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The brain is inherently proactive, constantly predicting the when (moment) and what
(content) of future input in order to optimize information processing. Previous research
on such predictions has mainly studied the “when” or “what” domain separately, missing
to investigate the potential integration of both types of predictive information. In the
absence of such integration, temporal cues are assumed to enhance any upcoming
content at the predicted moment in time (general temporal predictor). However, if
the when and what prediction domain were integrated, a much more flexible neural
mechanism may be proposed in which temporal-feature interactions would allow for the
creation of multiple concurrent time-content predictions (parallel time-content predictor).
Here, we used a temporal association paradigm in two experiments in which sound
identity was systematically paired with a specific time delay after the offset of a rhythmic
visual input stream. In Experiment 1, we revealed that participants associated the time
delay of presentation with the identity of the sound. In Experiment 2, we unexpectedly
found that the strength of this temporal association was negatively related to the
EEG steady-state evoked responses (SSVEP) in preceding trials, showing that after
high neuronal responses participants responded inconsistent with the time-content
associations, similar to adaptation mechanisms. In this experiment, time-content
associations were only present for low SSVEP responses in previous trials. These results
tentatively show that it is possible to represent multiple time-content paired predictions
in parallel, however, future research is needed to investigate this interaction further.

Keywords: prediction, EEG, temporal information, rhythm, adaptation

INTRODUCTION

Rhythmic stimulus input provides predictable temporal structure on the basis of which the state of
the brain can be adapted in order to optimize processing of upcoming stimuli. It has been proposed
that attention can be directed to the isochronous moments within such a rhythmic input stream at
which sensory input can be expected (Jones, 1976; Jones et al., 2002; Schroeder and Lakatos, 2009;
Nobre and van Ede, 2018). In light of these theories, the majority of studies investigating the role
of rhythmic temporal information have intuitively focused on the use of rhythm to inform about
the when, that is, the most likely arrival time of (any) sensory information (Nobre et al., 2007;
Rohenkohl et al., 2012; Lawrance et al., 2014). Typically, the sensory processing of information at
an expected time point and an unexpected time point are contrasted. Indeed, it has been shown
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that participants are better at detecting a subthreshold sound
when it is preceded by rhythmic input (Ten Oever et al., 2014)
and that sound discrimination performance improves when
the sound’s arrival time follows the timing of the rhythmic
stream (Jones et al., 2002). However, in a natural environment
many events occur in parallel and different arrival times might
signal different predicted content. It is still unknown whether
unified parallel expectations are created interactively using both
predictions from rhythmic temporal information (when) and
predictions about specific content features (what).

Within the general temporal predictor framework, any
stimulus occurring at the exact time point when relevant
information is expected will be processed most optimally.
Alternatively, in the parallel time-content prediction framework,
temporal information interacts with feature information to allow
for a more flexible prediction mechanism. In the latter, behavior
will only be optimized when a certain content matches the
prediction in the temporal as well as the feature prediction
domain. In such a scenario, it would be possible to have different
time points associated with different contents in parallel. The
studies investigating the interaction between feature (or space)
and temporal predictions have shown that temporal information
is mostly beneficial in cases where a content prediction is available
(Zaehle et al., 2009; Rimmele et al., 2011; Morillon et al., 2016).
Additionally, in memory studies, supra-second cue-target delays
have been shown to be used to recall content-specific information
(Molet and Miller, 2014; van Ede et al., 2016; Cravo et al., 2017;
van de Ven et al., 2017). These studies suggest that we should not
think of temporal information as merely enhancing any sensory
information arriving at a specific moment in time. Instead, time
likely acts as another cue for inferring the content of upcoming
information. However, the described studies have either not used
parallel predictions (merely absence or presence of a prediction)
or used paradigms with supra-second cue-target delays which
have been shown to act on different neuronal mechanisms
compared to rhythms (Rohenkohl et al., 2011; Breska and
Deouell, 2014). In sum, the existence of parallel time-content
predictions during rhythmic stimulus input is still elusive.

Rhythmic input has been shown to modulate neuronal
responses such that oscillations align to the rhythmic input
stream (Lakatos et al., 2005). The behavioral consequences of
such entrainment are that stimuli presented within the rhythmic
structure fall on an excitable point of an oscillation, thereby
boosting information processing, and behavioral performance
(Canolty et al., 2006; Schroeder and Lakatos, 2009; Haegens
et al., 2011; Haegens and Golumbic, 2017). Based on this
neuronal mechanism, it is predicted that in-phase stimuli should
be processed better than out-of-phase stimuli. In contrast,
high gamma power as well as spiking activity related to the
representation of different items have also been shown to
cluster at different phases of an oscillation (O’Keefe and Recce,
1993; Lee et al., 2005; Bahramisharif et al., 2018). This suggest
that depending on the phase of the input different neuronal
populations are active (Lisman and Jensen, 2013), biasing the
overall percept to one or the other item (Ten Oever and Sack,
2015). Such activity clustering as well as a phase dependent
perceptual bias has been reported for phases as much as half

a cycle apart (Ten Oever and Sack, 2015; Bahramisharif et al.,
2018). In the current study, we aimed to investigate if this
perceptual bias can be induced by systematically presenting
different items at time points half a cycle apart after an
entrainment train. As such, we investigate whether it is possible
that within one cycle of a rhythmic input stream different
time points/phases are associated with different content items,
resulting in a systematic response bias toward one or the other
item at a given phase. This bias can then be compared with the
overall discrimination performance for stimuli at the expected
versus unexpected time of the entrainment stream. Investigating
both the possibility of time-content associations as well as the
relation between temporal expectancy and accuracy during a
discrimination task can contribute to understanding the neuronal
mechanisms for coding statistical regularities.

