentin immunofluorescence staining patterns were 

identical (Fig. 5, A and B). After removal of the inducer, the 
intensity of the anti-mouse vimentin immunofluorescence 
slowly diminished, and by 48 h a visible loss, particularly 
from peripheral areas of the cytoplasm was apparent (Fig. 5, 
E and F). 72 h after removal of dexamethasone, many of the 
cells had little visible anti-mouse vimentin staining (Fig. 5, 
G and H). The last areas of visible fluorescence always co- 
localized with the most intensely stained area of the endoge- 
nous human filament network, usually, but not always, in a 
perinuclear location. 

De Novo Fimentin Filament Assembly Occurs 
throughout the Cytoplasm When Murine Vimentin Is 
Expressed in Human Cells in the Absence of an 
Endogenous Vimentin Network 

Human MCF-7 cells contain keratin filaments, but unlike 
most other epithelial cell lines in culture, do not express de- 
tectable levels of vimentin (Franke et al., 1983; Glass and 
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Figure 8. Two-dimensional gel 
analysis of Triton-insoluble pro- 
teins from [35S]methionine-la- 
beled SW-13 cell subclones. The 
figure shows the pSS]autoradio- 
graph of C1.2 vim- (A) and CI.1 
vim + (B) cell preparations. The 
positions of actin (a) and vimen- 
tin (v).are indicated. 

Fuchs, 1988) (Table I). Stable lines of MCF-7 cells trans- 
fected with the mouse vimentin expression plasmid were 
produced and screened by immunofluorescence with the 
anti-rodent vimentin antibody for the ability to express 
vimentin after induction with dexamethasone. Fig. 6 shows 
the anti-vimentin immunofluorescence staining of one trans- 
fectant line, MCF-7/2B1, with time after the induction of 
vimentin synthesis in the presence of 10 -7 M dexametha- 
sone. MCF-7/2B1 cells in the absence of dexamethasone did 
not contain detectable anti-vimentin immunofluorescence 
(Fig. 6 A). Within 6-8 h after the addition ofdexamethasone, 
variable amounts of anti-vimentin reactive punctate or short 
filamentous structures became visible in the cytoplasm in 
many cells (Fig. 6 B). With increasing time after exposure 
to dexamethasone, cells exhibited progressively longer and 
more apparent filamentous cytoplasmic structures and by 
24 h, some cells had anti-vimentin filament staining patterns 
that were not obviously different from other epithelial cells 
that express human vimentin filaments (Fig.6 D). This de 
novo assembly of vimentin filaments appeared tO occur 
throughout the cytoplasm of~these cells, at least initially 
without any observable perinuclear localization. Similar re- 
suits were obtained in experiments with a second transfec- 
tant MCF-7 line and in transient transfection experiments 
(data not shown). Expression of vimentin in MCF-7/1B2 
cells had no obvious effect on the morphology or growth of 
these cells. 

To confirm that the murine vimentin expressed in MCF-7 
cells in response to dexamethasone was normal intermediate 
filament protein, cell lysates from untreated and dexametha- 
sone treated psS]methionine-labeled MCF-7/IB2 cells were 
analyzed by two-dimensional PAGE. As shown in Fig. 7, in 
the presence of dexamethasone, MCF-7/IB2 cells synthe- 
sized a protein with an identical two-dimensional PAGE mo- 
bility as murine vimentin. This protein was not found in un- 
treated MCF-7/1B2 cells. This protein was also not detected 
in other stable, G418 resistant, MCF-7 transfectants that 
were vimentin negative in immunofluorescence, even in the 

presence of the inducer (Fig. 7) or in untransfected MCF-7 
cells in the presence or absence of dexamethasone (data not 
shown). 

