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For decades, oxidative stress has been discussed as a key mechanism of endothelial dysfunction and cardiovascular disease.
However, attempts to validate and exploit this hypothesis clinically by supplementing antioxidants have failed. Nevertheless,
this does not disprove the oxidative stress hypothesis. As a certain degree of reactive oxygen species (ROS) formation appears
to be physiological and beneficial. To reduce oxidative stress therapeutically, two alternative approaches are being developed.
One is the repair of key signalling components that are compromised by oxidative stress. These include uncoupled endothelial
nitric oxide (NO) synthase and oxidized/heme-free NO receptor soluble guanylate cyclase. A second approach is to identify
and effectively inhibit the relevant source(s) of ROS in a given disease condition. A highly likely target in this context is the
family of NADPH oxidases. Animal models, including NOX knockout mice and new pharmacological inhibitors of NADPH
oxidases have opened up a new era of oxidative stress research and have paved the way for new cardiovascular therapies.
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smooth muscle cells; HMG-CoA, 3-hydroxy-3-methyl-glutaryl; HUVEC, human umbilical vein endothelial cells; LDL,
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Introduction
Cardiovascular diseases (CVD) are the leading cause of dis-
ability and death worldwide, causing a huge burden for
affected individuals and the society as a whole. Many cardio-
vascular disorders are associated with endothelial dysfunc-
tion, an impairment of vasodilatation in response to stimuli
(e.g. acetylcholine) acting through enhancement of nitric
oxide (NO) formation by endothelial NO synthase (eNOS).

In endothelial dysfunction, the bioavailability of NO is
most likely affected by its reaction with elevated levels of
superoxide (Gryglewski et al., 1986; Vanhoutte, 2009). In the
vasculature, superoxide and other reactive oxygen species
(ROS) can be derived from several sources. These include
xanthine oxidases, lipoxygenases, cyclooxygenases, mito-
chondria, uncoupled NOS, and peroxidases (Williams and
Griendling, 2007). However, NADPH oxidases as a source of
ROS stand out, as they are the only known enzymes where
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ROS generation is the main and only known function. An
increasing amount of data has demonstrated clearly that
NADPH oxidases expression and activity correlate with the
development and progression of those CVD that are associ-
ated with endothelial dysfunction.

In this review, we will focus on the importance of a redox
equilibrium and continue with a discussion on the current
options to measure oxidative stress. Based on this evidence,
we will explain why all clinical approaches to prevent and
treat CVD with supplemented antioxidants have failed
despite solid animal experimental data on the role of oxida-
tive stress in these disorders. We here review the two main
alternative approaches to tackle oxidative stress-related dis-
eases with the focus on inhibiting the disease relevant sources
of ROS. In addition, we also briefly touch on how to repair
damage caused by oxidative stress.

With respect to sources of ROS, we focus on NADPH
oxidases without dismissing the possibility that other enzy-
matic and non-enzymatic sources of ROS may also be of
relevance in certain disease states. While NADPH oxidases
have been suggested to be involved in many CVD, we here
concentrate on their role in hypertension and ischaemia-
reperfusion damage, exemplified by ischaemic stroke. We
then introduce and review the latest advancements in the
pharmacological inhibition of NADPH oxidases.

Redox balance: there is oxidative but
also reductive stress

The cellular redox balance is essential for many physiological
processes and probably also for cellular homeostasis and sur-
vival (Figure 1). While most research has been directed
towards oxidative stress, its counterpart, reductive stress, has
only very recently been getting more attention since it may
explain many of the disappointing findings with the clinical
application of antioxidants. Oxidative stress refers to a state
with an excess of ROS resulting from an overproduction
and/or compromised degradation of ROS (Stocker and
Keaney, 2004; Williams and Griendling, 2007). However, oxi-
dative stress is poorly defined in quantitative terms (Dotan
et al., 2004). Oxidative stress has been suggested to be a major
cause of a variety of pathologies, including endothelial dys-
function and associated cardiovascular pathologies such as
hypertension, ischaemic injury, cardiac hypertrophy and
congestive heart failure (Cai et al., 2003; Bedard and Krause,
2007; Williams and Griendling, 2007).

Importantly, ROS are not only detrimental, as they are
important signalling molecules mediating vital physiologic
functions such as the innate immune response, extracellular
matrix dynamics, cell proliferation, cell migration, cell differ-
entiation, inflammation as well as vascular contraction and
relaxation (Bedard and Krause, 2007; Williams and Grien-
dling, 2007). Reductive stress is characterized by an abnormal
increase of reducing equivalents, such as an elevated ratio of
reduced (GSH)/oxidized glutathione (GSSG) and NADPH/
NADP (Rajasekaran et al., 2007; Zhang et al., 2010). After the
discovery that reductive stress can have deleterious effects in
lower eukaryotes (Simons et al., 1995; Trotter and Grant,
2002) it was reported that reductive stress can also cause

damage in mammals. For example, mice expressing the
human mutant aB-crystalline protein suffer from protein
aggregation and increased levels of heat shock protein
(Hsp)25 that were associated with cardiomyopathy (Rajaseka-
ran et al., 2007). More recently, it was shown that high levels
of another Hsp, Hsp27, in hearts resulted in reductive stress,
development of cardiac dysfunction and reduced life span in
mice, which was attenuated by partial glutathione peroxidase
inhibition (Zhang et al., 2010). Therefore, a balanced redox
equilibrium is key to maintain cellular homeostasis and
health. Disturbance of this balance by supplementation of
antioxidants may be one explanation why clinical attempts
to prevent and treat CVD (and other chronic diseases) have
failed (see ‘The ROS scavenging approach’ below).

How do we know that there is
oxidative stress?

With respect to the measurement of oxidative stress, we focus
on ex vivo ROS assays and biomarkers that could also be
utilized in vivo and for diagnostic purposes. We will not
discuss the measurement of reductive stress in this review.

ROS assays
To determine if ROS are formed in a given system, for
example cells, a tissue or an organ, a variety of ROS assays
can be applied. The most commonly used ones are based on
spectrophotometry (cytochrome c reduction, aconitase,
nitro blue tetrazolium), chemiluminesence (e.g. lucigenin,
luminol, L-012), electron-spin resonance and fluorescence
[e.g. dihydroethidium (DHE), and its mitochondrially tar-
geted derivative, MitoSOX, DCF-DA and Amplex Red]. For
details of these and further assays, we refer to previous pub-
lications on this topic (Munzel et al., 2002; Daiber et al., 2004;
Dikalov et al., 2007; Rhee et al., 2010).

In general, measuring ROS is confounded by several
factors: (i) ROS levels are often very low. (ii) ROS, as the name
suggests, are highly reactive, and short-lived. As such, (iii) their
formation is influenced by, for example transition metals,
which are often contaminants of buffers used in assays, result-
ing in analytical flaws. (iv) ROS can be highly localized and are
not uniformly distributed within an organ or cell. This may
not be adequately assessed by an ROS assay of the entire cell or
an organ segment. It may thus remain impossible to accurately
localize and quantify ROS in all relevant subcellular compart-
ments. (v) For the same reason, scavengers of ROS, if not
properly targeted, may not block the effect, as they do not
reach the relevant subcellular compartment(s). (vi) Scaveng-
ing of ROS by antioxidants may result in the formation of
other ROS with biological effects, for example scavenging of
superoxide by SOD and some antioxidant vitamins results in
increased levels of H2O2, another ROS with many biological
effects (Dikalov et al., 2007) (Munzel et al., 2002).

