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Abstract

We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used
as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We
subjected digital organisms with each tested architecture to seven different computational environments designed to
present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective
under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual
CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2)
memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we
separated input and output operations to enable greater control over data flow. We also tested a variety of methods to
regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-
relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these
features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features
(multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test
environments, along with versions of each of the remaining architecture modifications that show significant improvements
in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects
on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our
understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that
support more rapid evolution of complex solutions to a broad range of challenges.
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Introduction

Over the past 50 years, the field of evolutionary computation

has produced many successful tools, including genetic algorithms

[1], genetic programming [2], and evolutionary strategies [3] (for a

recent overview, see [4]). These evolutionary algorithms abstract

the evolutionary process by alternating between selecting the most

promising prospective solutions from a diverse population, and

randomly mutating copies of those solutions to create further

diversity. Evolutionary algorithms now rival human designers in

wide-ranging problem domains, from controlling finless rockets [5]

to automatically patching software bugs [6]. However, these

methods abstract the evolutionary process and tend to be limited

in the complexity of the solutions they produce while also losing

some of the inherent robustness that occurs in naturally evolved

organisms.

Digital evolution is a type of linear genetic programming that

provides a rich environment to study evolution in a more natural

environment; populations of self-replicating computer programs

must survive in a computational world where they are subject to

mutations, environmental effects, interactions with other pro-

grams, and the pressures of natural selection [7]. These ‘‘digital

organisms’’ evolve in more of an unconstrained manner, enabling

biologists to explore questions that are difficult or impossible to

study in natural systems (e.g., [8–11]). In turn, these more nuanced

systems have proven their ability to come up with effective

algorithms for practical applications, such as distributed problem

solving [12,13], software models for dynamic systems [14], and

robot movement and decision making [15–18]. In short, digital

evolution is becoming an essential model system for studying

evolutionary mechanisms, while discerning these natural processes

is equally crucial to constructing flexible and resilient computing

systems [19].

The instruction set architecture is the core of every instance of

digital evolution, defining the characters and syntax of the genetic

language, as well as the virtual hardware upon which that

language executes. The design of the instruction set architecture

within an evolvable system plays an important role in influencing

the robustness and flexibility of evolved solutions [20]. As the

scope and complexity of research performed using digital

evolution expands, it is important to ensure that our language is

as general purpose as possible, as well as to understand how

changes to architecture impact the evolutionary potential of the

system. Our previous work has shown that digital evolution is

surprisingly robust to poor design decisions [21]. Here we have

investigated a series of engineered instruction set architecture
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modifications built upon the underlying von Neumann architec-

ture of Avida, progressively identifying and integrating architec-

tural features that enhance evolutionary potential. In order to test

the effect of each modification, we utilized seven computational

environments representing a wide range of desired capabilities for

solving primarily static optimization problems. We evaluate the

final results of experiments performed in each environment with

each instruction set modification.

Methods

We performed all experiments using executables based on

Avida version 2.12, with modifications to support each of the new

instruction set architectures that we investigated. The full Avida

2.12 source code is available for download, without cost, from

http://avida.devosoft.org/. We tested each instruction set archi-

tecture with 200 replicate populations in each of seven

computational environments. The populations consisted of 3,600

individuals on a 60660 toroidal grid, and were run for 100,000

updates, where an update is a unit of time in Avida equal to an

average of 30 instructions executed per living organism; in practice

this translates to a widely varying number of generations

depending on the evolved complexity of the digital organisms

(somewhere between 500 and 100,000 generations; a mean of

12,423 for the experiments presented here). Organisms were

subject to mutations at a standard substitution rate of 2:5|10{3

per site in the genome, along with a 5|10{4 probability each for

a single instruction insertion or deletion per site in the genome. All

substitutions, insertions, and deletions occurred upon division of

the offspring. We seeded each population with a single ancestral

organism capable only of self-replication. Small variations in the

initial genotype used in each architecture were often necessary,

due to functional differences among the instruction sets, but we

limited these variations specifically to neutral labeling instructions

(nop-sequences, as described below) used in self-replication.

All statistical tests were conducted using MATLAB 2012a.

Configuration files, analysis scripts, and experimental results are

available from figshare[22]: http://dx.doi.org/10.6084/m9.

figshare.826206

Instruction Set Architectures
The HEADS instruction set architecture is the default virtual

CPU configuration in all versions of Avida 2.x, consisting of a

Turing complete, von Neumann style architecture. The virtual

hardware that implements this instruction set is designed to

operate on a genomic program within a circular memory space (as

shown on the left side of Figure 1). By default, it has three registers,

each capable of holding a 32-bit number, two stacks that can each

hold ten values, four heads that point to positions in the genome,

input and output channels, and the ability to execute 26 standard

instructions (see Table 1 for a complete glossary of instructions).

The default instructions include three no-operation instructions

(nops): nop-A, nop-B, and nop-C, which can serve to modify the

default behavior of other instructions, but do not otherwise affect

the state of the virtual CPU when executed by themselves. Most

instructions observe the value of one subsequent nop instruction

and alter their behaviors accordingly. For example, the inc

instruction increments the BX register by default, but if it were

followed by a nop-A it would increment the AX register instead. In

addition to instruction modification, nop instructions can serve as

patterns that act as labels for genome locations. Label matching

uses cyclic complementary matching, where nop-A matches to

nop-B, nop-B matches to nop-C, and nop-C matches to nop-A.

The HEADS instruction set has five flow-control instructions: h-

search, jmp-head, mov-head, gethead, and set-flow. Each of these

instructions can affect the position of one of the four architectural

heads: the instruction pointer (IP), READ head, WRITE head,

and FLOW head. The h-search instruction searches the genome,

starting from the first executed instruction in the genome, for a

label (a sequence of one or more nop instructions) that matches the

cyclic complementary label that follows the instruction, placing the

FLOW head after the matching sequence; if the sought-after label

is not found, it places the FLOW head on the instruction

immediately subsequent to itself. Thus if the h-search instruction

were followed by nop-A nop-A nop-B it would search for the

genome for the sequence nop-B nop-B nop-C. This is one of only

two instructions in the default HEADS instruction set that is

affected by more than one nop instruction, the other being if-

copied described below. The mov-head instruction moves the IP

to the current location of the FLOW head. The jmp-head

instruction shifts the position of the IP by the amount specified in a

register. The get-head instruction places the current location of the

IP into a register. Finally, the set-flow instruction moves the

FLOW head to the absolute genome location specified by the

value in a register.

The HEADS set also contains three conditional instructions that

will skip a subsequent instruction if the test condition is false. The

two basic conditional instructions, if-n-equ and if-less, perform a

comparison between two registers. The if-copied instruction

interacts with the READ head, evaluating to true if the last

sequence of instructions copied matches the complement of the

label that follows the instruction. This instruction is primarily for

use in conjunction with the replication instructions described

below to identify the portion of the genome most recently copied.

Seven arithmetic and logic operations are supported in the

default HEADS instruction set: add, sub, inc, dec, nand, shift-l,

and shift-r. All of these instructions operate on values stored within

registers and accept a single nop modifier, which changes the

source and destination registers depending on the operation.

Figure 1. The architecture of the Avida virtual CPU. Registers
(upper right), stacks (lower right), genomic program (left), heads
(middle), and environmental channels (lower right). The solid lines
depict the default Heads architectural features. The dashed lines show
some of the modifications tested.
doi:10.1371/journal.pone.0083242.g001
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Five instructions in HEADS facilitate data movement and

environmental interaction. The push, pop, and swap-stk instruc-

tions all operate on the two stacks within the architecture. Only

one stack is accessible at a time, with the swap-stk instruction

toggling the currently active stack, while push and pop copy

numbers from registers to the top of the active stack and vice-

versa. Each of these instructions can be nop-modified to specify

which register should be used. The swap instruction exchanges the

values of two registers. The IO instruction interacts with the

environment of the digital organism, outputting the current value

in a register and replacing it with a value from the environmentally

controlled input buffer. Values output via this instruction are

evaluated by the environment, potentially triggering a reward or

other action if they match one of the tasks in the environment as

explained below.