Here, we present two temporal association experiments. In
both experiments specific sound categories were systematically
presented at different time delays after presenting a rhythmic
visual input stream in order to investigate if temporal
information is used as a cue for content. If the brain integrates the
predictions about the temporal and about the acoustic features,
parallel time/sound-identity predictions should be formed, and
subsequently, performance should be better when sound category
A is presented at its associated time point A as compared to time
point B (and vice versa for sound category B).

MATERIALS AND METHODS

Participants
Thirty and 40 participants completed Experiments 1 and 2,
respectively, (Experiment 1: mean age: 20, range 18–26, 5
males. Experiment 2: mean age: 26, range: 18–56, 13 males).
All reported to have normal or corrected-to-normal vision and
unimpaired hearing. In Experiment 2, three participants were
excluded. For two participants the EEG data quality was too low.
One participant did not finish the full session. All participants
were informed about the study and gave written informed
consent. The experiment was approved by the local ethical
committee at Faculty of Psychology and Neuroscience Maastricht
University (ethical approval number: ECP-127 14_04_2013).
Participants were compensated for their time by either vouchers
or participation credits.

Experiment 1
Stimuli and Procedure
A sequence of random visual stimuli were presented in a 4 Hz
rhythmic fashion (presented for 33.34 ms; 192 pixels wide;
Linden et al., 2003). The amount of visual stimuli was varied
between 7 and 11 stimuli at an approximate hazard rate (due
to rounding; 7: 63.3%; 8: 23.3%; 9: 8.6%; 10: 3.2%; 11:1.2%;
Figure 1A). The last visual stimulus was always the same (and
lasted 50 ms), and was followed by an auditory stimulus. We used
ripple sounds as auditory stimuli (see e.g., Kowalski et al., 1996).
These sounds resemble the spectral and temporal properties of
natural sounds including speech. The sounds consisted of 50
logarithmically spaced sinusoids spanning 5 octaves that varied
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FIGURE 1 | Design and behavioral results of Experiment 1. (A) Typical trial for Experiment 1. (B) The difficulty over the course of the trial. The higher the distance, the
more difficult the task. (C) Results of Experiment 1 over the course of the experiment (smoothed with two-span loess smoothing in R). Shaded areas represent
standard errors of the mean. (D) Predicted effects for the Association∗Time interaction. Error bars indicate the 95% confidence intervals. T indicates a trend (p < 0.1)
and double asterisks indicate significance (p < 0.01). (E) Bar graph for the Association effect, showing the data for both sound types (EAS = early association sound
and LAS = late association sound) and three equally space time bins. Error bars represent the standard error of the mean. Note that the accuracy for the 70% time
point does not change as the difficulty level is adjusted based on the performance on the 70% association trials.

in spectral and temporal modulations. They varied in amplitude
(100% modulation) and velocity (3, 4, or 5 cycles/s). We fixed
the density of the sounds at 0.25 cycles/octave, indicating
the frequency modulation. The fundamental frequency of the
sound determined whether the sound was part of an arbitrary
distinction between a “category A” and a “category B” sound. We
fixed this category boundary at 500 Hz. We created a total of 201
sounds, 100 at either side of the boundary with fixed intervals in
the mel scale (ranging between 182 and 932 Hz, corresponding to
260 and 954 mel). Sounds were either presented at 110 ms or at
235 ms after the onset of the last visual stimulus (stimulus onset
asynchrony of 160 and 285 ms, respectively). We specifically
choose the two time points to be at half a cycle distance to
maximize the phase difference between the two time points.

Participants were required to identify the category of
the sounds (either A or B). To maintain task difficulty,
we implemented a staircase procedure by which the sound
categorization became more and more difficult. Initially, the
value of the difficulty level was 60 away from the category
boundary (thus higher numbers are easier). We employed a 1-
up-1-down staircase. Thus, at each mistake or correct answer
the categorization was made easier or more difficult, respectively.
However, only information of the associated time point was
used for the staircase adaptation (see below). The stepsize of the
difficulty change was initially 10, but changed to 5 and 1 after

6 and 10 switches, respectively. In this way participants were
exposed to a constant difficulty level by which we intended to
optimize the association learning. As expected, the difficulty level
increased over the course of the trials (Figure 1B).

