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INTRODUCTION 
 

Kidney or renal cancer is the 6 most common malignant 

cancer in males and the 8 most common in females. 

There will be 73,820 patients of renal cancer diagnosed 

in the United States, of which 14,770 patients 

succumbed from the disease [1]. Among the various 
histological types of kidney cancer, RCC is the most 

common type, accounting for about 85% of all cases [2]. 

RCCs arise from nephrons, but there are distinct 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is an aggressive tumor and the most common subtype of RCC. Ferroptosis 
is a novel form of regulated cell death, and ferroptosis-related genes (FRGs) have been associated with the 
prognosis of patients with certain cancers. However, the detailed prognostic correlation between FRGs and 
ccRCC has not yet been elucidated. To address this, the current study used The Cancer Genome Atlas (TCGA) 
dataset to explore 64 FRGs and determine their prognostic value in ccRCC. Results showed that 52 out of the 64 
genes displayed significantly different expression levels in tumor tissue, and 35 out of the 52 differentially 
expressed genes (DEGs) were associated with overall survival. Subsequently, a four-gene prognostic signature 
(CD44, DPP4, NCOA4 and SLC7A11) was constructed and could successfully distinguish ccRCC patients with 
different prognosis in TCGA train and test sets. Furthermore, clinical ccRCC samples from our medical center 
were used to verify the application value of the new prognostic signature through immunohistochemistry and 
quantitative real-time polymerase chain reaction (qRT-PCR). Biological functional analysis implied that immune-
related functions and pathways were enriched in the TCGA cohort and the immune status scores were 
significantly different between high- and low-risk sets. These results suggest that the four ferroptosis-related 
regulatory genes can act as reliable prognostic biomarkers of ccRCC, and might be exploited as potential targets 
of therapeutic strategies. 
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histological subtypes of RCC that differ both in biology 

and survival outcomes. Clear cell RCC (ccRCC) is the 

most common subtype (70%-80% of all RCC cases) and 

is also one of the most aggressive subtypes [3]. 

Numerous treatments for ccRCC are available, including 

radical nephrectomy, nephron-sparing surgery, and 

immunotherapy, etc., but the overall prognosis has 

remained limited and immune-related adverse events 

remain to be improved [4–6]. Therefore, this calls for 

exploration and construction of potential prognostic 

models with the overarching goal of providing ccRCC 

patients with optimal treatments. 

 

Previous studies confirmed that ccRCC is strongly 

associated with alterations in the von Hippel-Lindau 

(VHL) gene [7, 8]. Furthermore, several miRNAs (such 

as miR-99a, miR-106a, and miR203, etc.) and pathways 

(such as PI3K/AKT/mTOR, Wnt-β, and Hippo) 

modulate the process of ccRCC [9, 10]. In recent years, 

several studies have reported that ferroptosis may 

participate in a ccRCC-associated mechanism [11]. 

 

Ferroptosis was first introduced in 2012 by Dixon et al. 

[12]. As a ROS- and iron-dependent form of regulated 

cell death (RCD), ferroptosis is distinct from other 

RCDs (such as apoptosis, necroptosis, and autophagy) 

in both morphological changes and biochemical 

processes [13]. Studies have proven that diverse 

molecules, including GPX4, SLC7A11 and VDAC2/3, 

regulate ferroptosis through affecting iron metabolism 

and lipid peroxidation [14–16]. Furthermore, recent data 

demonstrated that FRGs are closely associated with the 

prognosis of patients with hepatocellular carcinoma 

(HCC) [17]. However, it has not yet been elucidated 

whether FRGs are also associated with the prognosis of 

ccRCC patients. 
 

Therefore, this study examined the expression pattern of 

64 FRGs in ccRCC patients using data retrieved from 

TCGA database. Moreover, new risk stratification 

models were constructed, followed by validation of the 

prognostic value of the model using TCGA test cohort 

and clinical samples obtained from our medical center 

(the Shandong Provincial Hospital affiliated to 

Shandong First University). Finally, functional analysis 

was conducted to elucidate the potential mechanisms in 

ccRCC. 