Lastly, there are three instructions that facilitate self-replication.

The h-alloc instruction allocates additional memory within which

the digital organism can copy its offspring. Copying is performed

Table 1. Instruction Glossary.

Instruction Description

add Add ?BX? to ?CX? and place the result in ?BX?

dec Decrement ?BX? by one

get-head Copy the position of the ?IP? head into ?CX?

goto Move IP to direct match label

goto-if-n-equ Move IP to direct match label if BX ! = CX

goto-if-less Move IP to direct match label if BX v CX

h-alloc Allocate maximum allowed space for offspring

h-copy Copy from read-head to write-head; advance both

h-divide Divide code between read and write heads as offspring

if-copied-
seq-comp

Execute next instruction if just copied complement sequence

if-copied-seq-
direct

Execute next instruction if just copied direct-match sequence

if-copied-lbl-
comp

Execute next instruction if just copied complement label

if-copied-lbl-
direct

Execute next instruction if just copied direct-match label

if-equ-0 Execute next instruction if ?BX? = 0, else skip it

if-equ-x Execute next instruction if BX = ?nop-defined constant?, else
skip it

if-gtr-0 Execute next instruction if ?BX? w 0, else skip it

if-gtr-x Execute next instruction if BX w ?nop-defined constant?, else
skip it

if-less Execute next instruction if ?BX? v ?CX?, else skip it

if-less-0 Execute next instruction if ?BX? v 0, else skip it

if-n-equ Execute next instruction if ?BX? ! = ?CX?, else skip it

if-not-0 Execute next instruction if ?BX? ! = 0, else skip it

inc Increment ?BX? by one

input Input new number into ?BX?

IO Output ?BX?, and input new number back into ?BX?

jmp-head Move head ?Flow? by amount in ?CX? register

label No-operation; marks the beginning of a genome position
label

mov-head Move head ?IP? to the flow head

mov-head-if-less Move head ?IP? to the flow head if ?BX? v ?CX?

mov-head-if-
n-equ

Move head ?IP? to the flow head if ?BX? ! = ?CX?

nand Nand ?BX? by ?CX? and place the result in ?BX?

nop-A No-operation; modifies other instructions

nop-B No-operation; modifies other instructions

nop-C No-operation; modifies other instructions

nop-D No-operation; modifies other instructions

nop-E No-operation; modifies other instructions

nop-F No-operation; modifies other instructions

nop-G No-operation; modifies other instructions

nop-H No-operation; modifies other instructions

nop-I No-operation; modifies other instructions

nop-J No-operation; modifies other instructions

nop-K No-operation; modifies other instructions

nop-L No-operation; modifies other instructions

nop-M No-operation; modifies other instructions

nop-N No-operation; modifies other instructions

Table 1. Cont.

Instruction Description

nop-O No-operation; modifies other instructions

nop-P No-operation; modifies other instructions

output Output ?BX?

pop Remove top number from stack and place into ?BX?

push Copy number from ?BX? and place it into the stack

search-lbl-
comp-s

Find complement label from genome start and move the
flow head

search-lbl-
direct-b

Find direct label backward and move the flow head

search-lbl-
direct-f

Find direct label forward and move the flow head

search-lbl-
direct-s

Find direct label from genome start and move the flow head

search-seq-
comp-s

Find complement sequence from genome start and move
the flow head

search-seq-
direct-b

Find direct sequence backward and move the flow head

search-seq-
direct-f

Find direct sequence forward and move the flow head

search-seq-
direct-s

Find direct sequence from genome start and move the flow
head

set-flow Set flow-head to position in ?CX?

sg-move Move one location forward in the Navigation environment

sg-rotate-l Rotate heading 45% left in the Navigation environment

sg-rotate-r Rotate heading 45% right in the Navigation environment

sg-sense Read the value of the current location in the Navigation
environment

shift-r Shift bits in ?BX? right by one (divide by two)

shift-l Shift bits in ?BX? left by one (multiply by two)

sub Subtract ?CX? from ?BX? and place the result in ?BX?

swap Swap the contents of ?BX? with ?CX?

swap-stk Toggle which stack is currently being used

Description of the instructions used across all tested instruction set
architectures. A register name (AX, BX, CX, etc.) or head (IP, FLOW, etc.)
surrounded by question marks refers to the default argument used when
executed, subject to nop modi_cation. Instructions depicted in bold are in the
default Heads instruction set.
doi:10.1371/journal.pone.0083242.t001
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by repeated execution of the h-copy instruction, which duplicates

the current instruction found at the READ head to the position

marked by the WRITE head and advances both heads. Once

copying has been completed, the organism must execute the h-

divide instruction to finalize the replication process, extracting the

memory between the READ head and the WRITE head as the

genome of the offspring.

Tested Architecture Modifications
In the default HEADS instruction set, most instructions can

have one aspect of their function modified by a single nop

instruction that follows in the genome. We aimed to improve the

flexibility by which data could be accessed and modified in the

virtual CPUs by implementing the FULLY-ASSOCIATIVE (FA)

instruction set. We extended the nop modification system used by

instructions so that most instructions could be modified by more

than one nop. The default behavior of all instructions remains the

same when not followed by any nop instructions. Instructions that

affect only a single register or head retain identical behavior to the

HEADS in the presence of a nop. However, for arithmetic, logic,

and conditional instructions that use multiple registers, the FA

instruction set will shift all registers to correspond with a signal nop

given, as well as read subsequent nops, if present, to further specify

those parameters. For example, an add instruction, by default will

perform regB~regBzregC. If it is followed by one nop-A, this

will alter both the source and destination registers such that it

performs regA~regAzregB. When followed by nop-A nop-C

nop-B, the add instruction in the FULLY-ASSOCIATIVE set will

perform regA~regCzregB. In this manner, very specific

operations may be invoked, while retaining robust default

behavior.

The REGISTER-series of instruction set architectures build

upon the FULLY-ASSOCIATIVE architecture to increase the

working register set beyond the three default registers, exposing

one or more additional architectural registers, in sets R4, R5, R6,

R7, R8, R12, up to a total of 16 in R16. The original design

choice was made to minimize the number of registers in order to

simplify the complexity of using them, but a larger number of

registers has not previously been systematically tested. For each

additional register, we added a corresponding nop instruction to

the instruction set (nop-D, nop-E, nop-F, etc.). None of the default

registers used by the instruction set were altered, meaning that

these additional registers can be accessed only when the new nop

instructions are used to modify an instruction. Since nop

modification is also used for head selection, the additional nop-

D in the R4 architecture provides direct access to the FLOW

head. In the R5 through R16 architectures, extra unassigned

heads that may be used as genome place-markers are available for

each additional nop instruction.

The LABEL-series of instruction set architectures extends the

R6 architecture (which proved to be the most effective, as

described in the results below), explicitly separating genome labels

from nop sequences used to modify instruction operands. The

intent of this change was to prevent instruction argumentation as

facilitated by the FULLY-ASSOCIATIVE architecture from

otherwise conflicting with labeled genome positions, especially

those used for self-replication. Instructions that operate on genome

labels, search-seq-comp-s and if-copied-seq-comp, were extended

with variants (search-lbl-comp-s and if-copied-lbl-comp) that

recognize sequences of nop instructions only if they begin with

the special label instruction (see Table 2 for details about the

specific instructions included in each set). When executed directly,

the label instruction performs no operation. The LABEL-

DIRECT -series architectures alter the pattern matching
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algorithm from the default of cyclic-complementary to direct

sequence matching. The LABEL-BOTH architectures include

both pattern matching algorithm instruction variants. In order to

increase the power of labeled execution flow, all Label -series

instruction sets omit the set-flow instruction that performs absolute

addressing.