To create an association between time point and sound
category we presented 70% of all category A sounds after 110 ms
and 30% at 235 ms after the last visual stimulus offset. For
category B sounds 70% and 30% of the sounds were presented at
235 and 110 ms, respectively. To enhance the association learning
we only gave feedback to the participants when the sound was
presented at the associated time point. This feedback consisted
of the fixation cross turning either red or green (144 ms). The
fixation cross was on for the whole experiment (but with a
white color). While the temporal delays that we used here can
typically be detected above chance in a forced-choice temporal
order experiment (Vroomen and Keetels, 2010), none of the
participants reported being aware of the temporal offsets after
explicitly asking them about the design of the experiment. The
next trial started between 1 and 1.5 s after the response. In
total there were 6 blocks of 100 trials each. For half of our
participants we reversed the association (category A: 325 ms;
category B: 110 ms). For the analysis, we recoded the data
for these participants. In the remainder of the experiment we
will refer to the sounds presented at 70% at an inter-stimulus
interval (ISI) of 110 ms as the early association sounds, and
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the sounds presented at 70% at an ISI of 235 ms as the late
association sounds.

Analysis
Our objective was to investigate if over the course of the
experiment participants started responding in correspondence
with the time-content association. In order to investigate the
development throughout the experiment, we performed the
analysis on a single trial level. Specifically, we performed a
generalized linear mixed model (glmer) with a binomial logit
link function [using lme4 (Bates et al., 2014) under (R Core
Team, 2013); a binomial logit function was required to account
for the nominal accuracy data] including all trials using a
random intercept for participants. Initially the following fixed
factors were considered: association (non-associated (30%) and
associated (70%) time point), Time (linear factor ranging between
0 for the first trial and 1 for the last trial), Sound Type (early
association sounds and late association sound), and control
variable Categorization difficulty (z-score of stepsize away from
category boundary). Non-significant interaction effects were
iteratively removed. On the final model we performed follow
up tests with adjusted Bonferroni correction. Outliers – defined
as the mean accuracy within or across a condition above the
median ± 1.5 times the inter-quartile range – were removed.
Effect sizes are reported as odds ratios (always of z-scored data
or for binominal variables). If participants over the course of
the experiment followed the association, we expect a significant
Time∗Association interaction (at the end, but not at the
beginning of the experiment a higher accuracy for 70% associated
time points). If instead participants were generally better for a
specific time point (early or late), an interaction between sound
type and association should be expected (if participants are better
for the later time points: early association sounds have a higher
accuracy for the 30% compared to the 70% non-associated time
point and late association sounds have a higher accuracy for the
70% compared to the 30% associated time point).

Experiment 2
Stimuli and Procedure
The procedure of Experiment 2 was identical to Experiment 1
with the following exceptions: (1) In Experiment 2 the step size
of the sounds was decreased, creating a total of 401 sounds. (2)
The ISI was increased to vary between 1.25 and 2 s to remove
temporal structure in the task that could influence baseline EEG
responses. (3) The first block in Experiment 2 was used to find
the presentation rate at which the EEG response was highest.
Originally, we hypothesized that by choosing a presentation rate
with strong neuronal responses the temporal association effect
would increase as the temporal structure can be estimated better.
However, as evident in the results, this was not apparent. As
such, in the first block we used presentation rates of 3.0, 3.5,
4.0, 4.6, 5.0, 5.5, 6.0, 6.7, 7.5, and 8.6 Hz for 10 trials each.
The delay for the sounds was 110 ms after the offset of the
sound for the early time point. For the late time point this was
110 ms + half the cycle of the used presentation rate (e.g., for
5.0 Hz this would be 110+ 0.5∗200 = 210 ms). After the first block
the individual presentation rate was determined (see section

“Presentation Rate Determination”) and kept constant for the
remainder of the experiment.

EEG Acquisition
Thirty two channel EEG data was recorded with a sampling
rate of 2500 Hz with hardware online notch filters of 0.01–
1000 Hz with Brainvision Recorder software (Brain Products),
and BrainAmp MR Plus amplifier using the standard BrainCap
MR. The following electrodes were used: Fp1, Fp2, F3, F4, C3,
C4, P4, P5, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz,
FC1, FC2, Cp1, Cp2, FC5, FC6, CP5, Cp6, TP9, TP10, and POz.
A vertical EOG channel was placed under the left eye, the ground
was placed on AFz and the reference was Cz. Impedance for the
reference and ground electrode was kept below 10 k�, for the
other electrodes this was below 15 k�.

Presentation Rate Determination
All data was analyzed in Matlab version 2017a (Mathworks),
using a combination of Fieldtrip (Oostenveld et al., 2011), EEGlab
(Delorme and Makeig, 2004), and custom scripts. After the first
block we estimated the presentation rate used for the rest of the
experiment. As such, the data of the first block was notch filtered
and epoched ranging from the presentation rate/5 (i.e., 5 cycles
of data or 5 visual stimuli at the presentation rate) until sound
onset and re-referenced to the average of all channels. This range
was chosen to ensure that we captured time intervals where at
least two visual stimuli were presented in the stream (minimal
amount of visual stimuli was 7). Then a FFT with hanning taper
was used to extract the complex Fourier spectra for frequencies
ranging from 1 to 25 Hz. Subsequently both power and intertrial-
coherence (ITC) were calculated for this range of frequencies
for all presentation rates separately. The presentation rate with
the highest ITC (averaged over channels Cz, FC1, FC2, Cp1,
and Cp2) at the presentation rate was used for the remainder
of the experiment. Central electrodes were chosen as the task at
hand was an auditory task. However, it is unlikely that the EEG
signal is purely related to the auditory generators but is likely also
influenced by visual components. Further constrains were that
the power also showed a peak at the presentation rate.

