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Abstract
The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) is a highly pathogenic RNA virus causing coronavirus disease 2019 (COVID-19) in humans.

Although most patients with COVID-19 have mild illness and may be asymptomatic, some will

develop severe pneumonia, acute respiratory distress syndrome, multi-organ failure, and death.

RNA viruses such as SARS-CoV-2 are capable of hijacking the epigenetic landscape of host

immune cells to evade antiviral defense. Yet, there remain considerable gaps in our understand-

ing of immune cell epigenetic changes associated with severe SARS-CoV-2 infection pathol-

ogy. Here, we examined genome-wide DNA methylation (DNAm) profiles of peripheral blood

mononuclear cells from 9 terminally-ill, critical COVID-19 patients with confirmed SARS-CoV-2

plasma viremia compared with uninfected, hospitalized influenza, untreated primary HIV infec-

tion, and mild/moderate COVID-19 HIV coinfected individuals. Cell-type deconvolution analyses

confirmed lymphopenia in severe COVID-19 and revealed a high percentage of estimated neu-

trophils suggesting perturbations to DNAm associated with granulopoiesis. We observed a dis-

tinct DNAm signature of severe COVID-19 characterized by hypermethylation of IFN-related

genes and hypomethylation of inflammatory genes, reinforcing observations in infection mod-

els and single-cell transcriptional studies of severe COVID-19. Epigenetic clock analyses revealed

severeCOVID-19wasassociatedwithan increasedDNAmageandelevatedmortality risk accord-

ing toGrimAge, further validating the epigenetic clock as a predictor of disease andmortality risk.

Our epigenetic results reveal a discovery DNAm signature of severe COVID-19 in blood poten-

tially useful for corroborating clinical assessments, informing pathogenicmechanisms, and reveal-

ing new therapeutic targets against SARS-CoV-2.
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1 CONCISE REPORTS

RNA viruses such as severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) are capable of inducing immune dysfunction through

hijacking host immune cell epigenomes and altering transcriptional

programs to evade immune defenses.1 Epigenetics offers a window

into understanding host-pathogen interactions decoding the biologic

dialogue between host and pathogen and understanding pathogen-

related disease outcomes.2–5 Increasing evidence has shown that var-

ious components of the host immune system are dramatically altered

during SARS-CoV-2 infection and the extent of immune dysregulation

relates to severe COVID-19 disease and mortality.6 Yet, our knowl-

edge of the epigenetic landscape of immune cells during severe SARS-

CoV-2 infection remains limited.

Previous work showed that the host cell epigenetic landscape of

DNA methylation (DNAm) is altered7 modulating immune antigen

presentation during coronavirus infection.8 A comparative transcrip-

tomic study of influenza viruses and coronaviruses revealed coro-

navirus manipulation of host antiviral IFN responses.9 Notably, ini-

tial transcriptional studies of SARS-CoV-2 infection of target host

cells revealed a unique transcriptional signature compared with other

respiratory viruses characterized by suppressed antiviral IFN gene

induction and elevated chemokine/cytokine gene expression pat-

terns supporting initial observations of coronavirus suppression of

innate antiviral responses.10 Single-cell RNA-Seq studies of peripheral

bloodmononuclear cells from patients infected with SARS-CoV-2 sug-

gest a distinct peripheral immune transcriptional signature of severe

COVID-19 consisting of perturbations to IFN-stimulated genes, anti-

gen presentation genes, and proinflammatory genes.11,12 Yet, whether

aberrant DNAm patterns of host immune cells is present in severe

COVID-19 remains unknown.

In this study, we investigated genome-wide DNAm profiles using

the Infinium MethylationEPIC array13 in peripheral blood mononu-

clear cells of 9 individuals with severe COVID-19 compared with

9 uninfected controls, 5 individuals hospitalized with influenza A

or B, 9 individuals with primary HIV-1 infection (treatment naïve;

mean CD4 count: 627 cells/mm3), and 9 individuals coinfected

with mild/moderate COVID-19 and HIV-1 (on antiretroviral ther-

apy; median days from symptom onset to first visit: 34 days; mean

CD4 count: 544 cells/mm3) (Fig. 1A). Severe COVID-19 partici-

pants were receiving mechanical ventilation or supplemental oxy-

gen, showed detectable plasma SARS-CoV-2 RNA by droplet digi-

tal PCR, and lymphopenia (0.1–1.1 lymphocytes/mcL). Clinical fea-

tures of our severe COVID-19 participants support findings of SARS-

CoV-2 RNA detected in blood termed RNAemia14 and lymphopenia15

associated with severe COVID-19. Severe COVID-19 participants

had treatment histories including use of hydroxychloroquine, chloro-

quine, zithromycin, lopinavir/ritonavir, vancomycin, ceftriaxone, or

piperacillin/tazobactam.