 

RESULTS 
 

The expression pattern and correlation of ferroptosis 

genes in ccRCC 

 

A heatmap was generated to analyze the expression 

pattern of FRGs in ccRCC. Most of the genes (52/64, 

81.3%) showed a significantly different expression 

level in the ccRCC tissues compared to the normal 

tissues (Figure 1A). Furthermore, univariate Cox 

analysis revealed that 35 out of the 52 DEGs were 

significantly associated with OS (Figure 1B). Next, a 

Venn diagram was constructed to screen out the 

prognostic ferroptosis-related DEGs, with results 

showing that 27 DEGs were associated with prognosis 

(Figure 1C). Finally, the 27 prognostic FRGs were 

preserved (p < 0.05, Figure 1D, 1E). 

 

Moreover, correlation analysis was used to investigate 

the interactions among all selected genes, with results 

suggesting that most of the FRGs had a positive 

correlation (Figure 1F). The PPI network indicated that 

SLC7A11, GCLM, and NFE2L2 were the hub genes 

(Figure 1G). 

 

Construction of prognostic signature in the TCGA 

cohort 

 

The entire TCGA cohort was randomly divided into train 

set (n = 264) and test set (n = 261) using the “caret” 

package. The 27 DEGs mentioned above were then 

measured as predictive genes and exposed to LASSO 

analysis. From the results, six FRGs were screened out 

based on the optimal value of λ (Supplementary Figure 

1A, 1B). Subsequently, multivariate Cox analysis was 

performed, and a four genes prognostic model was 

finally constructed (Figure 2A). The risk score was then 

determined using the coefficients and expression level of 

each gene: risk score = (0.015) × CD44 + (-0.005) × 

DPP4 + (-0.017) × NCOA4 + (0.432) × SLC7A11. 

According to the median risk score, patients in the  

train set were grouped into high- and low risk sets,  

and followed by comparison of the OS using the  

K-M curve. Results showed that ccRCC patients in the 

high-risk group had a poorer OS compared to patients in 

the low-risk group (Figure 2B). The distribution of the 

four FRGs signature based on risk scores is also 

displayed in Figure 2C, 2D, which was consistent with 

results of the K-M curve. Furthermore, time-dependent 

ROC analysis demonstrated that the prognostic signature 

had an advanced predictive performance for OS, with 

AUC values equal to 0.756, 0.753 and 0.769 at one, two 

and three years, respectively (Figure 2E). Finally, PCA 

and t-SNE analyses revealed that the two groups of 

patients were distributed in two different directions 

(Figure 2F, 2G). 

 

Validation of the four-gene signature 

 

According to the median risk score from train group, 

patients in test group were also categorized into high- 
and low-risk. Results showed that the survival outcome 

of high-risk patients was worse than that of low-risk 

patients, which was consistent with results of the train 
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Figure 1. Identification of FRGs. (A) 52 genes showed significant differences in expression in ccRCC tissue. (B) 35 of the DEGs were 

associated with OS in univariate Cox analysis. (C) Venn plot to identify prognostic DEGs. (D) 27 overlapping genes show significantly different 
levels of expression in ccRCC tissues. (E) Forest plot displaying result of univariate Cox analysis between prognostic DEGS and OS. (F) The 
correlation network of prognostic DEGs. (G) The PPI network from the STRING database. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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set (Figure 3A). The distribution of risk scores confirms 

that patients with high-risk scores have poorer survival 

outcomes compared to patients with low-risk scores 

(Figure 3B, 3C). The ROC curve demonstrated that the 

four-gene signature had a preferable predictive capacity 

for OS, with AUC values of 0.718, 0.644 and 0.670 at 

one, two and three years, respectively (Figure 3D). In 

addition, PCA and t-SNE analyses confirmed that the 

two groups of patients with ccRCC were dispensed in 

two directions (Figure 3E, 3F). 