EEG Preprocessing
Data was epoched from −6 to +3 s around sound onset,
demeaned and re-referenced to the average of all channels. Data
was resampled to 256 Hz and trials with strong noise were
removed via visual inspection. Eye blinks and muscle artifacts
were removed using ICA. No qualitative differences were found
additionally removing all trials with blinks in the time period of
the last five visual stimuli before sound onset.

Behavioral Analysis
The behavioral analysis was identical as for Experiment 1.
The block during the presentation rate determination
was not included.

Subsequent Analysis
As the initial analysis did not result in a significant effect, we
aimed to discover how the main change between Experiments 1
and 2 (the individualization in the presentation rate) could have
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explained the lack of time-content associations in Experiment 2.
These analyses were post hoc, and statistically corrected as such,
but their results should be interpreted taking this into account.
We aimed to present these results in parallel with Experiment 1
to display the specificity of the effect, thereby promoting scientific
transparency. We considered the following control variables
that could modulate the effect: presentation rate, pure temporal
predictions, adaptation effects.

Presentation Rate
To investigate the relation between the used presentation rate
and the strength of the temporal association we repeated
the final behavioral model of Experiment 1 (main Factors
Association, Sound Type, Time, control factor Categorization
difficulty, interaction of Association and Time), but adding the
factor Presentation Rate and the interaction with all main and
interaction effects. If not specified otherwise, for the following
analyses the starting point is the final model of Experiment 1.
The rational of this analysis was that for lower presentation
rates, the difference between the early and late time point is
stronger, potentially increasing the temporal association effect. In
a second analysis we added the factor Presentation Rate change
to the model. This factor entailed the absolute difference of the
presentation rate and 4 Hz and the temporal association effect.
The rational of the latter analysis was that it could be that the
4 Hz chosen in Experiment 1 may simply be the presentation rate
with the best potential entrainment effect.

Pure Temporal Predictions
It could be expected that stimuli presented in-phase with the
rhythmic visual stream would be processed better than rhythmic
stimuli presented out-of-phase with this stream (Schroeder and
Lakatos, 2009; Haegens and Golumbic, 2017). However, the
varying presentation rates changed the absolute phase of the
sound-onset times. Therefore, we calculated how far away the
stimulus presentation time was from the most excitable phase
point (0 = at the excitable phase point, pi = half a cycle away
in either direction). Instead of using association, we recoded the
factor association to Time Point (early time point and late time
point) as it was more intuitive for the question asked. We used
the same GLM as described for Experiment 1 using the fixed
factors Sound Type, Phase Distance, Time Point, and Difficulty.
We added the interaction of Phase Distance∗Time Point. If it
matters whether the sound was presented in-phase with the
rhythm, participants with a low phase distance should be better
at the early compared to the late time point, and vice versa for
participants with a high phase distance. This should result in a
Phase Distance∗Time Point interaction.

Adaptation Effects – Within Subject
One other factor that could influence behavioral responses is
adaptation. It has been shown that when repeatedly presenting
a stimulus the response of participants’ is driven away from
that stimulus category (Kanai and Verstraten, 2005; Daelli et al.,
2010). For example, after adapting to a leftward motion, a
rightward motion is perceived in ambiguous motion displays.
This effect is caused by a desensitization of the neuronal

populations representing that stimulus (Nelson, 1991; Sobotka
and Ringo, 1994; Larsson and Smith, 2011). This desensitization
is strongest when neuronal responses to the original stimuli
were strongest (Li et al., 1993; Sobotka and Ringo, 1994). Based
on adaptation effects it is predicted for the current experiment
that stronger responses to the visual stimuli on the preceding
trial could deter the behavioral responses from the association,
consequently being more accurate for 30% compared to the
70% association trials. To investigate such effects, we extracted
the steady-state visual evoked responses (SSVEP), by extracting
for each trial the power at the frequency of the individual
presentation rate. The data for each frequency estimated was
epoched separately at 4 cycles until sound onset and subjected
to a FFT with hanning tapers. The logarithm of the power
was extracted for each trial individually for the frequency
corresponding to each participants’ individual presentation rate.
For four conditions the average SSVEP for the preceding seven
trials was estimated: 30% incorrect trials, 30% correct trials,
70% incorrect trials, 70% correct trials. Seven seemed a valid
number of preceding trials as this seems to be the plateau of
repetition suppression (Jiang et al., 2000; Ulanovsky et al., 2004;
Sayres and Grill-Spector, 2006), however, we have tested and
confirmed this test with several amounts of preceding trials.
Subsequently, we estimated the significance of the interaction
effect [(30% incorrect trials-30% correct trials) versus (70%
incorrect trials–70% correct trials)] via cluster statistics (Maris
and Oostenveld, 2007; dependent samples T as dependent
variable, using non-parametric cluster threshold at an alpha of
0.025, maxsum as dependent variable for the second level cluster
analysis). Lastly, the behavioral analysis was repeated (at the final
model of Experiment 1) including the factor SSVEP and the
SSVEP interactions by calculating the z-score of the power for
each individual.