Another consideration is that identification of the enzy-
matic source of ROS is often accomplished by substrate addi-
tion. For instance, with respect to NADPH oxidases, addition
of NADPH to cell/tissue lysates or subcellular fractions may
indeed be a tool to investigate NADPH oxidase activities.
However, it is not known how NADPH can enter the cells
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after NADPH is added to intact cells or even tissue segments
(Dikalov et al., 2007). Thus, pharmacokinetic issues may play
a role when adding substrates but also pharmacodynamic
factors (e.g. effects of the substrate) may influence ROS assay
results.

These considerations explain why none of the available
ROS assays is ‘perfect’. All available assays have limitations,
such as limited specificity, sensitivity, extracellular versus
intracellular detection, transient versus cumulative, validity,

costs, reproducibility, etc. It is therefore generally recom-
mended to use at least two different techniques, which have
to show similar results (Daiber et al., 2004; Dikalov et al.,
2007). But this is only a rule of thumb, of course, and in some
studies the results of a third assay not showing the same
result may not have been included in the published paper.

Finally, to proof the presence of ROS in the system of
interest is not sufficient to demonstrate any involvement of
ROS in disease development and progression. Experimental

Figure 1
Balance between oxidative and reductive stress. In arterial hypertension (AHT) and stroke, physiological NO-sGC signalling and vasodilatation can
be affected in three ways by NADPH (NOX)-induced oxidative stress (i.e. increased superoxide, O2

-, and hydrogen peroxide, H2O2, levels): (i)
scavenging of NO (with intermediate peroxynitrite, ONOO-, formation); (ii) uncoupling of eNOS; and (iii) oxidation and heme-loss of
NO-receptor Fe(II)sGC. Reactive oxygen species (ROS) and NO can also react to form reactive nitrogen species (RNS), which modify different cell
components, including protein tyrosine nitration (prot-NO2), correlating with cellular apoptosis and fibrosis. These pathways can be assessed by
using biomarkers such as phospho-VASP (P-VASP) for physiologic NO signalling, and nitro-tyrosine for RNS chemical biology. Therapeutic options
include inhibition of NADPH oxidases (NOX1 in AHT and NOX4 in stroke), eNOS recoupling (eNOSR), sGC stimulation (sGCS), sGC activation
(sGCA) and phosphodiesterase (PDE) inhibition (PDEI). However, reductants or antioxidants are no therapeutic alternative. They are ineffective or
even harmful, possibly via causing reductive stress, that is, unphysiological high glutathione (GSH) levels due to activation of glutathione reductase
(GRx), by heat shock protein (Hsp)27 or glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH. Increased GSH in turn results in
glutathione peroxidase (GPx)-dependent reduction of ROS to unphysiologically low levels and leads to S-(nitroso) glutathionylation, leading
eventually resulting in cardiomyopathy and reduced life span.
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approaches should rather focus on the principle that removal
of ROS by scavenging or, even better, deletion or specific
inhibition of the potential relevant source can improve the
condition, and that re-introduction of the ROS or its source
causes the pathophysiological changes investigated (Dikalov
et al., 2007). Unfortunately, such data are very rarely included
in publications on ROS biology.

One of the most popular probes to measure ROS is DHE.
Initially, it was thought that DHE reacted with superoxide
to form ethidium, which intercalates with DNA, resulting
in fluorescent signals, which reflected levels of superoxide.
However, it is now known that the reaction between DHE and
superoxide specifically yields 2-hydroxyethidium. In parallel,
ethidium can be formed in the assay, but this is not a specific
superoxide product. Rather, it reflects the redox status of a
cell (Fink et al., 2004; Dikalov et al., 2007; Zielonka et al.,
2009). The two products display different fluorescent spectra
with an extensive overlap in fluorescence. Therefore, the
commonly used fluorescence filters do not allow distinguish-
ing between ethidium and 2-hydroxyethidium, but this is
possible by separation of the two products with HPLC (Zhao
et al., 2005). Still, in many publications it is wrongly stated
that fluorescence recorded with DHE in tissue sections reflects
superoxide. Nevertheless, we believe that DHE is an excellent
tool for cellular localization and semi-quantitative analysis of
ROS in tissue sections. Indeed, we believe that it is of minor
relevance to distinguish between and quantify individual
ROS (e.g. superoxide vs. H2O2), as they are rapidly converted
inside a living cell, and it is unknown, which ROS is the
relevant type.

Oxidative stress biomarkers
Studies on ROS-dependent molecular mechanisms pointed to
specific mediators that play a key role in the development of
CVD. Some of these can be seen as circulating blood biom-
arkers in order to assess cardiovascular risk and/or to monitor
the efficacy of cardiovascular drug therapy.

As an example, plasma total antioxidant status (TAC) is
measured as an indicator of the general antioxidant status of
an individual (Dhamrait et al., 2004). There are, however,
major concerns about its usefulness (Young, 2001), as for
example in biological fluids the major contributor in most
TAC assays is urate (>50% of the TAC activity). However, urate
is of limited importance as an antioxidant in vivo (Young,
2001).

Isoprostanes, which have also been proposed as biomar-
kers, are prostaglandin-like compounds produced primarily
from arachidonic acid catalysed by reactive oxygen and nitro-
gen species. They are classified as the ‘gold standard’ for the
measurement of oxidative stress (Uno and Nicholls, 2010).
However, most studies have used single spot measurements
that can be misleading as the kinetics of isoprostanes in
plasma and urine are different (Halliwell and Lee, 2010). Also,
they should be standardized, but there is no agreement yet on
how to do this (Halliwell and Lee, 2010).

Thiobarbituric acid reactive substances (TBARS) and mal-
ondialdehyde (MDA) are the most commonly used biomark-
ers of lipid peroxidation (Lykkesfeldt, 2007; Niki, 2009).
Again, the validity of TBARS/MDA in bodily fluids has been
criticized, for example for a lack of specificity, post-sampling

MDA formation, antioxidants that can interfere with the
assay procedure, and MDA derived from the diet.

Oxidation of lipids such as low density lipoproteins (LDL)
is suggested to play a key role in the initiation and progres-
sion of atherosclerosis (Uno and Nicholls, 2010). The hetero-
geneity of oxLDL results in a large diversity of biomarkers,
possibly with different clinical implications. Further, lipid
peroxidation can probably not be used as a universal criterion
of oxidative stress (Dotan et al., 2004).

As all of the above described markers have drawbacks,
they are unreliable as an index of oxidative stress. However,
emerging biomarkers may prove to be more reliable. For
example, asymmetric dimethylarginine (ADMA), an endog-
enous inhibitor of NOS (Boger et al., 1998; Boger, 2006) is
increased in conditions of oxidative stress, which may ulti-
mately lead to endothelial dysfunction. ADMA may therefore
be suitable for (pre-)clinical screening of atherosclerosis
(endothelial dysfunction and systemic atherosclerosis).