The SPLIT-IO instruction set architecture alters the LABEL-

SEQ-DIRECT architecture, splitting the IO instruction into two

separate input and output instructions. Both of the new

instructions use the same default register location as the IO

instruction and can each be modified by one nop.

The SEARCH-series of instruction set architectures extend the

SPLIT-IO architecture with enhanced searching and jumping

capabilities. The SEARCHDIRECTIONAL set adds two pairs of

directional search- instructions that scan the genome forward or

backward relative to the instruction pointer for a label or sequence

match. The SEARCH-GOTO set, adds a single goto instruction

that reads the nop sequence that follows the instruction, if present,

and will unconditionally jump to the first genome location

following the matching label that begins with a label instruction.

If no matching label is found, execution ignores the goto

instruction. The SEARCH-GOTOIF group adds two conditional

goto variants, goto-if-n-equ and goto-if-less, that execute the jump

only if the conditional test evaluates to true.

The FLOW-series of instruction set architectures builds upon

the flow control features of the SearchDirectional architecture,

testing multiple combinations of additional flow control instruc-

tions (Table 3). The IF0 group adds four single argument if

instructions, if-not-0, if-equ-0, if-gtr-0, and if-less-0, that condi-

tionally execute the following instruction based on the comparison

of the argument with 0. The IFX group adds two if variants, if-gtr-

x and if-equ-x, that conditionally execute the following instruction

based on the result of comparing regB with a nop modified

number. The default value used by if-gtr-x and if-equ-x is a 1. For

each nop in the label following a given if-gtr-x or if-equ-x

instruction, the bit is left shifted 1, 2, or 3 times for each nop-B,

nop-C, or nop-D, respectively. Whenever a nop-A is found in the

label sequence, the sign-bit of the value is toggled. Finally, the

MOVHEAD group adds two conditional mov-head variants,

mov-head-if-n-equ and mov-head-if-less, that operate similarly to

the conditional goto instructions.

Environments
We use seven distinct computational environments to evaluate

the effectiveness of all tested instruction set architectures. Each

environment focuses on a different aspect of the virtual architec-

ture. Environments contain a set of tasks that carry a metabolic

reward associated with their performance. These metabolic

rewards increase the computation speed of the digital organism’s

virtual CPU, making it possible to obtain a competitive advantage

relative to other organisms in the population.

The Logic-9 environment consists of metabolic rewards for all

possible 1- and 2-input binary logic operations; there are 9 unique

operations after removing symmetries and the trivial function

‘echo’. The tasks are rewarded multiplicatively, thus virtual CPU

speed will increase exponentially as additional tasks are performed.

The logic operations are grouped into five reward levels, ranked by

difficulty. The easiest group will double computational speed,

while the highest level increases execution speed by thirty-two

times. Each task is rewarded only once during an organisms’

lifetime. This environmental setup is the default for Avida and has

been used in most previous experiments (e.g. [10,23,24]).

The Logic-77 environment increases the size and complexity of

the Logic-9 environment by adding a reward for all 68 unique

three-input binary logic operations. Performance of each of the 77

operations provides an equal benefit, doubling the execution speed

of the organism for the first time the computation is performed.

We designed the Match-12 environment to test the organisms’

ability to build arbitrary numbers, a task that has been observed to

be difficult for organisms to perform and confirmed in the

experiments described below. Rewards are granted additively for

outputting any or all of twelve possible numbers. The numbers are

spaced approximately exponentially throughout the 32-bit number

space, but have no explicit pattern to them. Each number is

rewarded only once during an organisms lifetime. Near matches

are allowed, but the reward decays via a half-life function based

upon the number of bits that are incorrect with a minimum

threshold of 22 bits correct.

The Fibonacci-32 environment rewards organisms multipli-

catively for each number in the Fibonacci sequence until the 32nd

iteration of the sequence. After this target, an organism is

penalized for additional numbers output, whereby outputting 64

additional numbers will effectively negate all benefit of the first 32.

The purpose of this setup is to examine the capacity of an

instruction set to support bounded recursion and conditional

looping.

The Sort-10 environment supplies a list of 10 random inputs

and offers a reward for outputting those values in descending

order. Similar to the Match environment, the reward value decays

via a half-life function for each incorrectly sorted value, based on

the number of moves required to shift it to the correct order.

Given the limited number of available registers in most of the

instruction sets we tested, this task requires the use of the stacks

and non-trivial flow control.

The Limited-9 environment is based on the Logic-9 environ-

ment, offering the similar metabolic rewards for all possible 1- and

2-input binary logic operations. However, unlike the Logic-9

environment, a separate, consumable resource is associated with

Table 3. FLOW Instruction Sets Tested.

Instruction Set IF0 Instructions IFX Instructions MOVHEAD Instructions

FLOW-IF0 N

FLOW-IFX N

FLOW-MVH N

FLOW-IF0-MVH N N

FLOW-IFX-MVH N N

FLOW-IF0-IFX-MVH N N N

Instruction set by row, with marks in each column indicating that the set contains the relevant instruction group.
doi:10.1371/journal.pone.0083242.t003
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each task. Each of the resources flows into the environment at a

fixed rate (100 units per update) and out proportional to current

concentration (1% per update), creating an equilibrium concen-

tration of 10000 units when not consumed by organisms.

Organisms may only consume 0.25% of an available resource at

a given time, impacting the actual metabolic reward collected for

performing the task associated with that resource. This property of

Limited-9 makes it unique among our tested environments. Unlike

our other test environments, which represent instances of static

optimization, the fitness landscape of the Limited-9 environment is

dynamic. The fitness measurements of a given genotype will be

highly dependent upon current resource conditions, and indirect

interaction between competing organism niches may lead to

ecological complexity.

Finally, the Navigation environment rewards organisms for

successfully navigating a circuitous path marked by sign posts, as

described in [16]. This task requires an organism to use sensors to

retrieve a cue from their local grid position and react to that cue by

turning left, turning right, moving straight ahead, or repeating the

action indicated by the previous cue (requiring the organisms to

also evolve memory). Importantly, this environment also tests the

robustness of instruction set architectures to the addition of

several, experiment specific instructions, in this instance for

sensing and moving in the virtual maze. The virtual maze is

completely separate from the organism replication space, and

varies randomly across replication cycles.

Assessment of Evolutionary Potential
We have focused on two measures to evaluate how well

populations solved the computational challenges of the environ-

ment when evolved with each instruction set architecture: mean

fitness and task success. Both measure ability of the evolved

organisms to perform tasks within the environment.

Mean fitness averages the fitness values of each living

organism in the population at the moment the experiment

finished. It takes into account both the computational capability

of the organism and the efficiency of self-replication. We examined

the distributions of these fitness values for all instruction set

variants in each environment. For each modified instruction set,

we compared the 200 population fitness values with those of a

reference instruction set architecture using a Wilcoxon rank-sum

test. We determined significance using a~0:05 with sequential

Bonferroni correction. Confidence intervals, as shown in tables

below, represent 2.5% and 97.5% quantiles that we generated

using non-parametric bootstrap with 10,000 iterations. Since all

seven environments present metabolic rewards that are exponen-

tial (base-2), all fitness values are shown in log2.