Adaptation Effects – Between Subject
To investigate the SSVEP – temporal association relation over
participants we correlated the accuracy difference between
associated and non-associated sounds during the last block
(temporal association effect) with the mean power over
participants in the full session for all channels separately. Again,
cluster statistics was used to analyze the significance of the
correlation (using the correlation as the dependent variable,
maxsum of the correlation for the second level analysis, alpha
of 0.05). Influential cases were removed. These were defined as
having a Cooks distance above 4/amount of participants (=0.1)
for more than five channels. The removal of influential cases was
repeated for each permutation in the cluster statistics.

RESULTS

Experiment 1
One participant was removed for being an outlier (data was more
than 1.5∗inter-quartile range above the mean). The final model
showed a significant Time∗Association interaction (Figure 1C;
Z = 2.071, p = 0.038, odds ratio = 1.07, [95%CI: 1.004–
1.159]), a main effect of Sound Type (Z = −1.96, p = 0.050,
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odds ratio = 0.94, [95%CI: 0.883–0.999]), and a main effect of
Categorization difficulty (Z = 2.347, p = 0.007, odds ratio = 1.06,
[95%CI: 1.009–1.107]; total r2 of the fixed effects = 0.002). The
random intercept showed a standard deviation of 0.129. To test
for parsimony of the model, we compared the model to a model
without any interaction. Indeed, the model with the interaction
was better than the model without (χ2(1) = 4.294, p = 0.038).
The interaction effect between sound type and association was
not significant (Z = 0.807, p = 0.420, odds ratio = 1.06, [95%CI:
0.924–1.220]). None of the other effects were significant. We were
mainly interested in the effect of Association over the course
of the experiment. To test this, we estimated the main effect of
Association at three different Time levels: at the beginning, in
the middle, and at the end of the experiment. The main effect
of Association in the full model is estimated at a level of zero
for the time effect, therefore we re-ran the model centering Time
at either the beginning, middle, or last trial (Figures 1D,E).
At the beginning of the experiment no significant Association
effect was found (Z = −0.731, p = 0.928, odds ratio = 0.95,
[95%CI: 0.829–1.089]). However, in the middle of the experiment
there was a trend for Association (Z = 2.113, p = 0.069, odds
ratio = 1.08, [95%CI: 1.005–1.151]) and the end of the experiment
participants were significantly better for sound presented at the
70% time point compared to the 30% time point (Z = 2.873,
p = 0.008, odds ratio = 1.217, [95%CI: 1.064–1.391]). In sum,
these analyses found no evidence that participants were generally
better at one specific time point (no Sound Type∗Association
interaction), but showed that participants over the course of
the experiment started responding more in line with the time-
content associations.

Experiment 2
Presentation Rate Determination
A wide variety of presentation rates were used in the main
experiment ranging from 3 to 7.5 Hz (Figure 2A). The
topography showed the strongest response at the occipital
channels for both the SSVEP and ITC (Figure 2B). However,
the ITC also showed a more central topography. However,
this is likely influenced by the optimization of the ITC at
exactly those channels.

Behavioral Analysis
Five participants were classified as outliers. The model including
the Time∗Association interaction did not show a significant
interaction (Figure 3A; Z = 0.407, p = 0.684, odds ratio = 1.014,
[95%CI: 0.949–1.083]), a main effect of Association at the end of
the experiment (Z = 0.397, p = 0.691, odds ratio = 1.028, [95%CI:
0.834–1.319]), or an interaction between Sound∗Association
(Z =−0.457, p = 0.647, odds ratio = 0.970, [95%CI: 0.849–1.107]).
Only the effect of Sound was significant (Z = 2.75, p = 0.006,
odds ratio = 1.089, [95%CI: 1.025–1.157], total r2 of the fixed
effects = 0.011). Thus, Experiment 2 did not show the same initial
Association effect as Experiment 1.

Presentation Rate
The addition of the main effect of Presentation rate and the
Presentation Rate∗Association interaction to the model did not

FIGURE 2 | Results of the repetition rate optimization. (A) Histogram of all
presentation rates used in Experiment 2. (B) Topographies of the SSVEP
power (left) and ITC (right) for trials at the chosen presentation rates at
neuronal frequencies matching these rates.

result in any significant effect (interaction effect: Z = 0.815,
p = 0.415, odds ratio = 1.028, [95%CI: 0.962-1.098]), nor a
better fit (χ2(2) = 0.759, p = 0.684). The same held for the
Presentation rate difference with 4 Hz. (Figure 3B; interaction
effect: Z = 0.937, p = 0.349, odds ratio = 1.03, [95%CI: 0.966–
1.103]) and fit χ2 (2) = 1.407, p = 0.495). This indicates that
increasing or decreasing the exact presentation rate could not
explain the absence of an association effect in Experiment 2.