The NO receptor soluble guanylate cyclase (sGC) (see
Figure 1) generates cyclic GMP (cGMP) when NO binds to it.
A biomarker of the NO-sGC signalling cascade is the
phosphorylation of the cGMP-dependent protein kinase
(cGK) substrate vasodilator-stimulated phosphoprotein
(VASP) (Melichar et al., 2004). P-VASP can therefore be used as
a marker for NO bioavailability. VASP is already used as
a biomarker to monitor the efficacy of treatment with
antiplatelet drugs (Weber et al., 2008). It is also a candidate
biomarker to monitor the efficacy of sGC activators and
stimulators in restoring the NO-sGC pathway (see also
‘Repairing ROS damage’ below).

By interacting with NO, NO2
-, NO2, etc., ROS can be

modified to reactive nitrogen species (e.g. peroxynitrite,
ONOO-) that both oxidize or covalently modify proteins and
DNA (Rizvi, 2009; Stephens et al., 2009). Nitrosylation of
tyrosine (NO2-Tyr) will ultimately lead to an altered structure
and function of the protein, thereby changing the signal
transduction pathway involved. Thus, NO2-Tyr can be used as
a general marker of nitrosative stress.

In conclusion, oxidative stress is ill defined in quantita-
tive terms (Dotan et al., 2004) and cannot be accurately
assessed with any of the current biomarkers and assays. It is
more likely that a combination of methods and biomarkers is
needed, and different types of ROS should be evaluated in
parallel to generate patterns or indices of oxidative stress.

The ultimate pathomechanistic proof of principle
though has to come from pharmacological modulation and
cause–effect relationships. We will therefore discuss three
approaches, antioxidants, inhibitors of ROS formation and
repair of oxidative damage.

The ROS scavenging approach

Antioxidants: a near death experience for the
oxidative stress hypothesis
Laboratory studies showed protective effects of antioxidants
and their association with various chronic diseases, including
CVD. Consequently, an impressive body of literature has
implicated modifiable lifestyle factors, including the diet, in
oxidative stress and CVD (Stampfer et al., 2000; Lichtenstein

BJPPharmacology of NADPH oxidases

British Journal of Pharmacology (2011) 164 866–883 869



et al., 2006; King et al., 2007; Chiuve et al., 2008; Ford et al.,
2009; Imamura et al., 2009; Mozaffarian et al., 2009), and
large cohort studies have shown an inverse relationship
between plasma levels of antioxidants and the risk of CVD,
other diseases and mortality (Riemersma et al., 1991;
Gale et al., 1995; Singh et al., 1995; Sahyoun et al., 1996;
Nyyssonen et al., 1997; Loria et al., 2000; Khaw et al., 2001).
It thus appeared to make sense that CVD could be prevented
by supplementation of antioxidants. Due to heavy promo-
tion by supplement manufactures (Miller and Guallar, 2009)
and the lay press, today millions of consumers use antioxi-
dant vitamin supplements, often at high doses.

Nevertheless, after many large clinical trials and meta-
analyses that have studied this issue, it became obvious that
antioxidant supplementation did not result in any reduction
in CVD morbidity and mortality. On the contrary, some large
clinical trials came to the conclusion that antioxidant supple-
mentation can even be harmful (Vivekananthan et al., 2003;
Miller et al., 2005b; Bjelakovic et al., 2007; Dotan et al., 2009;
Miller and Guallar, 2009). Considering the many millions of
people take antioxidant supplements, and if, as an example,
high dose vitamin E supplementation increases mortality
even by a small amount, such as the estimated 4% (Miller
et al., 2005b), these supplements would be responsible for
many deaths (Miller and Guallar, 2009). The same holds true
for other antioxidant regimens. It is now, for example, well
established that b-carotene supplements increase the risk of
cancer, CVD and mortality (Bjelakovic et al., 2007). Likewise,
vitamin E supplements can no longer be considered safe for
the general population (Dotan et al., 2009; Miller et al.,
2005b; Miller and Guallar, 2009).

Consequently, not only antioxidants but the entire oxi-
dative stress theory has been questioned despite the protec-
tive effects of antioxidants in pathophysiological animal
models. One likely reason for the contrasting results between
animals and humans is that much higher doses of antioxi-
dants have been used in most of the animal studies compared
to those administered in clinical trials (Griendling and
FitzGerald, 2003).

Despite the disappointing results of antioxidant clinical
trials, we will focus on evidence that the oxidative stress
hypothesis is correct, but that the redox imbalance plays a
different role than previously appreciated. In addition to pos-
sibly causing reductive stress (see Redox balance), several other
mechanisms could explain adverse effects of antioxidant
supplements. These include for example: (i) Inhibition of
physiological ROS functions. In the vasculature, ROS play
important roles as signalling molecules that regulate inflam-
mation, cell proliferation, migration and differentiation, as
well as vascular constriction and relaxation (Williams and
Griendling, 2007). Untargeted scavenging of all ROS by anti-
oxidants is likely to interfere with the physiological functions
of ROS (Ristow et al., 2009; Schafer et al., 2009; Ristow and
Zarse, 2010). (ii) Antioxidants are not targeted to the precise
localizations where ROS concentrations are elevated, as oxi-
dative stress is not evenly distributed throughout an organ-
ism. (iii) The rates of reaction between antioxidants and ROS
are often lower than the reaction rates between ROS and their
targets (Gotoh and Niki, 1992; Thomson et al., 1995). (iv)
After their reaction with ROS, antioxidants can become radi-
cals themselves, initiating new radical chain reactions, and

thus cause harm (Vertuani et al., 2004) (Bowry et al., 1992). (v)
The association between antioxidant plasma levels and the
incidence of chronic diseases may not be due to antioxidative
effects. Indeed, beneficial non-antioxidant actions of ‘antioxi-
dants’ have to be considered, such as their influence on gene
expression, which cannot be mimicked by supplementing
single or a few antioxidants.

Nevertheless, the failure of clinical studies does not dis-
prove the role of oxidative stress in CVD. The negative data
have only shown that the antioxidant supplementation
approach was apparently the wrong way to counteract CVD,
and better approaches are needed.

One alternative approach that has been proposed recently
is a more targeted supply of antioxidants to key subcellular
locations, for example mitochondria (Dikalova et al., 2010a).
Interestingly, the most abundant vascular NOX isoforms,
NOX4 (see Preventing oxidative stress), has been located in the
mitochondria (Block et al., 2009; Ago et al., 2010; Graham
et al., 2010) and may thus itself represent a source of mito-
chondrial ROS.