 

 
 

Figure 2. Construction of the prognostic model. (A) Construction of multivariate Cox analysis prognostic model. (B) K-M curve for the 

OS of ccRCC patients in high- and low-risk sets in the train set. (C, D) Distribution of risk scores and corresponding OS status in the train set. 
(E) ROC curve of the prognostic signature in the train set. (F, G) PCA and t-SNE analyses of the TCGA train set. 
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Furthermore, the robustness of the four-gene model was 

verified for its clinical application using KIRC samples 

obtained from our medical center. IHC images showed 

that the normal renal tissue had weak staining for CD44, 

DPP4 and SLC7A11 in the cytoplasm and cell 

membrane, while NCOA4 displayed the opposite trend 

in normal tissues (Figure 4A, 4C, 4E). On the other 

hand, moderate and strong staining patterns for CD44, 

DPP4, and SLC7A11 were observed in the cytoplasm 

and cell membrane of tumor tissues (Figure 4B, 4D, 

4F), while NCOA4 only exhibited weak positive 

staining on the cell membrane of tumor tissues (Figure 

4G, 4H). These unique IHC staining patterns illustrate 

that the four genes can be used to predict clinical 

outcome and can distinguish cancerous tissue from 

normal tissue. 

 

 
 

Figure 3. Validation of the four-gene signature. (A) K-M curve for the OS of ccRCC patients in the test set. (B, C) Distribution of the risk 
scores and corresponding OS status in test set. (D) ROC curve of the prognostic signature in test set. (E, F) PCA and t-SNE analyses of the TCGA 
test set. 
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Subsequent qRT-PCR analysis also showed that the 

expression level of CD44, DPP4 and SLC7A11 in ccRCC 

samples are significantly higher than that in paired non-

tumor samples (Figure 4I). In addition, the expression 

level of NCOA4 in ccRCC samples is lower than that in 

paired non-tumor samples (p < 0.05, Figure 4I). 

 

Independent prognostic value of the constructed 

signature in ccRCC 

 

To determine whether the four-gene signature could 

serve as independent prognostic factor, univariate and 

multivariate Cox regression analyses were operated on 

both the train and test sets. Univariate Cox analysis 

indicated that age, tumor grade, tumor stage and risk 

score were associated with OS in both train and test sets 

(p < 0.05, Figure 5A, 5C). The variables with associated 

P value <0.1 were then enlisted into the multivariate 

Cox analysis, which showed that the predictors were 

risk score and tumor stage in both train and test sets (p < 

0.05, Figure 5B, 5D). 

 

Functional analyses 

 

To illustrate the biological functions and pathways of 

genes that were differentially expressed in ccRCC tissues 

compared with non-cancerous tissues, GO enrichment 

and KEGG pathway analyses were conducted. GO 

analysis suggested that the DEGs were enriched in 

peptidase regulator activity, signaling receptor activator 

activity, receptor ligand activity, and plasma membrane 

(FDR < 0.05, Figure 6A), which is consistent with 

previous studies [18–21]. On the other hand, KEGG 

pathway analyses implied that the DEGs were enriched 

in the TNF signaling pathway, PPAR signaling pathway, 

p53 signaling pathway, folate biosynthesis, bile secretion, 

and cholesterol metabolism (Figure 6B), which is 

congruent with preceding studies [22–27]. However, the 

DEGs were also enriched in several immune functions 

and immune-associated pathways, such as cytokine-

cytokine receptor interaction, lymphocyte mediated 

immunity, and complement activation, complement and 

coagulation cascades (FDR < 0.05, Figure 6A, 6B). 

 

Considering the association between different DEGs 

and immune status, we further explored the interaction 

between risk score and immune status in the TCGA 

cohort. Major immune cells and functions were 

quantified with enrichment scores using ssGSEA. 

Results indicated that the scores of antigen-presenting 

cells (APC) and functions in the high-risk group, 

including DCs, iDCs and APC co-inhibition, were 

higher than in the low-risk group (p < 0.05, Figure 6C, 

6D). However, the score of aDCs was lower in the high-

risk group. Notably, cellular immunity, especially T 

cell-related immune cells and functions, including CD8+ 

T cell, Th1 cell, Th2 cell, Tfh cell and T cell co-

stimulation, had higher scores in the high-risk group (p 

< 0.05, Figure 6C, 6D). Furthermore, consistent with 

the KEGG analysis, quantification of cytokine-cytokine 

receptor (CCR) interaction produced higher scores in 

the high-risk set (p < 0.05, Figure 6D). In addition, 

tumor infiltrating lymphocytes (TIL), the function of 

checkpoint regulators, and the ability of inflammation-

promoting molecules displayed elevated scores in the 

high-risk group (p < 0.05, Figure 6C, 6D). 