Pure Temporal Predictions
Next, we investigated if the temporal distance of the time points
to the expected time point within the rhythmic stream influenced
the accuracy. If better performance was expected for in-phase
stimuli a Phase Distance∗Time Point interaction was expected.
This interaction was not significant (Z = −1.639, p = 0.101, odds
ratio = 0.72, [95%CI: 0.487–1.066]).

Adaptation – Within Subjects
The next analysis investigated if adaptation – as indexed by the
strength of the neuronal responses to previous trials measured
with the SSVEP – could explain the absence of a behavioral
effect. The cluster analysis investigating the SSVEP power showed
a significant effect for the interaction between accuracy and
the time point (Figure 4A; clusterstatistics: 12.2265, p = 0.01).
This cluster showed a fronto-central distribution. This result
suggests that when the SSVEP were low, participants followed
the temporal association; but when the SSVEP were high,
participants did not follow the temporal association (Figure 4B).
In a control analysis, we found that using between -13 up to -
5 stimuli would have provided the same interaction (data not
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FIGURE 3 | Behavioral results Experiment 2 and presentation rate – temporal association effect. (A) Behavioral results of Experiment 2. (B) Scatterplot between the
association effect and the difference of the presentation rate with 4 Hz.

FIGURE 4 | Within subject SSVEP power-association relation. (A) Topography of the t-values. Asterisks indicate the channels part of the significant cluster.
(B) Interaction effect estimated for all channels part of the interaction. (C) Average time course for the SSVEP (aligned by stimulus number; left) and its
corresponding power spectrum (0 represents the individual presentation rate; right). (D) Example of an SSVEP time course for one exemplar participant (left) with the
corresponding power spectrum (right). All shaded lines and error bars represent the standard error of the mean.

shown). This indicated that the SSVEP of the preceding trials had
a significant impact on whether the participant would perform
the current trial in line with the temporal association or not, and
it was the fronto-parietal SSVEP that had the biggest influence.
See Figures 4C,D for the SSVEP traces.

To investigate whether indeed participants followed the
temporal association for low SSVEP trials as suggested with the
previous analysis we repeated the behavioral analysis including
the factor SSVEP in the model. If indeed for low amplitude
SSVEP trials there was less adaptation, participants should
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follow the temporal association, being better for trials presented
at their 70% time point (resulting in a SSVEP∗Adaption
interaction). The model including the factor SSVEP∗Association
was significantly better as a model with only main effects
(χ2(2) = 19.66, p < 0.001). The effect of SSVEP∗Association
was significant (Figure 5A; Z = −4.428, p < 0.001, odds
ratio = 0.853, [95%CI = 0.796–0.915]), as well as the main
effect of Categorization difficulty (Z = 7.023, p < 0.001, odds
ratio = 1.196, [95%CI = 1.138–1.125]), and Sound (Z = 2.880,
p = 0.004, odds ratio = 1.099, [95%CI = 1.031–1.172], total r2

of the fixed effects = 0.012). None of the other interactions with
SSVEP were significant.

The SSVEP∗Association interaction was further investigated
by extracting the association effect centered at a SSVEP z-score of
−1, 0, or 1 (Figure 5B). This simple slope analysis investigated
if at different levels of SSVEP amplitude the association effect
was different (either following the association or not). It is
common to estimate the effect of interest at values within
the range of your own dataset, that is why z-scores of −1,
0, and 1 were chosen. For low SSVEP trials (estimated at a
z-score centered at −1), participants were significantly better for
associated sounds (Z = 3.509, p < 0.001, odds ratio = 1.195,
[95%CI = 1.082–1.32]), for average SSVEP trials, no effect was
found (Z = 0.543, p = 0.587, odds ratio = 1.019, [95%CI = 0.951–
1.094]), and for high SSVEP (estimated at a z-score centered at 1)
trials participants were significantly worse for associated sounds
(Z = −2.753, p = 0.012, odds ratio = 0.870, [95%CI = 0.788–
0.961]). The same was observed when doing two separate
analyses for the 50% low and 50% high power trials. Higher
accuracies for the 70% associated time point compared to the
30% associated time point for low-power SSVEP trials and vice
versa for high-power SSVEP trials (Figure 5C; 50% low power:
Z = 3.012, p = 0.005, odds ratio = 1.167, [95%CI = 1.055–1.289];
50% high power: Z = −2.27, p = 0.052, odds ratio = 0.894,
[95%CI = 0.810–0.988]).

Adaptation – Between Subjects
Last, we wanted to investigate whether the effect of decreased
temporal associations with increased SSVEP also held over
participants, that is, whether participants with high SSVEP had
on average a lower temporal association. The correlation analysis
showed a significant fronto-central cluster with a negative
correlation between SSVEP and temporal association (Figure 6;
clusterstatistics −9.996, p = 0.035; 3 influential cases detected).
This correlation indicates that participants with a relatively high
average SSVEP had a weaker or reversed association effect at the
end of the experiment.