Task success, in contrast to fitness, is a direct examination of

the computational capabilities of the organisms within the final

population, for the specific environment of the experiment. We

measure the task success of a population as the sum of the qualities

by which the average organism performs each task. To calculate a

task success tp of population p, we determine each organism’s

quality at each task and then sum over these values, finally dividing

by the total number of organisms in the population. More

formally,

tp~
XNp

i~1

XT

j~1

qi,j

Np

ð1Þ

where Np is the number of organisms in population p, T is the

number of tasks in the environment, and qi,j is the quality q at

which organism i is performing task j. Task quality (q) is a value

between 0 and 1, where 1 means the organism has found a perfect

solution for a task. Environments that support near-matches use

task quality to adjust the metabolic reward accordingly. The

maximum task success for a given environment is equal to the total

number of tasks rewarded in that environment; for example the

maximum task success of the Logic-9 environment is nine.

Table 4. HEADS and FULLY-ASSOCIATIVE Architectures Fitness.

Logic-9 Logic-77 Match-12 Fibonacci-32 Sort-10 Limited-9 Navigation

HEADS 19.07 12.43 0.173 3.730 20.54 4.430 1.071

(17.71, 19.76) (11.51, 14.22) (0.146, 0.224) (3.300, 4.050) (20.63, 20.45) (4.283, 4.595) (1.035, 1.383)

FA 22.99 39.35 0.215 4.806 20.38 4.840 1.038

(22.70, 23.08) (35.05, 41.83) (0.191, 0.251) (4.474, 5.212) (20.45, 20.33) (4.671, 5.082) (1.022, 1.069)

Fitness results of the HEADS and FULLY-ASSOCIATIVE (FA) instruction set architectures, where multiple nop arguments can modify the behavior of an instruction. Each
entry shows the median log2 population mean fitness in the respective environment, with 95% confidence intervals in parentheses. Bold entries indicate significant
(pv0:05, Wilcoxon rank-sum test) deviations after sequential Bonferroni correction.
doi:10.1371/journal.pone.0083242.t004

Table 5. HEADS and FULLY-ASSOCIATIVE Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

HEADS 0.829 0.176 0.145 0.206 1.31|10{4 0.909 3.97|10{3

(0.752, 0.839) (0.161, 0.198) (0.145, 0.146) (0.178, 0.238) (1.08, 1.47) (0.894, 0.913) (3.96, 4.35)

FA 0.936 0.505 0.148 0.297 1.55|10{4 0.927 3.96|10{3

(0.930, 0.943) (0.453, 0.546) (0.147, 0.149) (0.278, 0.332) (1.44, 1.67) (0.924, 0.929) (3.95, 3.97)

Task success results of the HEADS and FULLY-ASSOCIATIVE (FA) instruction set architectures. Each entry shows the median normalized task success in the respective
environment, with 95% confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t005
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Normalized task success, as presented in the following results,

divides the observed task success by the maximum in each

environment, thus constraining these values to be between zero

and one. Similar to population mean fitness, we compared the

distribution of task success of each instruction set to the control

architecture using a Wilcoxon rank-sum test, sequential

Bonferroni correction, and non-parametric bootstrap confidence

intervals.

In most environments task success will be highly correlated with

fitness. Since organisms in digital evolution must self-replicate, it is

possible for genotypes with identical task success to exhibit vastly

different fitness measurements, so both metrics can be informative.

Table 6. REGISTER Series Architectures Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

FA 22.63 38.85 0.223 4.828 0.09 4.934 1.027

(22.39, 23.01) (34.76, 43.67) (0.191, 0.273) (4.255, 5.332) (20.07, 0.21) (4.661, 5.282) (1.016, 1.042)

R4 22.85 38.70 0.243 4.666 20.39 5.253 1.080

(22.67, 23.01) (33.90, 43.02) (0.204, 0.290) (4.233, 5.142) (20.48, 20.32) (4.925, 5.514) (1.054, 1.792)

R5 22.73 38.42 0.231 5.067 20.45 5.158 1.083

(22.50, 22.86) (34.43, 42.54) (0.206, 0.281) (4.540, 5.623) (20.57, 20.39) (4.300, 5.400) (1.056, 1.340)

R6 22.78 43.01 0.229 4.908 20.43 5.117 1.111

(22.29, 22.97) (40.01, 45.90) (0.206, 0.274) (4.293, 5.719) (20.54, 20.34) (4.925, 5.374) (1.080, 2.730)

R7 22.75 43.41 0.204 4.598 20.40 5.135 1.562

(22.58, 22.97) (38.97, 45.67) (0.177, 0.225) (4.174, 5.078) (20.49, 20.29) (4.978, 5.407) (1.096, 3.234)

R8 22.75 43.04 20.027 4.831 20.47 5.292 1.156

(22.55, 22.95) (39.25, 47.78) (20.07, 0.19) (4.392, 5.308) (20.57, 20.33) (5.058, 5.736) (1.099, 2.815)

R12 22.62 44.26 20.11 4.678 20.54 5.180 1.377

(22.45, 22.76) (40.82, 48.18) (20.12, 20.08) (4.082, 5.244) (20.56, 20.49) (4.901, 5.621) (1.114, 3.012)

R16 21.68 42.26 20.11 4.028 20.55 5.734 3.78

(19.76, 22.22) (40.02, 46.26) (20.13, 20.10) (3.620, 4.474) (20.59, 20.50) (5.390, 6.466) (1.157, 3.326)

Fitness results of the Register -series instruction set architectures, which vary the number of registers available in the virtual CPUs. Each entry shows the median log2

population mean fitness in the respective environment, with 95% confidence intervals in parentheses. Bold entries indicate significant (pv0:05, Wilcoxon rank-sum test)
deviations after sequential Bonferroni correction.
doi:10.1371/journal.pone.0083242.t006

Table 7. REGISTER Series Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

FA 0.932 0.495 0.147 0.288 2.53|10{4 0.926 3.96|10{3

(0.921, 0.938) (0.452, 0.565) (0.146, 0.148) (0.263, 0.307) (2.21, 2.74) (0.923, 0.929) (3.95, 3.96)

R4 0.937 0.506 0.146 0.276 1.52|10{4 0.923 3.97|10{3

(0.929, 0.941) (0.441, 0.554) (0.145, 0.148) (0.256, 0.289) (1.42, 1.67) (0.920, 0.929) (3.96, 5.05)

R5 0.936 0.493 0.145 0.300 1.38|10{4 0.927 3.97|10{3

(0.929, 0.940) (0.450, 0.544) (0.144, 0.147) (0.284, 0.327) (1.09, 1.62) (0.923, 0.929) (3.96, 4.20)

R6 0.932 0.563 0.145 0.294 1.49|10{4 0.930 3.98|10{3

(0.927, 0.940) (0.521, 0.592) (0.144, 0.147) (0.268, 0.326) (1.14, 1.160) (0.926, 0.932) (3.97, 6.68)

R7 0.940 0.554 0.144 0.281 1.51|10{4 0.928 4.47|10{3

(0.930, 0.943) (0.502, 0.592) (0.142, 0.146) (0.247, 0.305) (1.26, 1.63) (0.923, 0.932) (3.98, 7.65)

R8 0.938 0.555 0.079 0.299 1.33|10{4 0.927 3.99|10{3

(0.931, 0.942) (0.504, 0.613) (0.078, 0.143) (0.275, 0.323) (1.06, 1.57) (0.924, 0.929) (3.97, 6.19)

R12 0.939 0.575 0.078 0.298 1.06|10{4 0.930 4.31|10{3

(0.933, 0.943) (0.525, 0.613) (0.077, 0.078) (0.268, 0.318) (1.03, 1.11) (0.928, 0.933) (3.98, 7.33)

R16 0.910 0.550 0.077 0.269 1.05|10{4 0.928 7.31|10{3

(0.854, 0.931) (0.524, 0.589) (0.077, 0.078) (0.237, 0.302) (1.01, 1.08) (0.925, 0.932) (3.99, 7.81)

Task success results of the REGISTER-series instruction set architectures. Each entry shows the median normalized task success in the respective environment, with 95%

confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t007
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Additionally, in some environments task success provides a more

consistent measure of the evolutionary potential of the instruction

set. For example, in the Limited-9 environment the reduction in

resources due to additional task performance may actually reduce

average fitness, even though more tasks are being performed.