Abbreviations: SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; COVID-19,

Coronavirus disease 2019; DNAm, DNAmethylation; HIV, human immunodeficiency virus;

IFN, Interferon; NK, natural killer; FDR, false discovery rate.

Based on accumulating evidence reporting dramatic change in the

composition of immune cell types in severe COVID-19,12,16–18 our ini-

tial analysis of ourDNAmdataset investigateddifferences in estimated

cell-type proportions between groups utilizing cell-type-specific dif-

ferential methylation profiles.16 We utilized the Epigenetic Dissection

of Intra-Sample-Heterogeneity (EpiDISH) package19,20 to infer frac-

tions of 7 priori immune cell subtypes (B-cells, CD4+ T Cells, CD8+
T cells, NK cells, monocytes, neutrophils, and eosinophils) based on

3 methods: Robust Partial Correlations,16 CIBERSORT,21 and Con-

strained projection22 methods. As expected, we observed a significant

difference in CD4 [F(4, 36 = 28.47, P < 0.0001] and CD8 T cell per-

centage for all 5 groups [F(4, 36 = 14.68, P < 0.0001]. Post hoc com-

parisons using the Tukey’s test indicated a significant loss in DNAm

inferred CD4+ and CD8+ T cell percentages in severe COVID-19

compared with both uninfected controls, primary HIV samples, and

influenza (P< 0.05) (Fig. 1B). Supporting findings inHIV, we observed a

significant decrease in estimated CD4 T cell percentage (P = 0.0001)

and increase in CD8 T cell percentage (P = 0.006) in primary HIV

and HIV/COVID-19 coinfection compared with uninfected controls

(Fig. 1B). We observed a significant decrease in NK cell propor-

tions associated with severe COVID-19 compared with primary HIV

and HIV/COVID-19 coinfection (P < 0.05). The most striking DNAm

inferred cell-type composition change was a significant increased pro-

portion of neutrophils observed in severeCOVID-19participants com-

pared with uninfected controls, primary HIV infection, hospitalized

influenza, and HIV/COVID-19 coinfection (P < 0.0001; Fig. 1B). We

calculated a DNAm inferred neutrophil–lymphocyte ratio (NLR) by

dividing the relative % inferred neutrophils by the relative % inferred

lymphocytes (CD4+, CD8+ T cells, and B cells). Severe COVID-19

participants had a significantly increased NLR compared with unin-

fected controls, HIV infection, hospitalized influenza, andHIV/COVID-

19 coinfection (P < 0.0001; Fig. 1C), supporting work showing that

clinical laboratory testing-based NLR ratio predicts severe COVID-

19 in the early stages of infection.16 These findings also support

recent single-cell transcriptomic research of peripheral blood high-

lighting a potential shift in cellular trajectory toward a neutrophil

population in COVID-19,12 a report of the low-density inflammatory

neutrophils arising in severe COVID-19 related to coagulopathy,23

and neutrophil lung infiltration from autopsied COVID-19 patients.24

This large proportion of peripheral neutrophils associated with severe

COVID-19 could be a source of excess neutrophil extracellular traps

across body compartments resulting in permanent organ damage and

potential death. To examine this hypothesis, we profiled DNAm pat-

terns in postmortem lung tissues from 15 individuals with COVID-19

and 4 uninfected controls and observed a significant increase in neu-

trophils inferred by DNAm-based cell-type deconvolution analysis in

COVID-19 postmortem lung compared with uninfected lung tissues

(Fig. 1D).