DISCUSSION

In the current study we investigated whether rhythmic temporal
information influences behavioral responses toward the
processing of any sensory input at expected time points, or
whether instead parallel time-content predictions are created in
which temporal information interacts with content information
to optimally process a stimulus. To this end, we systematically
presented different sound identities at different temporal
delays after the offset of a visual rhythmic stimulus stream.
We did this either with a fixed visual rhythmic rate of 4 Hz or
with an individualized rhythmic rate based on the individual
SSVEP response. In Experiment 1, we found that for the fixed
visual rhythm, participants were indeed more accurate when
a given sound content was presented at the associated time
point. Initially, this was not replicated in the experiment with
individualized rhythms. However, in this second experiment
the association effect was modulated by SSVEP, that is, only
trials preceded by trials with relatively low SSVEP showed
this behavioral association effect. We interpret the current
results as cautiously stating that temporal information can be
used to enhance information processing related to a specific

FIGURE 5 | Association ∗ SSVEP interaction (A) Behavior for different SSVEP power values. Shaded bars indicate the standard error of the mean. Note that the
error bars at the extremes are high due to the low number of trials. (B) Predicted effects for the Association∗SSVEP Power interaction. Error bars indicate the 95%
confidence intervals. (C) Bar graphs for the association effect for both sound types (EAS = early association sounds, LAS = late association sounds), for the 50% low
power and 50% high power trials. Error bars indicate the standard error of the mean. Asterisks and double asterisks indicate significance at the 0.05 and 0.005 level,
respectively.
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FIGURE 6 | Between subject SSVEP power-association relation.
(A) Topography of the correlation. Asterisks indicate the channels part of the
significant cluster. (B) Scatterplot of the average SSVEP power per participant
and the association effect. Gray dots indicate influential cases as described in
the main text.

and expected content. Considering that the temporal-content
association could only be found in Experiment 2 after a post hoc
analysis we do believe that this requires future investigation.

We initially could not replicate the finding of Experiment
1 in Experiment 2. The main difference between these two
experiments was the use of a fixed presentation rate in
Experiment 1 versus an individualized rate in Experiment 2. We
initially choose 4 Hz for Experiment 1 as previous studies have
suggested that the brain is particularly sensitive to rates around
4-5 Hz (Poeppel, 2003; Ghitza, 2013; Santoro et al., 2017). To
investigate if the deviation from 4 Hz could indeed explain the
absence of an effect we performed a post hoc analysis in which we
added the factor presentation rate difference to 4 Hz to the model.
This factor did not show a significant effect and thus provided no
evidence that 4 Hz is a superior rhythmic frequency.

A second reason why individualized frequencies might
remove the association effect is because increasing neuronal
sensitivity to the stimulation could lead to adaptation after
repeated presentation. Specifically, it has been shown that when
a stimulus is presented repeatedly, it’s corresponding neuronal
response decreases (Nelson, 1991; Sobotka and Ringo, 1994;
Larsson and Smith, 2011). These effects can last from seconds
(Ulanovsky et al., 2004) up to several minutes (Schweinberger
et al., 2008). The repetition suppression is typically stronger when
neuronal populations are more sensitive to the incoming input
(Li et al., 1993; Sobotka and Ringo, 1994). Repetition suppression
is sensitive to both the time of presentation (Tse et al., 2004;
Van Wassenhove et al., 2008) as well as to the exact features
that are repeated (Doniger et al., 2001; Schwartz et al., 2007).
After adapting to a stimulus, subsequent behavioral responses to
ambiguous stimuli show increased choices inconsistent with the
adaptor (Kanai and Verstraten, 2005; Daelli et al., 2010). To test
for this adaptation effect we included the amplitude of the SSVEP
in the previous trials as a post hoc analysis in the model. This
SSVEP amplitude influenced whether participants responded in
accordance or not with the time-content association. Specifically,
participants followed the time-content association for low SSVEP
trials, but responded inconsistent with the association for high

SSVEP trials. Note that this effect cannot be explained by
modulation of attention to the auditory or visual stimulation
depending on the SSVEP amplitude as the overall accuracy of
the participant did not differ between low versus high SSVEP
trials. However, we have to be cautious with the interpretation
as the current analysis was part a post hoc descriptive analysis and
not intended to test for adaptation effects, limiting the weight of
the results. Considering the vast amount of research in the field
of entrainment and temporal/content prediction (Haegens and
Golumbic, 2017), we did, however, feel that the current results
would significantly contribute to the development of optimized
designs. Specifically, adaptation effects need to be taken into
account for any study design, as they might lower the effect sizes,
or even abolish or reverse the expected effect.

In our study the probability of sound type and time point was
identical, with only the combinatory sound-time constellation
having an imbalanced probability. Therefore, the adaptation did
not only integrate the specific sound type, but also the time of the
stimulus presentation, creating a sound-time specific adaptation.
Adaptation of time-of-presentation has been reported in oddball
paradigms where repeating the same delays reduces the neuronal
response (Tse et al., 2004; Van Wassenhove et al., 2008).
A previous study investigating spectral and temporal oddballs
separately suggested a different lateralization for these two
oddballs (Zaehle et al., 2009), making any possible interaction
relatively complex. But for other sensory features (audio-visual
stimuli) the oddball response has been shown to interact
(Ullsperger et al., 2006). Whether this interaction would also
occur for acoustic and temporal features is not evident and
the currently described adaptation to a specific sound-time
combination is an open field for future research.