Results

We evaluated each of the six tested types of hardware

modifications in consecutive evolutions of the instruction set

architecture. The first hardware modification tested was the

FULLY-ASSOCIATIVE set, followed by the REGISTER sets,

Table 8. LABEL Series Architectures Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

R6 22.59 38.42 0.216 4.572 20.22 5.205 1.537

(22.10, 22.85) (34.96, 44.12) (0.201, 0.257) (3.904, 5.134) (20.32, 20.09) (5.016, 5.518) (1.097, 3.261)

LABEL 22.67 28.70 0.248 6.213 20.42 5.430 1.926

(22.42, 22.94) (25.66, 33.37) (0.218, 0.316) (5.669, 6.648) (20.52, 20.33) (5.195, 5.630) (1.108, 3.313)

DIRECT 22.50 27.20 0.215 5.435 20.46 5.784 1.087

(21.84, 22.74) (24.38, 31.32) (0.189, 0.252) (4.545, 6.174) (20.54, 20.40) (5.429, 6.325) (1.064, 2.742)

BOTH 22.32 32.26 0.203 6.403 20.47 5.553 3.084

(19.68, 22.61) (28.96, 38.07) (0.163, 0.230) (5.715, 6.606) (20.56, 20.38) (5.098, 5.885) (1.148, 3.396)

SEQ 22.43 40.26 0.207 6.357 20.29 5.438 2.203

(21.94, 22.66) (35.12, 44.36) (0.134, 0.257) (5.797, 6.733) (20.36, 20.15) (5.079, 5.755) (1.089, 3.161)

SEQ 22.46 44.13 0.198 6.175 20.33 5.651 2.335

DIRECT (22.23, 22.66) (39.73, 48.52) (0.126, 0.217) (5.212, 6.531) (20.44, 20.21) (5.441, 5.967) (1.077, 3.335)

DIRECT 22.53 41.74 0.210 5.933 20.40 5.528 2.319

SEQ (22.25, 22.69) (38.58, 44.36) (0.183, 0.300) (5.135, 6.495) (20.47, 20.23) (5.528, 5.968) (1.093, 3.235)

SEQ 22.44 39.56 20.094 6.116 20.33 5.990 3.173

BOTH (21.75, 22.68) (36.64, 42.72) (21.42, 0.088) (5.336, 6.430) (20.45, 20.17) (5.621, 6.374) (2.955, 3.295)

Fitness results of the LABEL-series instruction set architectures. Each entry shows the median log2 population mean fitness in the respective environment, with 95%

confidence intervals in parentheses. Bold entries indicate significant (pv0:05, Wilcoxon rank-sum test) deviations after sequential Bonferroni correction.
doi:10.1371/journal.pone.0083242.t008

Table 9. LABEL Series Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

R6 0.926 0.505 0.144 0.278 1.86|10{4 0.930 4.33|10{3

(0.908, 0.937) (0.461, 0.574) (0.142, 0.145) (0.241, 0.303) (1.62, 2.10) (0.926, 0.932) (3.97, 7.76)

LABEL 0.941 0.389 0.146 0.380 1.45|10{4 0.932 4.58|10{3

(0.934, 0.945) (0.352, 0.450) (0.144, 0.147) (0.342, 0.396) (1.14, 1.57) (0.928, 0.934) (3.98, 7.68)

DIRECT 0.937 0.366 0.145 0.335 1.34|10{4 0.934 3.98|10{3

(0.916, 0.943) (0.329, 0.416) (0.144, 0.146) (0.295, 0.383) (1.10, 1.57) (0.931, 0.936) (3.97, 6.16)

BOTH 0.922 0.422 0.145 0.388 1.37|10{4 0.932 7.05|10{3

(0.857, 0.939) (0.385, 0.495) (0.140, 0.146) (0.367, 0.403) (1.09, 1.51) (0.929, 0.935) (4.00, 7.96)

SEQ 0.932 0.509 0.143 0.397 1.68|10{4 0.928 5.31|10{3

(0.919, 0.938) (0.460, 0.573) (0.139, 0.144) (0.365, 0.405) (1.57, 2.02) (0.925, 0.929) (3.98, 7.57)

SEQ 0.929 0.559 0.144 0.370 1.61|10{4 0.931 5.06|10{3

DIRECT (0.918, 0.939) (0.522, 0.612) (0.141, 0.146) (0.309, 0.398) (1.49, 1.81) (0.928, 0.934) (3.98, 7.70)

DIRECT 0.932 0.542 0.143 0.359 1.53|10{4 0.930 5.24|10{3

SEQ (0.919, 0.941) (0.500, 0.562) (0.141, 0.145) (0.300, 0.399) (1.36, 1.77) (0.928, 0.933) (3.98, 7.63)

SEQ 0.926 0.517 0.079 0.374 1.64|10{4 0.928 7.74|10{3

BOTH (0.914, 0.934) (0.482, 0.545) (0.078, 0.125) (0.300, 0.398) (1.51, 1.94) (0.923, 0.930) (7.20, 7.91)

Task success results of the LABEL-series instruction set architectures. Each entry shows the median normalized task success in the respective environment, with 95%

confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t009
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LABEL sets, SPLIT-IO set, SEARCH sets, and finally the FLOW

sets.

Fully-Associative Argumentation
In conducting our analysis, the FULLY-ASSOCIATIVE (FA)

instruction set, which addresses the flexibility of register data flow,

shows significant improvement in six of the seven environments

(Tables 4 and 5). The logic-based environments (Logic-9, Logic-

77, and Limited-9) all show substantially improved fitness and task

success. The Logic-77 environment in particular, benefits from the

FA instruction set with nearly 2.9 times increase in median task

success and dramatically increased average fitness. The fully-

associative capability, facilitating specific instruction formats,

appears crucial within the highly diverse Logic-77 environment.

Indeed, on average 9.2% of the instructions that may utilize more

than one nop-modifier that were present in the dominant genotype

at the end of the FA experiments with the Logic-77 environment

indeed used more than one nop. The Fibonacci-32 environment

also sees a notable 44% improvement in task success, with a

corresponding increase in fitness. Mean usage of multiple nop

modifiers was 16.4% of multi-nop modifiable instructions in the

final dominant genotype of the Fibonacci runs. The Sort-10 and

Match-12 environments show statistically significant gains for both

metrics, but none of these improvements are substantial in nature.

The Navigation environment shows a slight, non-significant

decline in fitness (pv0:054, Wilcoxon rank-sum test) and task

success (pv0:178, Wilcoxon rank-sum test) when tested with the

FA instruction set.

Number of Registers
The REGISTER-series instruction sets generally show little

variation in performance (Tables 6 and 7). In the Logic-77

environment there is a slight positive trend as the number of

registers increases, but none are significant after Bonferroni

correction, and the magnitudes of the changes are not particularly

notable. The only substantial differences observed among all tested

configurations are a drop in task success and a drop in fitness with

R16 in the Logic-9 environment, indicating a potential drag on the

system due to the dramatic increase in instruction set size with the

addition of 13 more nops, though not as severe as completely non-

functional bloat [21]. The Sort-10 environment demonstrates

significant loss of performance in all treatments, relative to the FA

architecture, though none of the variation observed is substantial

in nature (% 1% difference in task success). The Navigation

environment does show what initially appears to be a substantial

uptick in performance under R16, but with task success still well

below 1%, it is not enough to allow the populations to complete

this task. It does, however, indicate that we may wish to explore

higher register counts again in configurations where populations

have more success with this task.