As such, targeting antioxidants to mitochondria in angio-
tensin II (Ang II)-induced and deoxycorticosterone acetate
(DOCA) salt hypertensive mice reduced blood pressure
(Dikalova et al., 2010a). Despite these intriguing findings, the
contribution of mitochondria to oxidative stress remains
controversial. On the one hand, it was suggested that mito-
chondria are the initiating source of ROS under some circum-
stances, with NADPH oxidases secondarily activated by
mitochondrial ROS (Dikalova et al., 2010a). On the other
hand, it was proposed that NADPH oxidases stimulate mito-
chondrial dysfunction resulting in mitochondrial ROS release
(Doughan et al., 2008; Ago et al., 2010). While the order
remains to be determined (and may be different in different
disease settings), both concepts are in line with the hypoth-
esis of ROS-induced ROS release resulting in a vicious cycle.
Nevertheless, the strategy of mitochondria-targeted antioxi-
dants is still in its infancy. Whether this concept is translat-
able into human health benefits remains to be shown,
keeping in mind that the translation of general antioxidant
supplementation from animals to humans obviously failed. A
more promising approach is to tackle oxidative stress at its
roots by inhibiting the disease-relevant sources of ROS. One
such source is the family of NADPH oxidases, which holds
great promise for future treatment of CVD.

Preventing oxidative stress:
NADPH oxidases

NADPH oxidases are enzyme complexes with a membrane-
spanning catalytic NOX subunit, which depends to varying
degrees on other subunits. These subunits include another
membrane protein, p22phox, and cytosolic proteins. Five
members of the NOX family have been identified: NOX1 to
NOX5. These isoforms differ in their subunit requirements,
expression patterns, subcellular localization, site of ROS
release (intra- vs. extracellular), mode of activation and func-
tion. Within the vasculature, NOX1, NOX2, NOX4 and
NOX5 are of relevance, keeping in mind that NOX5 is not
expressed in rodents. Whereas NOX1, NOX2 and NOX4
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require p22phox for their activity, NOX5 is active indepen-
dently of any other subunits. Further, NOX1 and NOX2
depend on several cytosolic factors, NOX organizers and
NOX activators, as well as the small GTPase Rac, which are
not needed for NOX4 activity (Griendling, 2004; Cave et al.,
2006; Bedard and Krause, 2007; Opitz et al., 2007).

The expression sites of NOX isoforms in the vasculature
are not yet known due to the lack of specific and broadly
validated antibodies. Nevertheless, it can be said with some
certainty that NOX2 is not only present in leukocytes, but
also in endothelial cells (Gorlach et al., 2000; Bedard and
Krause, 2007), fibroblasts (Chamseddine and Miller, 2003)
and cardiac myocytes (Nabeebaccus et al., 2011). NOX1 was
mainly found in vascular smooth muscle cells (VSMC) of rats
and mice (Bedard and Krause, 2007; Nabeebaccus et al.,
2011). In mice, it was also detected in endothelial cells
(Sorescu et al., 2004). In humans, NOX1 expression in VSMC
differs depending on the vessel types. For example, no NOX1
was found in human renal arteries (Schluter et al., 2010) and
saphenous veins (Guzik et al., 2004), but human aortic VSCM
do express NOX1 (Touyz et al., 2002). Importantly, in spon-
taneously hypertensive rats (SHR) NOX1 is induced in the
endothelium, possibly in close proximity to eNOS (Wind
et al., 2010a). The most abundant vascular NOX isoform is
NOX4 with a high expression in endothelial cells and
VSMC (Cheng et al., 2001). It is also present in neurons
(Kleinschnitz et al., 2010).

NOX5: a special case
NOX5 was the last NOX isoform to be identified (Banfi et al.,
2001; Cheng et al., 2001), and much less is known about this
NOX compared to the other isoforms. This lack of knowledge
is mainly due to the absence of NOX5 in rats and mice
making studies on NOX5 in these species impossible. Geneti-
cally, NOX5 is the most distinct of the NOX isoforms and
exists in at least five splice variants (Cheng et al., 2001). It is
present in the human vasculature (BelAiba et al., 2007; Guzik
et al., 2008; Jay et al., 2008). NOX5 activity apparently does
not depend on any subunits. Another important feature of
NOX5 is its N-terminal EF-hand regions, which results in
direct activation of NOX5 by an increase in intracellular
calcium (Banfi et al., 2001). NOX5 can also be activated
without elevating intracellular calcium by protein kinase
C-dependent phosphorylation. This modification increases
the calcium sensitivity of NOX5 and thus permits a higher
level of activity at resting levels of intracellular calcium (Jag-
nandan et al., 2007). Another mode of calcium sensitization
occurs via binding of calcium-activated calmodulin (Tirone
and Cox, 2007). Importantly, NOX5 mRNA protein levels
were increased in coronary arteries from patients with coro-
nary artery disease (CAD) compared to patients without CAD.
In correlation, calcium-dependent NADPH oxidase activity,
which is very likely to reflect NOX5 activity, was increased
sevenfold in CAD coronary arteries. While NOX5 was mainly
localized in the endothelium in early lesions, its protein
levels were up-regulated in VSMC of advanced coronary
lesions and lost in the endothelium (Guzik et al., 2008). These
data suggest a prominent role of NOX5 in human CAD.

We believe that the complexity of the NADPH oxidase
family will allow to specifically inhibit the formation
of pathophysiologically relevant ROS as opposed to untar-

geted scavenging. Indeed, an impressive amount of data
shows that NOX isoforms are up-regulated in many cardio-
vascular as well as other chronic diseases and their risk
factors, for example atherosclerosis, heart failure, myocardial
infarction, fibrosis, diabetes mellitus, aging, smoking, inflam-
mation, as well as sepsis, cancer and neurodegeneration. We
here focus on the role of NADPH oxidases in hypertension
and stroke. These are two examples, where there is compel-
ling evidence for the involvement of individual NOX iso-
forms that is based on the use of specific pharmacological
NADPH oxidase inhibitors and/or NOX knockout mice:
NOX1 in hypertension and NOX4 in stroke. With respect to
the possible involvement of NADPH oxidases in other disor-
ders, we refer to recent reviews (Cave et al., 2006; Bedard and
Krause, 2007; Brandes et al., 2010; Lassegue and Griendling,
2010).

NADPH oxidases and hypertension

Increased ROS formation with subsequent decreases in NO
bioavailability caused by scavenging of NO has been pro-
posed to be the most important cause of impaired
endothelium-dependent relaxation in hypertension (Schulz
et al., 2008). ROS not only alter vascular contractility but also
influence vascular remodelling, another phenomenon asso-
ciated with hypertension (Williams and Griendling, 2007).
The diffusion-limited reaction between the ROS superoxide
and NO results in the formation of peroxynitrite, which is a
strong oxidant. Among other pro-oxidant effects, peroxyni-
trite oxidizes the NOS cofactor tetrahydrobiopterin. This
results in uncoupling of NOS, which then produces ROS itself
instead of NO, causing further oxidations – a vicious cycle
leading to further impairment of endothelial function
(Rubanyi and Vanhoutte, 1986; McIntyre et al., 1999). The
loss in NO-mediated vasodilatation is further exacerbated by
vasoconstriction mediated by ROS themselves (Auch-Schwelk
et al., 1989). ROS are also involved in the compensatory vas-
cular remodelling taking place in hypertension. This includes
VSMC hypertrophy (Zhang et al., 2005). However, ROS not
only mediate pathological changes in the vasculature, but
also in the kidney and brain that further contribute to
the development of hypertension (for details see Datla and
Griendling, 2010).