Expression of Murine Vimentin in 
Human SW-13 Cell Subclones That Either Contain 
or Lack Intermediate Filaments 

Because the apparent differences in the assembly of ex- 
pressed vimentin between HeLa and MCF-7 cells could sim- 
ply be a reflection of comparing two dissimilar cell types, 
transfection experiments were also performed on subclones 
of the human adrenal carcinoma cell line SW-13 which either 
contain (SW-13/cl.1 vim +) or lack detectable vimentin fila- 
ments (SW-13/c1:2 vim-). Two=dimensional PAGE analysis 
of Triton-insoluble cytoskeletons prepared from psS]methi- 
onine-labeled cells (Fig. 8) showed that in preparations from 
SW-13/cl.1 vim + cells, vimentin was the most prominent pro- 
tein detected, whereas in similar preparations from SW-13/ 
cl.2 vim- cells there was no detectable vimentin. Further- 
more, relative to the amount of residual actin in these prepa- 
rations, there were no other prominent labeled proteins that 
could be readily identified as intermediate filament proteins, 
with the exception of nuclear lamins. This is consistent with 
the previous observations of Hedberg and Chen (1986), that 
SW-13 cells do not contain other cytoplasmic intermediate 
filament types. 

Both vim + and vim- cells were transiently transfected 
with pSP64-MMTV-VimS and the distribution of the ex- 
pressed mouse vimentin examined with time after addition 
of dexamethasone as shown in Figs. 9 and 10. In SW- 
13/C1.1 + cells, as in HeLa cells, the initial appearance of 
the mouse vimentin colocalized with the most intensely 
fluorescent area of the human filament network, usually in 
a perinuclear region of the cytoplasm, and then progres- 
sively colocalized with more peripheral areas of the endoge- 
nous filament network (Fig. 9). However, in transfected SW- 
13/CI.2 vim- cells, de novo filament assembly occurred 
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throughout the cytoplasm, similar to the vimentin filament 
assembly observed in MCF-7 cells (Fig. 10). These results 
indicated that the observed patterns of filament assembly are 
not a special property of a given cell type, but are general 
characteristics of cells that either contain or lack preexisting 
vimentin filaments. 

Discussion 

Examination of isolated intermediate filaments has generally 
indicated that the filaments lack polarity, that is, both ends 
of an individual filament are identical (Geisler et al., 1985; 
Stewart et al., 1989). The degree to which the incorporation 
and replacement of filament subunlts occurs at filament ends 
or at internal sites along the filament is not clear, although 
Angelides et al. (1989) have recently reported kinetic stud- 
ies on the neurofilament protein NF-L, indicating soluble 
subunits can exchange uniformly within filaments in vitro. 
Whereas intermediate filaments may not have a distinct phys- 
ical polarity, Georgatos and Blobel (1987) have reported that 
different regions or domains of the subunit proteins could 
mediate interactions with nuclear and plasma membrane 
components in vitro, raising the possibility that filaments 
may have a functional polarity which could result in receptor 
mediated vectorial assembly. 

Our studies demonstrate that in human HeLa and vimentin 
containing SW-13 cells transfected with a steroid-regulatable 
mouse vimentin cDNA expression plasmid, under induction 
conditions newly synthesized murine vimentin is first de- 
tected in the preexisting filament network in a nonuniform 
manner in indirect immunofluorescence microscopy. We 
have not observed the punctate localization of newly synthe- 
sized vimentin along the endogenous filaments that was ob- 
served by Ngai et al. (1990) in similar induction experi- 
ments. This phenomenon is similar to previous reports that 
biotinylated vimentin microinjected into cells (Vikstrom et al., 
1989) or modified keratin cDNA transiently expressed in 
cells (Albers and Fuchs, 1989) results in immunofluores- 
cence detection of the newly assembled proteins initially in 
the filament network in a perinuclear location and then pro- 
gressively in filaments in more peripheral areas of the 
cytoplasm. We were concerned that nonuniformity in the 
distribution of the preexisting filaments in immunofluores- 
cence microscopy could produce this effect. 

Experiments with HeLa/1C3 cells to follow the localiza- 
tion of the mouse vimentin after removal of dexamethasone 
showed that the pattern of loss of the mouse protein from the 
human filament network was essentially the reverse of what 
was observed following synthesis of new protein. After the 
removal of the inducer, the last detectable mouse vimentin 
in these cells always corresponded to the most intensely 
fluorescent area of the human filament network, usually in 
a perinuclear area. The time course for the loss of mouse 
vimentin from these cells was considerably longer than the 

time required to observe newly synthesized protein under in- 
duction conditions. This result is compatible with the report- 
ed >6 h half-life for vimentin mRNA in cultured cells (Lilien- 
baum et al., 1986). These observations are most consistent 
with the dynamic incorporation and loss of intermediate fila- 
ment protein throughout the length of the filaments, and sug- 
gest that the apparent perinuclear localization of newly syn- 
thesized vimentin in HeLa cells with preexisting vimentin 
networks could be due to nonuniformity in concentration of 
filaments in different areas of the cytoplasm in immunoflu- 
orescence microscopy. These experiments also indicate that 
vimentin filaments do not treadmill. 