Explicit Labels
The LABEL-series instruction sets show mixed results (Tables 8

and 9). The Logic-9, Limited-9, Sort-10, and Navigation

environments show virtually no substantial differences in task

success, regardless of the set used. The Limited-9, Sort-10, and

Navigation environments shows slight positive fitness trends as

more labeling options are included in the instruction set. The

Logic-77 environment shows significantly detrimental results for

both fitness and task success when only the label-based instructions

are included. When any form of sequence matching instructions

are included in the Logic-77 environment, both metrics return to

the reference levels. The Match-12 environment shows no

significant difference for either metric among all but one

instruction set. LABEL-SEQ-BOTH, the most complete instruc-

tion set in this group, shows a notably significant drop of both

metrics in the Match environment. The Fibonacci-32 environment

shows positive gains in all LABEL-series instruction sets. The

positive gains observed in the Fibonacci-32 environment were both

significant and substantial, with 24.6% and 27.2% improvement in

Table 10. bf SPLIT-IO Architecture Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SEQ 22.56 43.57 0.207 6.106 20.32 5.812 2.641

DIRECT (22.32, 22.72) (39.73, 46.60) (0.182, 0.239) (5.326, 6.549) (20.39, 20.24) (5.390, 6.169) (1.198, 3.341)

SPLITIO 23.07 53.94 0.337 8.096 21.03 5.343 1.091

(22.87, 23.22) (50.34, 56.72) (0.314, 0.360) (7.983, 8.207) (21.03, 21.02) (5.221, 5.520) (1.062, 2.920)

Fitness results of the LABEL-SEQ-DIRECT and SPLIT-IO instruction set architectures. Each entry shows the median log2 population mean fitness in the respective
environment, with 95% confidence intervals in parentheses. Bold entries indicate significant (pv0:05, Wilcoxon rank-sum test) deviations after sequential Bonferroni
correction.
doi:10.1371/journal.pone.0083242.t010

Table 11. SPLIT-IO Architecture Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SEQ 0.930 0.559 0.145 0.384 1.62|10{4 0.926 6.63|10{3

DIRECT (0.920, 0.935) (0.521, 0.593) (0.142, 0.146) (0.318, 0.397) (1.52, 1.74) (0.922, 0.928) (3.99, 7.94)

SPLITIO 0.940 0.678 0.148 0.449 0.0 0.931 3.99|10{3

(0.936, 0.942) (0.651, 0.707) (0.148, 0.149) (0.447, 0.461) (0.0, 0.0) (0.927, 0.933) (3.97, 7.41)

Task success results of the LABEL-SEQ-DIRECT and SPLIT-IO instruction set architectures. Each entry shows the median normalized task success in the respective
environment, with 95% confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t011
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fitness and task success, respectively, when using the LABEL-SEQ-

BOTH instruction set. In the Navigation environment using the

LABEL-SEQ-DIRECT instruction set, 8 outlier populations

notably demonstrated task success greater than 0.10, with two at

0.141, indicating that substantial progress was made in those

particular runs. No previous runs in this environment have

exhibited such success in the short time period of 100,000 updates

used [16,17].

Split Input/Output Operations
The SPLIT-IO instruction set shows improvements that are

both significant and often substantial in the Logic-9 and Logic-77

environments, the Match-12 environment, and the Fibonacci-32

environment (Tables 10 and 11). Indeed the Logic-77 and

Fibonacci-32 environments show 21% and 17% improvements

in median task success, respectively. The Sort-10 environment, on

the other hand, completely collapses, showing effectively 0 task

success and correspondingly low fitness. The Limited-9 environ-

ment shows mixed results, with a small gain in task success but a

drop in fitness. The Navigation environment shows marginal

drops in both metrics, though neither significant and, similar to

previous instruction sets tested, still well below 1% of the success

possible.

Search
The three SEARCH-series instruction sets showed little

measurable difference in performance for the Logic-9, Match-

12, Fibonacci-32, Sort-10, Limited-9, and Navigation environ-

ments (Tables 12 and 13). The Logic-77 environment showed

small, significant drops in fitness for all sets, with a corresponding

drop in task success.

In the SEARCH-GOTO instruction set, we initially tested a

variant of the jmphead instruction, which changed the default

head it operated on to be the flow head. A notable and often

significant drop in fitness was observed in all seven environments

with these two instruction sets, leading to the architectures

explored here.

Flow Control
The FLOW-series instruction sets tested three groups of flow

control instructions separately and in several combinations

(Tables 14 and 15). Throughout all instruction sets tested, the

Fibonacci-32 environment showed no significant variation from

the SEARCH-DIRECTIONAL instruction set performance. The

Match-12 environment had some significant drops in fitness, but

these were not substantial and also not coupled with a drop in task

success. The Logic-9 environment showed significant, though

again insubstantial, loss of fitness with all FLOW-series instruction

sets. Three instruction sets, FLOW-IF0, FLOW-IFX, and

Table 12. SEARCH Series Architectures Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SPLITIO 23.19 54.58 0.307 8.139 21.03 5.477 2.909

(23.05, 23.25) (52.46, 58.54) (0.261, 0.335) (8.027, 8.318) (21.04, 21.02) (5.014, 5.912) (1.121, 3.382)

SEARCH 23.02 48.75 0.313 8.188 21.02 5.393 3.150

(22.87, 23.17) (46.33, 52.21) (0.265, 0.335) (8.042, 8.273) (21.03, 20.98) (5.177, 5.745) (1.708, 3.431)

GOTO 23.13 50.42 0.311 7.946 21.04 5.598 2.584

(22.90, 23.21) (48.27, 53.34) (0.232, 0.337) (7.853, 8.080) (21.05, 21.02) (5.272, 5.850) (1.084, 3.219)

GOTOIf 22.92 48.49 0.283 7.937 21.04 5.840 2.283

(22.61, 23.06) (44.61, 52.01) (0.223, 0.336) (7.844, 8.070) (21.05, 21.01) (5.624, 6.059) (1.322, 3.028)

Fitness results of the SEARCH-series instruction set architectures. Each entry shows the median log2 population mean fitness in the respective environment, with 95%

confidence intervals in parentheses. Bold entries indicate significant (pv0:05, Wilcoxon rank-sum test) deviations after sequential Bonferroni correction.
doi:10.1371/journal.pone.0083242.t012

Table 13. SEARCH Series Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SPLITIO 0.937 0.694 0.149 0.449 0.0 0.927 7.28|10{3

(0.934, 0.942) (0.658, 0.719) (0.148, 0.149) (0.446, 0.463) (0.0, 0.0) (0.926, 0.930) (3.99, 8.03)

SEARCH 0.937 0.626 0.149 0.448 0.0 0.929 7.67|10{3

(0.932, 0.941) (0.584, 0.652) (0.148, 0.150) (0.445, 0.455) (0.0, 0.0) (0.927, 0.932) (4.60, 8.01)

GOTO 0.940 0.644 0.148 0.447 0.0 0.930 6.43|10{3

(0.935, 0.943) (0.608, 0.676) (0.147, 0.149) (0.444, 0.452) (0.0, 0.0) (0.928, 0.933) (3.99, 7.61)

GOTOIF 0.933 0.601 0.149 0.447 0.0 0.929 5.78|10{3

(0.928, 0.939) (0.569, 0.650) (0.148, 0.150) (0.445, 0.448) (0.0, 0.0) (0.925, 0.933) (4.15, 7.57)

Task success results of the SEARCH-series instruction set architectures. Each entry shows the median normalized task success in the respective environment, with 95%

confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t013
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FLOW-IF0-IFX-MOVHEAD, had corresponding small signifi-

cant decreases in task success.