Interestingly, endothelium-derived H2O2 has been sug-
gested as an endothelium-derived hyperpolarizing factor that
causes vasodilation and cardioprotection (Shimokawa, 2010).
However, other studies rather suggested that H2O2 is vasocon-
strictive (Gao and Lee, 2005; Schluter et al., 2010) in some
vascular beds. These contrasting findings may be caused by
divergent responses of different vascular beds, the species
and the concentrations. Overall, it is currently not clear
what functions H2O2 has with regards to vasodilatation
and contraction under physiological and pathophysiological
conditions.

In accordance with a role of ROS in hypertension, ROS are
elevated in many animal models of hypertension, including
Ang II or ET-1 infusion in rodents, SHR and DOCA salt
models (Lassegue and Griendling, 2004; Datla and Grien-
dling, 2010). In these models, NADPH oxidase activity is
increased in the vascular wall and kidney (Datla and Grien-
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dling, 2010; Wind et al., 2010a). Further evidence for a role of
NADPH oxidases in hypertension stems from the use of the
peptide NADPH oxidase inhibitor gp91ds-tat, which for
example attenuated Ang II-induced hypertension in mice
(Rey et al., 2001). However, in Dahl salt-sensitive rats, it did
not improve blood pressure, but it ameliorated endothelial
dysfunction (Zhou et al., 2006).

A crosstalk between different sources of ROS in hyperten-
sion is likely with NADPH oxidases being the primary source
of ROS that triggers ROS production by other sources. For
example, p47phox-dependent NADPH oxidase-driven super-
oxide production results in uncoupling of eNOS in DOCA salt
hypertension (Landmesser et al., 2003) and overexpression of
NOX1 in VSMC leads to enhanced production of ROS in
response to Ang II that causes eNOS uncoupling resulting in
impaired vasorelaxation (Dikalova et al., 2010b). In contrast,
NOX5 overexpression in the endothelium of mouse aortae
paradoxically increased eNOS activity. However, it reduced
NO bioavailability via inactivation of NO by ROS resulting in
impaired endothelium-dependent relaxation (Zhang et al.,
2008). Together, these studies suggest different effects of ROS
released from individual NOX isoforms in their interaction
with other enzymes and molecules that may in part depend
on their subcellular localizations.

Several groups reported a correlation between hyperten-
sion and NOX2 expression. For example, aortic NOX2 is
elevated in stroke-prone SHR in rats exposed to aldosterone
plus salt and in Ang II-infused mice (Park et al., 2008; Las-
segue and Griendling, 2010). Depending on the model,
hypertension was improved by NOX2 deletion. While it did
not prevent Ang II-induced hypertension (but decreased
medial hypertrophy) (Lassegue and Clempus, 2003), deletion
of NOX2 reduced hypertension in 2-kidney 1-clip (Jung et al.,
2004) and DOCA salt mice (Fujii et al., 2006).

Nevertheless, it has become evident recently, that among
the vascular NOX isoforms, NOX1 seems to play a major role
in the pathology of hypertension. Deletion of NOX1 in mice
results in blunted pressor response to Ang II and increased
vasodilatation in response to acetylcholine (Matsuno et al.,
2005; Gavazzi et al., 2006). Consistently, mice that overex-
press NOX1 in VSMC show exacerbated hypertension and
aortic vascular hypertrophy in response to Ang II infusion
(Dikalova et al., 2005). This genetic evidence for a major role
of NOX1 obtained in mice is further supported by the obser-
vation that vascular or kidney NOX1 is up-regulated in
human renin transgenic mice (Didion et al., 2002), 2-kidney
1-clip (Wang et al., 2007) and Dahl salt-sensitive rats (Nish-
iyama et al., 2004). NOX1 protein is also increased in aortae
of aged SHR in parallel with increased NADPH oxidase-
dependent ROS formation. While NOX2 was also
up-regulated, NOX4 protein levels were unchanged (Wind
et al., 2010a). A role for NOX4 at least for basal blood pressure
regulation in mice can also be excluded as NOX4 knockout
mice display normal blood pressures (Kleinschnitz et al.,
2010). Interestingly, NOX1 showed ectopic expression in
endothelial cells of aortae from aged SHR. Finally, the
impaired acetylcholine-induced relaxation of SHR aortae was
significantly improved by the NADPH oxidase inhibitor
VAS2870 (Wind et al., 2010a).

In conclusion, animal studies suggest that NADPH oxi-
dases, in particular NOX1-based oxidases, are promising

targets for the treatment of systemic hypertension. However,
confirmation of these data in hypertensive patients is war-
ranted. As a first indication, NADPH oxidase activity was
recently indentified as the major source of superoxide in
renal proximal resistance arteries from elderly patients with
renal tumours (Schluter et al., 2010).

NADPH oxidases and ischaemic stroke

The hypothesis that ROS are involved in ischaemic stroke
dates back to the 1970s (Flamm et al., 1978). In the cerebral
vasculature of rodents, NOX4 mRNA levels are higher than in
peripheral blood vessels (Miller et al., 2005a) and further
induced in stroke (McCann et al., 2008; Kleinschnitz et al.,
2010). This was confirmed on protein level and evident in
human brain samples (Kleinschnitz et al., 2010).

A major role of NOX4 in ischaemic stroke has been
revealed recently using NOX4 knockout mice (Kleinschnitz
et al., 2010). These data suggest that NOX4-mediated
oxidative stress leads to neuronal damage via leakage of the
blood-brain barriers and neuronal apoptosis, two pathophysi-
ological hallmarks of ischaemic stroke. The protection in
NOX4 knockout mice was underlined by reduced post-stroke
mortality and improved neurological functions. The genetic
experiments were mimicked by pharmacological inhibition
of NADPH oxidases using VAS2870 in wild-type mice within
a clinically relevant time after induction of stroke. Impor-
tantly, VAS2870 had no further effect in NOX4 knockout
(KO) mice (Kleinschnitz et al., 2010). In this study, deletion of
NOX1 or NOX2 had no impact on infarct size or functional
outcomes, whereas other groups have described protective
effects of NOX2 (Walder et al., 1997; Chen et al., 2009;
Jackman et al., 2009) and NOX1 (Kahles et al., 2010) defi-
ciency in ischaemic stroke. These divergent findings may be
caused by differences in experimental protocols, although the
exact reasons remain unclear. Nevertheless, specific pharma-
cological inhibition of NOX4 has the potential for becoming
a new treatment strategy of ischaemic stroke, where currently
only very limited treatment options exist, that is, thromboly-
sis with recombinant tissue plasminogen activator (rt-PA), a
therapy which excludes 90% of all stroke patients due to
contraindications.

NADPH oxidase inhibitors

In contrast to unspecific antioxidants, direct inhibition of the
relevant source(s) of ROS in different pathologies holds great
promise as innovative and mechanism-based treatments in
cardiovascular and other diseases. Thus, specific inhibitors for
NADPH oxidases, that are ideally also NOX isoform-specific,
are in dire need. Besides their potential future therapeutic
applications, such inhibitors are also essential to fully estab-
lish the role of NADPH oxidases and individual NOX iso-
forms in different pathologies.