 

 
 

Figure 4. Experimental verification of four genes in the prognostic signature. (A–H) Immunohistochemical images of expression of 

the four proteins from the prognostic signature in non-tumor tissue samples (A, C, E, G) and tumor samples (B, D, F, H). (I) mRNA expression 
levels of 4 ferroptosis-related genes were evaluated using qRT–PCR in ccRCC samples and normal samples. *, P < 0.05; **, P < 0.01; ***,  
P < 0.001. 
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Finally, we performed co-expression analysis between 

four ferroptosis genes through Person’s correlation 

analysis. As shown in Supplementary Figure 2, based 

on the optimal correlation, we selected NCOA4 and 

SLC7A11 as the hub genes. Then, GSEA analysis was 

conducted to explore the underlying mechanisms based 

on the TCGA data. Notably, the results showed that 

overexpression of NCOA4 was associated with renal 

cell carcinoma, the JAK-STAT pathway, Toll-like 

pathway and the NOD-like receptor pathway (|NES|> 1, 

p < 0.05, FDR < 0.25, Supplementary Figure 3A–3D). 

In addition, overexpressed SLC7A11 enriched in cell 

cycle and NOD-like receptor pathway as well (|NES|> 

1, p < 0.05, FDR < 0.25, Supplementary Figure 3E, 3F). 

 

DISCUSSION 
 

Several recent studies have recently confirmed that 

ferroptosis, a novel recognized form of RCD, occurs 

due to accumulation of lethal lipid peroxidation. 

Morphologically, ferroptosis is characterized by small 

mitochondria, reduced mitochondria crista, and  

ruptured outer mitochondrial membrane [28]. Emerging 

evidence has indicated that several compounds, such as 

sulfasalazine and sorafenib induce ferroptosis in cancer 

cells [29]. Many studies have also reported that 

dysregulated ferroptosis may affect multiple pathological 

processes, such as cancer cell death, renal failure, and T 

cell immunity [14, 15, 30]. Therefore, considering the 

significant role of ferroptosis in regulating cell death,  

the exact role of this process in ccRCC should be 

investigated. 

 

Here, major knowledge gaps have been identified, 

including evaluation of FRGs to assess prognostic value 

as well as the potential mechanisms in ccRCC. Firstly, 

the expression pattern of 64 ferroptosis-related regulator 

genes in ccRCC was explored, with results showing that 

52 of these regulators were aberrantly expressed in 

ccRCC. Furthermore, 35 of the 52 DEGs were 

associated with the prognosis of ccRCC patients. Next, 

27 prognostic ferroptosis-related DEGs were screened 

out by Venn diagram, and a prognostic model with four 

genes (CD44, DPP4, NCOA4, and SLC7A11) was 

developed via LASSO and multivariate Cox regression 

analyses. With the median risk score, patients were then 

grouped into low- and high-risk groups. The K-M curve 

and ROC curve indicated that this four-gene signature

 

 
 

Figure 5. Independent prognostic value of the constructed signature. Univariate and multivariate Cox analyses regarding OS in the 

train set (A, B) and test set (C, D). 
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had a good ability to predict prognosis. In addition, 

multivariate Cox analysis showed that the risk score was 

an independent prognostic factor. Besides, the 

prognostic signature was validated using the test set and 

in KIRC samples from our hospital, with results further 

suggesting the prognostic value of the four-gene 

signature in clinical application. Finally, GO and KEGG 

enrichment analyses were performed in the TCGA 

cohort. In addition to the ferroptosis-related functions 

and pathways, several tumor immune-related functions 

and pathways were enriched. Moreover, ssGSEA results 

showed that the APCs scores and cellular immunity 

scores, especially those of T cell-related immune cells, 

were also higher in the high-risk group than in the low-

risk group. It has been proposed that ferroptotic cells 

may release diverse ‘find me’ signaling molecules, 

which could attract APCs or other immune cells to the 

location of ferroptotically dying cells [11]. Furthermore, 

T cell immunity, especially CD8+ T cells could promote 

ferroptosis-specific lipid peroxidation in tumor cells, 

thereby contributing to the antitumor efficacy of 

immunotherapy [31]. Therefore, the prognostic models 

established in this study have the potential to evaluate 

the prognosis of ccRCC patients. Meanwhile, the four 

selected ferroptosis-related regulatory genes can be 

exploited as potential targets of therapeutic strategies 

and the relevant mechanisms should be explored further. 