Individually, the IF0 instruction group made virtually no

difference in performance among any of the seven environments.

When tested in combination with the other instruction groups,

there is no clear indication of interaction, positive or negative.

The IFX instruction group both individually and in combina-

tion with other groups shows positive gains in the Navigation

environment, both fitness and task success. This outcome is likely

due to the nature of the signposts in this environment [16], such

that comparing against certain ‘‘magic’’ numbers for decision

making is likely beneficial. The remaining six environments show

no substantial variation attributable to these instructions.

The third instruction group, MOVHEAD, shows the greatest

variation in performance among those tested. In the Logic-77

environment, all instruction sets containing the MOVHEAD

group show substantial decreases in median fitness, 14.3% on

average. The two combination sets containing MOVHEAD,

FLOW-IFX-MOVHEAD and FLOW-IF0-IFX-MOVHEAD, al-

so show corresponding decreases in task success in the Logic-77

environment. The Sort-10, Limited-9, and Navigation environ-

ments, on the other hand, show substantial improvements in task

success, and often fitness, for all three instruction sets containing

Table 14. FLOW Series Architectures Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SEARCH 23.14 48.59 0.313 8.061 21.02 5.571 3.022

(23.01, 23.23) (46.46, 51.41) (0.243, 0.346) (7.990, 8.176) (21.04, 21.01) (5.334, 5.867) (2.151, 3.387)

MVH 22.78 42.25 0.277 8.124 20.96 5.474 3.875

(22.38, 23.05) (39.76, 46.35) (0.216, 0.347) (7.990, 8.270) (21.01, 20.69) (5.181, 5.771) (3.729, 4.052)

IF0 22.80 47.99 0.296 7.995 21.04 5.553 3.229

(22.62, 23.07) (45.02, 51.50) (0.258, 0.323) (7.857, 8.099) (21.05, 21.02) (5.326, 5.855) (2.919, 3.549)

IFX 22.64 46.40 0.199 8.037 21.06 5.804 4.028

(22.33, 22.86) (44.51, 48.76) (0.168, 0.264) (7.964, 8.198) (21.07, 21.03) (5.460, 6.243) (3.861, 4.312)

IF0-IFX 22.82 46.00 0.270 8.011 21.08 5.595 4.331

(22.65, 23.01) (42.64, 49.03) (0.201, 0.308) (7.952, 8.078) (21.09, 21.07) (5.292, 6.071) (4.113, 4.615)

IFX 22.95 41.29 0.311 8.063 21.00 5.751 4.475

MVH (22.74, 23.11) (38.48, 44.64) (0.244, 0.346) (7.980, 8.193) (21.03, 20.92) (5.522, 6.061) (4.244, 4.983)

IF0-IFX 21.94 41.76 0.213 7.995 21.01 6.077 5.036

MVH (21.55, 22.37) (39.12, 43.84) (0.189, 0.283) (7.849, 8.066) (21.05, 20.91) (6.723, 6.625) (4.576, 6.457)

Fitness results of the FLOW-series instruction set architectures. Each entry shows the median log2 population mean fitness in the respective environment, with 95%

confidence intervals in parentheses. Bold entries indicate significant (pv0:05, Wilcoxon rank-sum test) deviations after sequential Bonferroni correction.
doi:10.1371/journal.pone.0083242.t014

Table 15. FLOW Series Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

SEARCH 0.943 0.623 0.148 0.448 0.0 0.928 7.55|10{3

(0.939, 0.946) (0.584, 0.648) (0.147, 0.149) (0.444, 0.452) (0.0, 0.0) (0.926, 0.932) (5.51, 8.04)

MVH 0.938 0.563 0.150 0.465 0.0 0.945 8.63|10{3

(0.930, 0.946) (0.532, 0.593) (0.149, 0.150) (0.452, 0.476) (0.0, 0.0) (0.941, 0.948) (8.40, 8.93)

IF0 0.932 0.611 0.148 0.447 0.0 0.932 7.78|10{3

(0.924, 0.937) (0.581, 0.647) (0.147, 0.149) (0.446, 0.451) (0.0, 0.0) (0.930, 0.935) (6.52, 8.12)

IFX 0.929 0.607 0.147 0.447 0.0 0.931 8.88|10{3

(0.916, 0.935) (0.577, 0.622) (0.146, 0.148) (0.445, 0.453) (0.0, 0.0) (0.929, 0.933) (8.43, 9.67)

IF0-IFX 0.937 0.594 0.148 0.451 0.0 0.931 9.47|10{3

(0.932, 0.941) (0.550, 0.626) (0.147, 0.149) (0.446, 0.459) (0.0, 0.0) (0.928, 0.935) (8.75, 10.12)

IFX 0.945 0.549 0.150 0.459 0.0 0.941 9.65|10{3

MVH (0.940, 0.951) (0.508, 0.576) (0.149, 0.151) (0.451, 0.467) (0.0, 0.0) (0.937, 0.947) (9.10, 10.64)

IF0-IFX 0.926 0.544 0.150 0.451 0.0 0.940 11.25|10{3

MVH (0.901, 0.935) (0.516, 0.577) (0.148, 0.150) (0.447, 0.459) (0.0, 0.0) (0.935, 0.945) (10.23, 13.40)

Task success results of the FLOW-series instruction set architectures. Each entry shows the median normalized task success in the respective environment, with 95%

confidence intervals in parentheses. Bold entries denote significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t015
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the MOVHEAD group. The Navigation environment, notably,

approaches median task success around 1% when the IFX and

MOVHEAD instruction groups are combined, indicating the

importance of effective flow control for that environment. The

Sort-10 environment improvements are difficult to observe from

median values. Indeed the greatest driver of the improvements are

infrequent outliers approaching 0.7% task success, the highest ever

observed in the Sort-10 environment (see Figure 2).

Discussion

We have investigated the evolutionary potential of six groups of

modified instruction set architectures of a digital evolution system,

each within seven different computational environments (see

Figure 3). Among the groups investigated there were three classes

of outcomes, broad multi-environment improvement, mixed

results, and no discernible trend. Notably absent from the

observed classes were changes that were negative on balance, let

alone broadly detrimental; although, this was not entirely

unexpected since the particular changes we chose to test were

ones that we expected could help. Some instruction set architec-

tures did demonstrate decreased performance in the mixed result

grouping, yet only one example demonstrated highly substantial

degradation, the SPLIT-IO instruction set in the Sort-10

environment. We explore potential explanations for this particular

case below. In general, evolution has proven to be
surprisingly robust to the explored genetic hardware
changes, regardless of environment.

Two groups of instruction-set modifications yielded broadly

beneficial changes in both fitness and task success. The FULLY-

ASSOCIATIVE (FA) architectures instruction data flow enhance-

ments led to highly significant gains in five of the seven

environments. The remaining two environments, Sort-10 and

Navigation, show some slight improvement and no discernible

difference, respectively. The second group that demonstrated

broadly positive results was the SPLIT-IO instruction set. The

separation of the input and output operation allows finer-grained

data flow between the CPU and the environment. This control

afforded by the SPLIT-IO architecture was beneficial to the same

five environments as the FA architecture. The Navigation

environment showed no particular change in fitness performance,

and a small, but insubstantial change in task success. The only

major detriment to the splitting of input and output operations was

observed in the Sort-10 environment. As a whole, these two groups

indicate that it is beneficial to maintain as much flexibility as

possible with regard to instruction interactions. This flexibility

allows evolution to finely tune interactions, yielding greater

evolutionary potential.