A fundamental difficulty in experiments that localize the 
incorporation of newly synthesized vimentin into an existing 
filament network is that these studies cannot differentiate be- 
tween filament assembly and subunit protein turnover or ex- 
change. In contrast to the pattern of appearance of newly 
synthesized vimentin in cells that contain preexisting vimen- 
tin-type filaments, de novo assembly of vimentin-type inter- 
mediate filaments can occur throughout the cytoplasm of 
MCF-7 and SW-13/cl.2 vim- cells transfected with the mouse 
vimentin expression vector, at least initially without any dis- 
cernable perinuclear localization. These observations are 
consistent with the mRNA microinjection experiments of 
Kreis et al. (1983), who found that de novo expression of 
keratin-type filaments resulted in filament assembly without 
a particular cytol;lasmic localization. This would indicate 
that polarized or vectorial assembly from a perinuclear re- 
gion into more peripheral areas of the cytoplasm is clearly 
not a requirement to assemble intermediate filaments in 
vivo. 

These results would seem to be most consistent with a 
model of relatively uniform and dynamic intermediate fila- 
ment assembly throughout the cytoplasm. These experi- 
ments do not formally eliminate the possibility that filament 
assembly could occur as a result of a recycling-type mecha- 
nism, although in light of current models of intermediate 
filament structure this would seem unlikely. These studies do 
indicate that this question needs to be more critically evalu- 
ated at a level of resolution that eliminates the relatively two 
dimensional nature of fluorescence microscopy. In addition, 
these experiments do not address the nature of filament inter- 
actions with specific nuclear or plasma membrane compo- 
nents. The formation of specific interactions between inter- 
mediate filaments and other cellular structures may be 
independent of the symmetry of the assembly process. Re- 
gardless of the precise nature of the assembly process, these 
observations are consistent with other recent studies (Albers 
and Fuchs, 1987; 1989; Vikstrom et al., 1989), indicating 
that intermediate filaments are more dynamic structures than 
previously supposed. 

We thank Frans van der Hoorn (University of Calgary) for his gift of the 
expression plasmid pSP64-MMTV, and his help in making the mouse 

Figure 9. Expression of murine vimentin in a SW-13 cell subclone (CI.I vim +) that contains human vimentin filaments with time after 
transfection and addition of dexamethasone. The cells were transiently transfected with pSP64-MMTV-VimS. 24 h after transfection, the 
ceils were treated with 10 -7 M dexamethasone. The figure shows double immunofluorescence of cells at 0 time (A and B), 6 (C and D), 
8 (E and F), and 20 h (G and H) after the addition of dexamethasone, with rabbit anti-mouse vimentin (FITC) (A, C, E, and G) and 
mouse monoclonal anti-human vimentin (RITC) (B, D, F, and H) antibodies. 
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Figure 10. Express ion  of  mur i ne  v imen t in  in a SW-13 cell subclone  (C1.2 v im- )  that  lacks h u m a n  v imen t in  f i laments  with t ime  after  t rans-  
fection and  addit ion o f  dexamethasone .  T he  cells were t ransient ly  t ransfected wi th  pSP64-MMTV-VimS.  24 h after  t ransfect ion,  the  cells 
were treated with 10 -7 M dexamethasone .  T he  figure shows double  immunof luo rescence  o f  cells at 0 t ime  (A and B) ,  6 (C  and D),  8 (E 
and F )  and 20 h (G and H )  after  the  addi t ion o f  dexamethasone ,  with  rabbit  a n t i - m o u s e  v iment in  (FITC) (A, C, E,  and G)  and m o u s e  
monoc lona l  a n t i - h u m a n  v imen t in  (RITC) (B, D, F, and  H )  ant ibodies.  
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