 

Specifically, the four genes in the prognostic signature 

perform distinct functions in the process of ferroptosis. 

For example, NCOA4 plays important role in regulating 

iron metabolism. Several studies reported that knocking 

down these genes suppressed erastin-induced ferroptosis 

and/or amino acid/cystine deprivation-induced ferroptosis 

[32, 33]. In addition, DPP4 inhibited erastin-induced 

ferroptosis in colorectal cancer after its activity was 

blocked by p53. However, in the absence of p53, DPP4 

combines with NOX1 to form the NOX-DPP4 complex, 

thereby leading to plasma membrane lipid peroxidation 

and ferroptosis [21, 34]. SLC7A11 participates in  

many ferroptosis-related signaling pathways. Studies 

have reported that BAP1 could promote ferroptosis by 

blocking the expression of SLC7A11. Moreover, 

SLC7A11 could induce ferroptosis when the African-

restricted polymorphism S47 in the p53 (p533KR) gene 

was mutated [26, 35]. CD44, a marker of cancer stem 

 

 
 

Figure 6. Functional analyses in the TCGA cohort. Representative results of the most significant GO enrichment (A) and KEGG pathways 

(B) in the TCGA cohort. ssGSEA scores of immune cells (C) and immune-related functions (D) between different risk groups. ns, not significant; 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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cells, has also been shown to regulate iron homeostasis 

and modulate iron entry into tumor cells [36]. In 

particular, CD44v, the isoform of CD44, could stabilize 

protein xCT and hence stimulate glutathione synthesis, 

which then further undermined ROS-induced stress 

signaling, a ferroptosis hallmark [37]. However, despite 

these observations, there are only limited studies 

concerning the mechanism of ferroptosis in ccRCC. 

Therefore, additional experimental proof about these 

ferroptosis-related regulators in ccRCC is needed. 
 

There are several limitations in this current study. 

Firstly, the ccRCC cohort is relatively small and clinical 

data of the samples is not complete. Secondly, the lack 

of in vitro experimental verification affects the rigor of 

this study. Although we conducted GO and KEGG 

analysis, the specific upstream and downstream target 

molecules as well as the specific regulatory mechanisms 

still need to be verified. Therefore, future studies should 

include the prospective data of ccRCC patients and in 
vitro experimental verification in order to strengthen the 

findings of this study. Overall, this research is far from 

being completed and most likely this process will 

continue in the next years. Given the limited knowledge 

of ferroptosis-related genes, it is of critical urgency to 

interrogate detailed mechanism and novel targets for 

future clinical application. 
 

Collectively, the finding of this study illustrated a 

dysregulated expression profile of FRGs between 

ccRCC and normal samples. Many clinicopathological 

features, including patients’ age, tumor grade and stage 

could act as independent prognostic factors, which 

illustrated the pivotal role of these genes in the 

development of ccRCC. Finally, a four-gene prognostic 

model was constructed to determine various prognoses 

of ccRCC patients, and the model implied that CD44, 

DPP4, NCOA4, and SLC7A11 may serve as potential 

molecular biomarkers of ccRCC. 

 

MATERIALS AND METHODS 
 

Data collection 

 

Expression data and clinical information of 539 ccRCC 

and 72 normal patients were obtained from the TCGA 

database (https://portal.gdc.cancer.gov/). Expression data 

were normalized by “limma” package. After performing 

a comprehensive literature review, 64 FRGs were 

identified [13, 19, 38–41] (Supplementary Table 1). 

 

Selection of intersected genes between differential 

expression- and prognostic ferroptosis-related genes 
 

DEGs in paired tumor and non-tumor tissues were 

assessed by “limma” package. Univariate Cox analysis 

of overall survival (OS) was then conducted to obtain 

prognostic genes. Finally, intersected FRGs were screen 

out using the “venn” R package. The differential 

expression patterns, co-expression correlation analysis, 

and prognostic values were visualized by “survival”, 

“igraph” and “pheatmap” R package. 