The REGISTER-series, LABEL-series, and SEARCH-series

architectures all demonstrated no discernible trend in perfor-

mance, despite representing 17 of the 25 tested architectures.

Figure 2. Normalized task success distributions of selected
Flow -series instruction sets in the Sort-10 environment.
doi:10.1371/journal.pone.0083242.g002

Figure 3. The order and relationship of all tested architecture modifications (center), organized by instruction set series (left). The
evolutionary potential of the architecture selected as the basis for further experiments in each series (shown in bold) is displayed (right) for the Logic-
9, Logic-77, Match-12, Fibonacci-32, Sort-10, Limited-9, and Navigation environments, respectively. Up arrows (black) indicate increased potential,
down arrows (gray) indicate decreased potential, and double ended arrows (white) denote no significant trend. In general, FA (fully-associative) and
Split-IO (separated input and output operations) demonstrated broadly beneficial impacts on evolutionary potential. The remaining tested
modifications highlight the robustness of digital evolution, exhibiting no systematic effects on evolutionary potential.
doi:10.1371/journal.pone.0083242.g003
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There were some particular environment/instruction set combi-

nations that had significant variations, yet these were rarely

substantial in nature. It is particularly surprising that the

REGISTER-series instruction sets showed such minimal devia-

tion, given that going from the FA architecture to the R16

architecture represents a greater than five-fold increase in working

set and a 50% increase in instruction set size. Similarly, the

LABEL-SEQ-BOTH instruction set represents a 20.6% increase

in instruction set size, with no substantially negative effect. Taken

together these groups provide additional evidence that the

evolutionary process is rather robust to genetic language dilution

[21], maintaining the ability to adapt successfully to the

environment despite searching a much larger genotype space.

The FLOW-series of instruction set architectures represents a

third class of outcomes, yielding improved results in a subset of

environments and degradation of performance in one environ-

ment. The Sort-10, Limited-9, and Navigation environments all

show substantial gains in both fitness and task success metrics

when using instruction sets containing the IFX and MOVHEAD

instruction groups. The Logic-77 environment, on the other hand,

shows a notable drop in performance. It is possible that this

environment does not require a great deal of flow control, thus is

being negatively affected by the disruptive nature of the additional

flow control instructions. In environments where flow control

decisions are critical for success, such as the Sort-10 and

Navigation environment, the benefits of more flexible flow control

outweigh their disruptive effects.

The Sort-10 environment stands out as the only example where

a single, small change – splitting the input and output instructions

– made a large destructive difference in performance. Median task

success collapsed to be statistically indistinguishable from 0, and

remained there despite further beneficial instruction set modifica-

tions. These results are likely an artifact of the environment itself,

rather than a general trend. We set up the Sort-10 environment to

control for random inputs and to, on average, provide no benefit

unless active sorting was performed by an organism. However, the

inputs for sorting are indeed a random sample of 10 integers. It is

possible, due to chance, for a partial ordering of numbers to yield a

positive metabolic reward even if the sequence of inputs is simply

echoed back to the environment. When using instruction sets

featuring the paired-input-and-output instruction, simply mutating

this instruction into the section of the genome responsible for

replication may be enough to confer the echo capability,

presenting an opportunity for lucky organisms to occasionally

reap rewards. When the operations are split into two separate

instructions, it then requires two coordinated mutations to confer

the echo capability and doubles the execution cost for performing

the task. The combination of these factors most likely contributes

to the observed drop in median performance.

Instruction data flow, working set size, and flow control are the

three main features addressed by the six groups of instruction set

modifications presented here. All of these features play an

important role in implementing a successful sorting algorithm.

Despite the modifications in the instruction set architectures we

tested, no significantly beneficial change was observed in either

fitness or task success within the Sort-10 environment. Most likely,

the highly constrained memory size of these architectures limits

the potential within this environment. In fact, a hand-written

organism that performs the task successfully with the Heads

architecture requires nearly every single stack location in both

available stacks. Another factor limiting potential may simply be

the time allotted for evolution, which was held constant in our

current study. The additional flow control instructions tested in the

Flow -series architectures show some signs of improved success in

this environment, with numerous outlier populations. Given

Table 16. HEADS and HEADS-EX Architectures Fitness.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

HEADS 19.44 13.50 0.194 3.453 20.47 4.328 1.656

(17.74, 19.79) (11.67, 15.30) (0.168, 0.248) (3.216, 3.858) (20.61, 20.33) (4.157, 4.445) (1.108, 3.606)

IFX 22.95 41.292 0.311 8.063 21.00 5.751 4.475

MVH (22.74, 23.11) (38.50, 44.56) (0.245, 0.347) (7.980, 8.189) (21.03, 20.92) (5.517, 6.049) (4.244, 4.953)

Fitness results for the base HEADS and the HEADS-EX instruction set architectures. The HEADS-EX architecture includes features from all six tested feature groups,
including fully associative arguments, six registers, direct-matched labels, split-I/O, directional search instructions, the ifx instruction, and conditional mov-head
instructions. Each entry shows the median log2 population mean fitness in the respective environment, with 95% confidence intervals in parentheses. Bold entries
indicate significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t016

Table 17. HEADS and HEADS-EX Architectures Task Success.

Logic-9 Logic-77 Match-12 Fib.-32 Sort-10 Limited-9 Navigation

HEADS 0.834 0.185 0.146 0.202 1.42|10{4 0.908 4.72|10{3

(0.752, 0.844) (0.162, 0.211) (0.145, 0.147) (0.177, 0.228) (1.08, 1.66) (0.897, 0.914) (3.99, 8.23)

IFX 0.945 0.549 0.150 0.459 0.0 0.941 9.65|10{3

MVH (0.940, 0.951) (0.507, 0.577) (0.149, 0.151) (0.451, 0.467) (0.0, 0.0) (0.937, 0.947) (9.12, 10.62)

Task success results for the base HEADS and the HEADS-EX instruction set architectures. The HEADS-EX architecture includes features from all six tested feature groups,
including fully associative arguments, six registers, direct-matched labels, split-I/O, directional search instructions, the ifx instruction, and conditional mov-head
instructions. Each entry shows the median normalized task success in the respective environment, with 95% confidence intervals in parentheses. Bold entries denote
significant (pv0:05, Wilcoxon rank-sum test) deviations.
doi:10.1371/journal.pone.0083242.t017
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additional time to evolve, these and other populations would likely

be able to refine the emerging solutions.

When features from all six instruction set groups are combined

to form the HEADS-EX architecture, significant and substantial

improvements relative to the base HEADS architecture are

observed in six of the seven environments (Tables 16 and 17).

Despite these improvements, there still remains a great deal of

unexploited opportunity in five of the environments. Specific

architectural changes to address these environments may yield

greater results, such as the addition of an instruction capable of

building arbitrary numbers for the Match-12 environment.

However, such focused modifications could mask the need for

more sweeping changes. Even with significant gains under two

instruction sets, the Logic-77 environment still shows room for

substantial improvement, as median task success shows popula-

tions utilizing less than 55% of the opportunities present. Even

more so, the Sort-10 and Navigation environments exploit less

than 1% of the available potential.

It is clear from this present study that we have just started to

identify the most effective genetic hardware for adaptive evolution

in digital organisms and there remains room for significant

future improvement. Indeed, our current study has focused on

modifications within the framework of von Neumann machine

code formalisms. We expect that further studies of instruction set

architecture enhancements for evolvable systems, both within the

limits of von Neumann architectures and the broader range of

programming formalisms, will unlock this potential, facilitating

advancements in the application of digital evolution and artificial

life.
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