Given the significant effect of association at the end of
Experiment 1 and the significant effect of association after
controlling for adaptation in Experiment 2 we cautiously
interpret these effect as showing that participants use temporal
delays to guide sound categorization when sound identity is
systematically mapped to these delays. This signifies that it is
possible to keep track of multiple time-content associations,
adding new findings to the previous literature suggesting that
time and feature predictions interact (Zaehle et al., 2009;
Rimmele et al., 2011; Ten Oever et al., 2013; Morillon et al., 2016).
Most of these previous studies have focused on the presence
or absence of predictions instead of keeping track of multiple
predictions, rendering any inference about parallel time-content
predictions problematic. While our study shows behavioral
effects of time-content predictions, it cannot be excluded that
participants use time itself as a trigger to activate specific content,
thereby not having parallel, but sequential representations. We
believe this explanation unlikely as previous studies have shown
that information needed at a future time point is available earlier
(Rose et al., 2016; Wolff et al., 2017). What can be concluded
is that time is dynamically used to infer content based on
statistical regularities. However, future studies need to dissociate
whether association information is used to bias perception, to
bias decision making, or to bias both.

Finding a time-content association within the temporal range
in this study would indicate that temporal associations for

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 791

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00791 August 1, 2019 Time: 18:40 # 10

ten Oever and Sack Time-Content Associations

different content can be made even within one cycle of a rhythmic
input stream. Such a finding provides important constraints to
neuronal models for rhythmic processing. Previously, (cross-
modal) neuronal populations have been found to align their
oscillatory phase to rhythmic input structure (Lakatos et al.,
2005; Besle et al., 2011). This alignment has been thought
of as a temporal prediction mechanism which ensures that
information occurring within the rhythmic structure falls on the
most excitable phase of the oscillation, thereby promoting its
neuronal processing (Schroeder and Lakatos, 2009). If this type
of entrainment occurs during the current paradigm, it is not
possible that information always falls on the most excitable phase
(as the phase distance between the time points were maximized)
unless neighboring neuronal populations coding for different
sounds are at their most excitable phase at different time points.
Hence, alignment for a rhythmic temporal structure has to occur
at different phases for different neuronal populations. Indeed, it
has been shown that entrainment to rhythmic input only occurs
in sensory populations specifically involved in the upcoming
behavioral task (O’Connell et al., 2011, 2014; Lakatos et al., 2013).
However, so far no study has shown that entrainment occurs
at different phases for different neuronal populations dependent
on temporal occurrence of the task-relevant input. Alternatively,
there is not one optimal, most sensitive phase, but phase is
used as a cue for specific content (Jensen et al., 2014; Watrous
et al., 2015; Bahramisharif et al., 2018) as would be predicted by
models suggesting that high frequency oscillations nested in low
frequencies represent information content (Jensen et al., 2012;
Lisman and Jensen, 2013). Indeed, we have previously suggested
that temporal information might be encoded by the phase of
ongoing oscillations (Ten Oever and Sack, 2015). Others have
also proposed that time is inherently part of the representational
space of a stored object (Gallistel and Balsam, 2014; Molet
and Miller, 2014). However, future research is needed to verify
this hypothesis.

In the current study we used a continuous staircase procedure
to maintain task difficulty. The neuronal populations encoding
for the two types of sounds/content are consequently very similar
and widely overlapping. Alternatively, we could have added noise
to the auditory stimuli to make the task more difficult. In this way,
the neuronal populations representing more extreme content
would be less overlapping. It is unclear which strategy would
have led to the strongest time-content associations. One could
argue that having a clearer differentiation between the neuronal
populations would improve the associations between temporal
information and content. However, one could also argue that
the more similar the neuronal populations that represent two
different contents, the more important it is for the system
coding these representations to use extra information in the
environment to separate the representations. To dissociate these
two options, future research is needed.

CONCLUSION

In everyday live we are bombarded with an abundance of sensory
information. In order to make sense of all this information it is

beneficial to extract as much statistical regularities as possible
(Summerfield and Egner, 2009; Schroeder et al., 2010). In this
viewpoint temporal information should not merely be a cue for
when (any) input can be expected, but should trigger a cascade
of parallel predictions relating to other features of the predicted
content. Here we investigated how time can be used as a cue
for content. How this time-feature information is coded in the
brain is still an open question (but see Ten Oever and Sack,
2015). Furthermore, we show that this type of learning might be
prone to adaptation (Ulanovsky et al., 2004), being modulated
by the strength of the neuronal response of the preceding
trials. This latter result shows that the behavioral effects found
for rhythmic input are modulated by adaptation mechanisms;
a finding which could potentially explain several behavioral
null-results known in the field. Future research should further
investigate time-content associations as well as the influence of
adaptation on this effect.
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