 

Construction and validation of the prognostic 

signatures 

 

The TCGA cohort was randomly divided into two 

groups (train and test groups) by using the “caret” 

package. Least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis was 

conducted in train set with the "glmnet" R package. 

Multivariate cox analysis was performed to build 

prognostic models. The median value of risk scores 

was calculated to stratify ccRCC patients into  

high-risk and low-risk sets by the following  

formula: 
1

Risk score
n

n nCoef x=  (where Coefn is 

the coefficient and xn is the expression level of each 

intersected gene). Next, a Kaplan-Meier (K–M) curve 

was used to analyze the OS in train and test groups, 

respectively. Receiver operating characteristic (ROC) 

analysis was also executed to assess the prediction 

efficiency of prognosis. Based on the expression 

profile of four FRGs, PCA and t-SNE analysis were 

performed to demonstrate the expression patterns of 

various FRGs in diverse groups. Finally, IHC pattern 

was certified by utilizing KIRC clinical samples from 

our hospital. Univariate and multivariate Cox analyses 

were utilized to investigate independent prognostic 

factors for ccRCC patients. 

 

Functional analyses 

 

A protein–protein interaction (PPI) network was built 

for prognostic DEGs by the STRING database 

(http://string-db.org/). Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

based on the DEGs were then operated by utilizing 

"clusterProfiler" package. In addition, the score of 

major immune cells and immune-related pathways were 

determined with single-sample gene set enrichment 

analysis (ssGSEA). GSEA was performed using GSEA 

v4.1.0 (http://www.broadinstitute.org/gsea/). 

 

Immunohistochemistry 

 

Ten pairs of ccRCC and adjacent normal tissues were 

collected from Shandong provincial Hospital affiliated to 

Shandong First University during January 2021 to 

February 2021. The experiment was approved by the 

Shandong Provincial Hospital Ethics Committee 

(Approval number: SWYX: NO.2021-118) and written 

https://portal.gdc.cancer.gov/
http://string-db.org/
http://www.broadinstitute.org/gsea/
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informed consents were signed by each patient before the 

study began. IHC was performed according to previously 

described standard procedures [42]. All samples were 

incubated with rabbit polyclonal antiCD44 (ab189524), 

antiNCOA4 (ab62495), antiDPP4 (ab187048) and 

antiSLC7A11 (ab175186) antibodies overnight at 4° C 

and were then washed. Two pathologists independently 

assessed the IHC slides. 

 

RNA analysis, extraction, and quantitative real-time 

PCR 

 

Total RNA of frozen tissue was extracted by TRIzol 

reagent (Tiangen Biotech (Beijing)), and 1 μg of total 

RNA was reverse transcribed using the FastKing RT Kit 

(Tiangen Biotech (Beijing)) according to the 

manufacturer’s instructions. Followed by measuring 

with a real-time quantitative PCR system. The primers 

used in this study were provided by Beijing Dingguo 

Changsheng Company and are shown in Supplementary 

Table 2. The expression data was log2 transformed: 

log2(exp + 0.01). 

 

Statistical analysis 

 

Mann-Whitney tests were utilized to measure gene 

expression between ccRCC and non-tumor tissues. 

Associated samples with incomplete clinical 

information were eliminated. All data analyses were 

conducted using the R statistical package (R version 

4.0.1). A two-tailed p < 0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. LASSO regression analysis of 27 prognostic DEGs. (A) LASSO coefficient profiles of 27 genes. (B) Selection 

of the penalty parameter (λ). 
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Supplementary Figure 2. (A–F) Co-expression analysis between four ferroptosis genes. 

 

 

 
 

Supplementary Figure 3. (A–F) Enrichment curves for NCOA4 (A–D) and SLC7A11 (E, F) by GSEA analysis. NES, normalized enrichment 
score; FDR, false discovery rate. 
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Supplementary Tables 
 

Supplementary Table 1. The list of the 64 ferroptosis-related genes from publications. 