Interestingly, many well-established cardiovascular drugs
already interfere with NADPH oxidases although most likely
by indirect mechanism.
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Current drugs that interfere with
NADPH oxidases
Statins, or 3-hydroxy-3-methyl-glutaryl reductase inhibitors
act by inhibiting geranylgeranylation of Rac (Wassmann
et al., 2002; Chen et al., 2008), which is an important com-
ponent for the activation of some NOX isoforms (Bedard and
Krause, 2007; Opitz et al., 2007). This inhibition prevents the
translocation of Rac to the cell membrane and results in
inhibition of Rac-dependent NADPH oxidases (Wassmann
et al., 2002; Chen et al., 2008). This may explain at least some
of the pleiotropic, cholesterol-independent atheroprotective
effects of statins. It was indeed reported that, for example,
atorvastatin decreased aortic superoxide levels in SHR.
Besides, it also decreased NOX1 and p22phox, but not
NOX2 mRNA levels in vessels of treated SHR, and catalase
mRNA was up-regulated (Wassmann et al., 2002). Ceriva-
statin and atorvastatin treatments in mice improved
endothelium-dependent relaxation to acetylcholine. Inter-
estingly, withdrawal of statins attenuated endothelium-
dependent relaxation compared to control animals, and the
relaxation was restored by the SOD mimetic, tiron. While
vascular ROS were unaffected by statin therapy, which may be
due to low NADPH oxidase activity under resting conditions,
ROS levels increased during withdrawal. These effects did not
occur in NOX2 knockout mice. In human umbilical vein
endothelial cells (HUVEC), statin treatment reduced NADPH
oxidase activity, and withdrawal resulted in profound trans-
location of Rac to the membrane and transient increase in
NADPH oxidase activity (Vecchione and Brandes, 2002).
Thus, NOX2 may not only be inhibited by statins, but also
play a role in rebound phenomena after withdrawal of
statins, resulting in an overshoot activation or translocation
of Rac.

In humans, statins have been shown to improve endot-
helial function (Treasure et al., 1995; O’Driscoll et al., 1997;
Tsunekawa et al., 2001). Further, pravastatin has been
reported to have blood pressure lowering effects (Glorioso
et al., 1999; Kawano and Yano, 2006). Nevertheless, statins
are definitely not specific NADPH oxidase inhibitors.

Angiotensin converting enzyme inhibitors and angio-
tensin receptor blockers (sartans) also have beneficial effects
to which indirect inhibition of NADPH oxidases is likely to
contribute, as Ang II is a potent stimulus for NADPH oxidase
activity in vascular cells (Griendling and Ushio-Fukai, 2000;
Wingler et al., 2001; Williams and Griendling, 2007; Datla
and Griendling, 2010). Indeed, the hypertensive effects of
Ang II appear in part to be mediated by NADPH oxidase-
derived ROS (Dikalova et al., 2005; Matsuno et al., 2005;
Gavazzi et al., 2006).

Considering these effects from established drugs and the
amount of evidence for the involvement of NADPH oxidases
in endothelial dysfunction, associated CVD and other disor-
ders, inhibition of NADPH oxidases as novel therapies is a
promising strategy to causally treat and prevent these condi-
tions and/or suppress associated end-organ damage.

Old and new NADPH oxidase inhibitors
For many years, specific small molecule inhibitors were not
available, and this represented a major bottleneck of research
into oxidative stress. However, more recently, several novel,

apparently more specific and drug-like NADPH oxidase
inhibitors have been published.

The most commonly used NADPH oxidases inhibitors,
diphenylene iodonium (DPI) and apocynin are unspecific
(O’Donnell et al., 1993; Majander et al., 1994; Vejrazka
et al., 2005; Riganti et al., 2006; Williams and Griendling,
2007; Aldieri et al., 2008; Heumuller et al., 2008; Schluter
et al., 2008; Selemidis et al., 2008; Jaquet et al., 2009;
Tazzeo et al., 2009; Brandes et al., 2010; Castor et al., 2010;
Wind et al., 2010b). Thus, their effects cannot be solely attrib-
uted to inhibition of NADPH oxidases. Also, 4-2-amino-ethyl-
benzolsulfonyl-fluoride (AEBSF) is not a reliable NADPH
oxidase inhibitor, as it irreversibly inactivates serine proteases
(Diatchuk et al., 1997) and interferes with the most com-
monly used assays for ROS (Wind et al., 2010b). Studies per-
formed with these compounds must therefore be interpreted
with greatest caution. With respect to other rather rarely used
and also unspecific inhibitors, we refer to a detailed review on
NADPH oxidase inhibitors (Jaquet et al., 2009).

A more reliable tool to inhibit NADPH oxidases are cell-
permeable peptide-based inhibitors such as gp91ds-tat (Rey
et al., 2001), whereas another peptide inhibitor, the naturally
occurring peptide PR-39 (Gudmundsson et al., 1995; Shi
et al., 1996), is rather unspecific as it binds to SH3 domains of
many proteins (Cai et al., 2003). Despite their value in experi-
mental studies, peptides have the disadvantage of low bio-
availabilities. Therefore, they have limited potential as
therapeutic agents. More details about these peptides are
reviewed in Selemidis et al. (2008). More recently, profes-
sional screening programmes for NADPH oxidase inhibitors
have resulted in the discovery of several novel small mol-
ecule, non-peptidergic NADPH oxidase inhibitors.

Interestingly, many novel inhibitors show some common
structural features (Table 1), that is, the inhibitors generally
are flat and lipophilic aromatic heterocyclic compounds.

S17834. This synthetic polyphenol, 6,8-diallyl 5,7-
dihydroxy 2-(2-allyl 3-hydroxy 4-methoxyphenyl)1-H
benzo(b)pyran-4-one, was discovered as a potential regulator
of adhesion molecule expression for treating chronic venous
insufficiency (Verbeuren et al., 2000), a condition that may be
mediated by NADPH oxidase activation. S17834 decreases
NADPH oxidase activity, vascular cell adhesion molecule
expression and leukocyte adhesion in HUVEC cells without
affecting xanthine oxidase (XOD) activity and scavenging of
superoxide (Cayatte et al., 2001). In ApoE-deficient mice,
S17834 (130 mg·kg-1·day-1 for 12 weeks) inhibited atheroscle-
rotic lesion development (Cayatte et al., 2001) as it did in
diabetic (streptozotocin-treated) LDL receptor-deficient mice
after 6 weeks treatment with a similar dose (Zang et al., 2006).
The mechanism by which S17834 inhibits NADPH oxidases
has not been defined.