Ferroptosis-related genes Name 

ABCC1 ATP binding cassette subfamily C member 1 

ACACA Acetyl-CoA carboxylase alpha 

ACO1 aconitase 1 

ACSF2 acyl-CoA synthetase family member 2 

ACSL3 acyl-CoA synthetase long-chain family member 3 

ACSL4 acyl-CoA synthetase long-chain family member 4 

AIFM2 apoptosis inducing factor mitochondria associated 2 

AKR1C1 aldo-keto reductase family 1 member C1 

AKR1C2 aldo-keto reductase family 1 member C2 

AKR1C3 aldo-keto reductase family 1 member C3 

ALOX12 arachidonate 12-lipoxygenase 

ALOX15 arachidonate 15-lipoxygenase 

ALOX5 arachidonate 5-lipoxygenase 

ATP5MC3 ATP synthase membrane subunit c locus 3 

BAP1 BRCA1 associated protein 1 

CARS cysteinyl tRNA synthetase 

CBS cystathionine beta synthase 

CD44 CD44 molecule 

CHAC1 ChaC glutathione- specific gamma-glutamyl cyclotransferase 1 

CISD1 CDGSH iron sulfur domain 1 

CRYAB heat shock protein beta 5 

CS citrate synthase 

DMT1 ferrous ion membrane transport protein DMT1 

DPP4 dipeptidyl-dippeptidase-4 

EMC2 ER membrane protein complex subunit 2 

FADS2 fatty acid desaturase 2/acyl-CoA 6-desaturase 

FANCD2 Fanconi anemia complementation group D2 

FDFT1 farnesyl-diphosphate farnesyltransferase 1 

FTH1 ferritin heavy chain 1 

G6PD glucose-6-phosphate dehydrogenase 

GCLC glutamate-cysteine ligase catalytic subunit 

GCLM glutamate-cysteine ligase modifier subunit 

GLS2 glutaminase 2 

GOT1 glutamic-oxaloacetic transaminase 1 

GPX4 glutathione peroxidase 4 

GSS glutathione synthetase 

HMGCR 3-hydroxy-3- methylglutaryl-CoA reductase 

HMOX1 heme oxygenase 1 

HSBP1 heat-shock 27-k Da protein 1 

HSPB1 heat shock protein beta 1 

IREB2 iron response element-binding protein 2 

KEAP1 kelch-like ECH- associated protein 1 

LPCAT3 lysophosphatidylcholine acyltransferase 3 

MT1G metallothionein-1G 

NCOA4 nuclear receptor coactiva tor 4 

NFE2L2 nuclear factor, erythroid 2 like 2 
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NFS1 cysteine desulfurase 

NOX1 NADPH oxidase 1 

NQO1 quinone oxidoreductase-1 

PEBP1 phosphatidylethanolamine-binding protein 1 

PGD phosphoglycerate dehydrogenase 

PHKG2 phosphorylase kinase ,g2 

PTGS2 prostaglandin-endoperoxide synthase 2 

RPL8 ribosomal protein L8 

SAT1 spermidine/spermine N1-acetyltransferase 1 

SLC1A5 solute carrier family 1 member 5 

SLC7A11 solute carrier family 7 member 11 

SQLE squalene monooxygenase 

STEAP3 six-transmembrane epithelial antigen of prostate 3 

TFRC transferrin receptor 

TP53 tumor protein 53 

VDAC2 voltage dependent anion channel 2 

VDAC3 voltage dependent anion channel 3 

ZEB1 zinc finger E-box-binding homeobox 1 

 

Supplementary Table 2. Primers of 4 ferroptosis-related 
genes used in this study. 

Genes Primers (5’-3’) 

DPP4-F TTCAGAACTATTCGGTCA 

DPP4-R ATAAAGATTCCTTCCTCCT 

NCOA4-F TCAACATAGAACGCACAT 

NCOA4-R AGAACTCCACCAATAGCA 

SLC7A11-F TATTCTATGTTGCGTCTCG 

SLC7A11-R TATCATTGTCAAAGGGTGC 

CD44-F CAGCTCATACCAGCCATCCA 

CD44-R GCTTGATGACCTCGTCCCAT 

Actin-F ACACTGTGCCCATCTACG 

Actin-R TGTCACGCACGATTTCC 

 