The VAS inhibitors. A new class of compounds that inhibit
NADPH oxidases are triazolo pyrimidines, with the prototype
VAS2870, 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo(4,5-
d)pyrimidine (Stielow et al., 2006; ten Freyhaus et al., 2006;
Lange et al., 2009; Niethammer et al., 2009; Wind et al.,
2010a) (Tsai and Jiang, 2010) (Kleinschnitz et al., 2010) and
the better water-soluble derivate, VAS3947 (Wind et al.,
2010b). VAS2870 stemmed from a systematic compound
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screen in HL-60 cells. At 10 mM it inhibits NADPH oxidase
activity in oxLDL-exposed HUVEC (Stielow et al., 2006) and
platelet-derived growth factor (PDGF)-stimulated primary rat
aortic VSMC (ten Freyhaus et al., 2006). VAS2870 (50 mM) also
inhibits the stimulation of vasculogenesis of mouse embry-
onic stem cells upon treatment with PDGF-BB (Lange et al.,
2009), and it inhibits wound margin H2O2 production
without obvious toxicity in zebrafish larvae (Niethammer
et al., 2009). In addition, VAS2870 does not interact with ROS
in an antioxidant manner, nor does it interfere with XOD
(ten Freyhaus et al., 2006). VAS3947 has been developed by in
silico optimization of VAS2870 and has strikingly similar
properties compared to VAS2870. For example, the IC50 values
for NADPH oxidase activity of phorbol 12-myristate-13-
acetate (PMA)-stimulated HL-60 cells, of PMA-stimulated
whole blood and of freshly isolated human lymphocytes
stimulated with PMA are essentially the same for both com-
pounds, approximately 2 mM (Wind et al., 2010b; P. Scheurer,
K. Wingler, unpubl. data). VAS3947 and VAS2870 both effec-
tively inhibit ROS production in aortae of SHR as assessed by
in situ DHE staining (Wind et al., 2010a,b). VAS3947 neither
interferes with the flavoprotein, XOD, nor with the flavo-
heme protein, eNOS, nor with any of the ROS detection
assays and had no significant antioxidant activity. Rather,
VAS3947 effectively inhibits NADPH oxidase activity in three
cellular models expressing different patterns of all known
NOX isoforms (Wind et al., 2010b). Therefore, at least in vitro,
triazolo pyrimidines are new and specific pharmacological
tools for inhibiting NADPH oxidases. The potential to inhibit
NADPH oxidases is a class effect of triazolo pyrimidines, and
these compounds act in a variety of cell types and tissues of
phagocytic as well as non-phagocytic origin with similar effi-
cacy. The mechanism of action of triazolo pyrimidines such
as VAS3947 and VAS2870 is unclear. In human leucocytes,
VAS2870 does not inhibit translocation of p47phox to the
membrane (ten Freyhaus et al., 2006), but may still interfere
with oxidase assembly once the translocation has occurred.
This assumption is supported by experiments showing that
VAS2870 inhibits NOX2 activity in a cell free system when
added before (IC50 of 10 mM) (ten Freyhaus et al., 2006), but
not after complex formation and stimulation of the oxidase
(P. Scheurer, K. Wingler, unpubl. obs.). Nevertheless, future
studies are required to clarify the precise mechanism of
action, pharmacokinetics and in vivo efficacy of triazolo
pyrimidines.

Excitingly, VAS2870 was recently applied in vivo for the
first time to mice that had undergone transient middle cere-
bral artery occlusions, a model of ischaemic stroke. Intrathe-
cal treatment with VAS2870 within a therapeutically relevant
time window, that is, 2 h after reperfusion protected mice
from brain damage (Kleinschnitz et al., 2010).

GKT136901. This drug-like small molecule, 2-(2-
chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo
[4,3-c]pyridine-3,5(2H,5H)-dione, was recently introduced as
a NOX1/4 inhibitor. It was investigated with respect to
NADPH oxidase activities in cell free assays with isolated
membranes from polymorphonuclear cells (high levels of
NOX2) and from cells overexpressing NOX1 or NOX4. The
compound (10 mM) also inhibited NADPH oxidase activity,
p38MAP kinase activation as well as TGF-b1/2 and fibronec-

tin induction in mouse proximal tubular cells incubated with
high glucose. It is a potent compound with a Ki of 165 nM for
NOX4 and of 160 nM for NOX1, whereas the Ki for NOX2 is
1530 nM. It did not display any significant inhibition of
XOD. It was further valuated in vitro in a pharmacological
profile including 135 target proteins at a concentration of
10 mM. Only very low or no inhibition for other ROS produc-
ing enzymes, redox-sensitive enzymes and other proteins was
observed (Sedeek et al., 2010), pointing to a high specificity of
GKT136901. In human aortic smooth muscle cells,
GKT136901 (30 mM) inhibited intracellular ROS formation
and thrombin-induced CD44 and HAS2 mRNA and protein
levels, without affecting NOX1 and NOX4 expression
(Vendrov et al., 2010). GKT136901 is bioavailable following
oral administration. Ten mg·kg-1 of the compound was deliv-
ered through oral gavage once daily, on 5 days per week over
a period of 12 weeks to wild-type and various knockout mice
(ApoE KO, p47phox KO, CD44 KO and ApoE/p47phox
double KO), which were fed either a standard or a Western
diet. This resulted in a decrease of aortic lesion areas and
aortic ROS production in ApoE mice fed the Western diet.
Further, plasma 8-isoprostane levels, expression of CD44, HA
and of the monocyte/macrophage marker CD11b were
attenuated in aortic lesions. GKT136901 did not have any
significant effect on body weight, plasma total cholesterol or
triglyceride levels (Vendrov et al., 2010). The data available
for GKT136901 are indeed promising. Additional studies are
now warranted to assess the pharmacokinetic properties and
in vivo actions in other models.

ML171. Several phenothiazines have been identified as
NOX1 inhibitors by high-throughput screening using a HT29
cell-based assay (Gianni et al., 2010). Phenothiazine scaffolds
are found in various antipsychotic drugs, for example chlor-
promazine, promazine and trifluoperazine (Mitchell, 2006).
Based on structure–activity relationship studies to identify
more potent NOX1 inhibitors, 2-acetylphenothiazine
(ML171), which is not used as an antipsychotic drug, was
selected for further analysis. ML171 has an IC50 for NOX1 in
the nanomolar range, that is, 0.129 mM in HT29 cells and
0.25 mM in a HEK293-NOX1 reconstituted cell system. IC50

values for NOX2, NOX3 and NOX4 in respective HEK293
reconstituted cell systems were 5 mM, 3 mM and 5 mM, respec-
tively, while IC50 values for XOD were 5.5 mM. The inhibition
in the NOX1-based HEK293 cell system was overcome by
increasing levels of NOX1 expression, but not by increasing
NoxA1 and NoxO1. A possible side effect of using ML171 as
NOX1 inhibitors in the clinic is the potential antipsychotic
effect due to the presence of the phenothiazine structure.
However, SAR analysis indicated that several phenothiazines
with antipsychotic effect are unlikely to alter NOX1-
dependent ROS generation (Gianni et al., 2010), although this
is not proven. In addition, ML171 did not significantly bind to
a large battery of human or rodent G-protein coupled recep-
tors (GPCR), channels and transporters expressed in the
central nervous system, did not significantly bind most of the
receptors tested in the binding assays with the exception of
serotonin (5-HT2B and 5-HT2C), and adrenergic (alpha2C)
receptors (% of inhibition >60%). Nevertheless, secondary
concentration–response analysis revealed Ki values in the
micromolar range, which is suggestive of low affinity of ML171
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for these GPCR (5-HT2 receptor subtypes Ki = 0.56 to 3.0 mM,
and alpha 2 receptor subtypes Ki = 2.7–6.9 mM). Therefore, the
authors concluded that ML171 does not inhibit NOX2 func-
tion in the immune system nor likely exert unwanted antip-
sychotic effects. Finally, ML171 blocked NOX1-dependent
extracellular matrix-degrading, actin-rich cellular structures
(invadopodia) in colon cancer cells (Gianni et al., 2010).
However, in this assay 10 mM ML171 was used, a concentra-
tion well above the reported IC50 for NOX2, 3 and 4, as well as
XOD. Furthermore, the authors did not include NOX5 in their
assays, and no in vivo data are yet available for this compound.

Fulvene-5. This recently described NADPH oxidase inhibitor
was identified using a structure-based approach. Fulvenes are
highly water-soluble aromatic ring structures. Fulvene-5
showed inhibitory activity against NOX2 and NOX4 in stably
transfected HEK293 cells, where 5 mM resulted in about
40% decrease of ROS production. It also inhibited haeman-
gioma growth in mice that were treated with Fulvene-5 for
2 weeks, without displaying any apparent toxicological
effects (Bhandarkar et al., 2009). Unfortunately, no data are
published on the IC50 values of this compound, on its speci-
ficity and the activity towards other NOX isoforms, as well as
on its pharmacokinetics.

In summary, these novel compounds and compound
classes have interesting profiles and are already valuable tools
for research. However, more detailed knowledge about their
in vivo efficacy is warranted, although first and promising in
vivo data have been published for some of them. Generally,
long-term effects of NADPH oxidase inhibition are not yet
established. One obvious problem may arise from inhibition
of NOX2-mediated oxidative burst and associated immuno-
logical dysfunctions.

Repairing ROS damage

Clearly, reduction of oxidative stress has considerable phar-
macological and therapeutic potential. However, taking the
normal development time for new drugs into account, an
assessment of their clinical benefits lies in the more distant
future. Despite these limitations, a surprising plethora of
pharmacological options has emerged in recent years and has
already advanced in late clinical development stages or
entered the market.

Inhibiting phosphodiesterases
Inhibition of phosphodiesterases (PDE), in particular PDE
type 5, augments NO-cGMP signalling irrespective of
whether it was pathophysiologically reduced beforehand or
not. Its first indication was erectile dysfunction, an early
marker of CVD (Thompson et al., 2005), where NO signalling
may indeed be dysfunctional. In the more recent indication
for PDE5 inhibitors, pulmonary hypertension, this does not
seem to be the case (Kirsch et al., 2008). Nevertheless, PDE5
inhibitors are effective in pulmonary hypertension (Wilkins
et al., 2008; Galie et al., 2009).

Stimulating sGC
For the same indication, another approach has been devel-
oped also augmenting NO-cGMP signalling, sGC stimulation.

This compound class allosterically enhances the NO-induced
cGMP formation by Fe(II)sGC, so that low, submaximal con-
centrations of NO are potentiated and exert the same cGMP
formation as higher concentrations of NO. In addition, these
compounds have a small direct stimulating effect on sGC. In
principle this compound class is applicable to all disease
states where reduced bioavailability of NO, for example by
oxidative stress, plays a pathomechanistic role. The NO levels
will remain unchanged and low, but their effects will be
augmented. The original compound, YC-1 had still some
off-target effects (Galle et al., 1999; Li et al., 2008). However,
the successor compounds from Bayer, BAY 41-2272 and BAY
63-2521/riociguat (Mittendorf et al., 2009) were devoid of
this at therapeutically relevant concentrations (Bischoff and
Stasch, 2004). Other indications for this compound class may
include systemic hypertension (Zanfolin et al., 2006).

Activating oxidized and apo-sGC
Another principle, sounding confusingly similar, is sGC acti-
vation. However, mechanistically this is a profoundly differ-
ent principle. Under conditions of oxidative stress, the NO
receptor Fe(II)sGC can be oxidized to Fe(III)sGC and eventu-
ally looses its heme. It then becomes ubiquitinylated and
degraded (Meurer et al., 2009). Heme-free apo-sGC is essen-
tially unresponsive to NO, but can bind sGC activators that
occupy the empty sGC heme binding site and re-activate
apo-sGC to the same Vmax as Fe(II)sGC in the presence of NO
(Evgenov et al., 2006; Stasch et al., 2006). The first compound
of this class, BAY 58-2667/cinaciguat, does this by also pre-
venting sGC ubiquitinylation and thereby preventing sGC
degradation. Later compounds such as HMR-1766/ataciguat
(Zhou et al., 2008) are devoid of this effect (Hoffmann et al.,
2009). Cinaciguat is currently developed for acute heart
failure, an indication that may benefit from an unusual
vasodilatory profile, that is, preference for microvasculature
over large conducting blood vessels and diseased over healthy
blood vessels. Thus, sGC activators are the first vasodilator
compound class that specifically dilate diseased blood vessels
making steel phenomena highly unlikely. Other develop-
ment targets include peripheral artery disease and chronic
pain (Schmidt et al., 2009).

Re-coupling uncoupled eNOS
Finally, a third target of oxidative stress is uncoupled eNOS, a
process that involves oxidation of tetrahydrobiopterin (Reif
et al., 1999; Kotsonis et al., 2000), an essential NOS cofactor,
and accumulation of ADMA (Luo et al., 2010), a competitive
inhibitor at the enzyme’s substrate binding site for L-arginine
(Cardounel et al., 2007). Uncoupling means that oxygen is
activated but no longer transferred onto L-arginine. Thus,
uncoupled eNOS releases ROS, similar to NADPH oxidases.
Substitution or regeneration of tetrahydrobiopterin alone or
in combination with supplementation of L-arginine can
recouple eNOS and restore NO synthesis (Settergren et al.,
2009).

Viewpoint

In conclusion, there is now evidence for a direct pathome-
chanistic role of NADPH oxidase-dependent oxidative
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stress causing disease, in particular in ischaemic stroke
(Kleinschnitz et al., 2010), hypertension (Matsuno et al.,
2005; Gavazzi et al., 2006; Wind et al., 2010a) and heart
failure (Kuroda et al., 2010). The alternative approach, to
apply antioxidants, has failed and may even cause harm by
leading to reductive stress. The detection of oxidative stress
both in the experimental setting and as a clinical biomarker
is a great challenge and will only become relevant when
robust and meaningful measures (patterns, indices) become
available. Specific detection of single ROS species (e.g. O2

- vs.
H2O2 or peroxynitrite) has limited relevance because in most
cases these ROS interact and enter secondary reactions. More
robust assays that cover a broad range of ROS (e.g. the DHE
tissue stain, nitro-tyrosine detection, etc.) may provide more
meaningful markers. The key is to establish cause–effect rela-
tions for oxidative stress, specific inhibitors of ROS sources
and KO mice. Until these become available clinically,
pharmacological principles that repair the consequences of
oxidative stress, for example recouple eNOS and re-activate
apo-sGC, will bridge this gap.
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