We next assessed changes in genome-wide DNAm associated with

severe COVID-19 by comparing with uninfected controls and iden-

tified 40,904 differentially methylated loci associated with severe

COVID-19 at (Δ𝛽-value > |0.20| and significant at FDR adjusted

P < 0.05). Comparing genome-wide DNAm associated with severe
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F IGURE 1 DNAmethylation signature associated with severe COVID-19. (A) Overview of experimental design for comparative DNAmethy-
lation profiling. (B) Box and whisker plots of DNA methylation cell type deconvolution by the CIBERSORT method21 showing estimated cell type
proportions of B cells, NK cells, CD4 T cells, CD8 T cells, monocytes, and neutrophils for uninfected control (orange), hospitalized influenza (pur-
ple), primaryHIV+ART naïve (red), coinfectionHIV+/COVID-19 (gray), and severe COVID-19 (blue) PBMCs. (C) DNAmethylation (DNAm)-based
neutrophil–lymphocyte ratio (NLR). (D) Box and whisker plots of DNA methylation cell-type deconvolution showing estimated cell-type propor-
tions of B cells, NK cells, CD4 T cells, CD8 T cells, monocytes, and neutrophils in postmortem lung tissues fromCOVID-19 and uninfected controls.
(E) Heatmap of hypermethylated CpGs in uninfected control (orange), hospitalized influenza (purple), primary HIV+ ART naïve (red), coinfection
HIV+/COVID-19 (gray), and severe COVID-19 (blue) PBMCs; each participant indicated at top of row. GeneID associated with each CpG dis-
played for each row. Unsupervised hierarchic clustering above columns identified 2 main clusters. Methylation values displayed as ranging from
low methylation (0; blue) to high methylation (1, red). (F) Heatmap of hypomethylated CpGs in uninfected control (orange), hospitalized influenza
(purple), primary HIV+ ART naïve (red), coinfection HIV+/COVID-19 (gray), and severe COVID-19 (blue) PBMCs. GeneID associated with each
CpG displayed for each row. Unsupervised hierarchic clustering above columns identified 2main clusters. Methylation values displayed as ranging
from lowmethylation (0; blue) to highmethylation (1, red). (G–J) Dot plots of DNAmethylation levels at CpGs related to IFITM1, ISG20, NLRP3, and
MX1 genes. (K and L) Correlation plots of SARS-CoV-2 plasma viral copies/ml and platelets count with DNAmethylation levels of CpG at theMX1
genes
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COVID-19 against influenza identified 26,733 differentially methyla-

tion loci at (Δ𝛽-value> |0.20| and significant at FDR adjusted P< 0.05)

and an RNA viral infection associated with lymphopenia and immuno-

suppression, primary HIV infection identified 51,728 differentially

methylation loci at (Δ𝛽-value > |0.20| and significant at FDR adjusted

P < 0.05). Notably, among the differentially methylated loci associ-

ated with severe COVID-19, we observed significant hypermethyla-

tion in regulatory regions of genes involved in the type I IFN response

associated with severe COVID-19 (Fig. 1E) including first line antivi-

ral defense genes such as IFITM1 and ISG20 (Fig. 1G and H) sup-

porting the notion of SARS-CoV-2 suppressing host IFN responses.10

We also observed aberrant levels of DNAm associated with severe

COVID-19 related to the SARS-CoV-2 viral host receptor ACE2 gene

supporting work suggesting up-regulation of ACE2 during SARS-CoV-

2 infection.25 In contrast, we observed significant hypomethylation

in regulatory regions of genes involved in immune inflammation and

cytokine genes associated with severe COVID-19 (Fig. 1F) including

loci in a regulatory region of the NLRP3 inflammasome and antivi-

ral MX1 genes (Fig. 1I and J). DNAm in severe COVID-19 at antiviral

geneMX1 significantly associated with plasma SARS-CoV-2 viral load

and platelet count (Fig. 1K and L). These findings suggest that DNAm

patterns in immune cells may provide a signature of severe COVID-

19 represented by an imbalanced epigenetic orchestration of inflam-

matory and IFN gene transcriptional programs reported by various

gene expression studies of SARS-CoV-2.10–12 These data support the

hypothesis that SARS-CoV-2 alters the immune cell epigenome in a 2-

hitwaveby (1) imprinting a shutoff of IFN transcriptional programsand

(2) embedding an unfettered inflammatory cytokine-trained immune

response leading to severe COVID-19.

We also examined which immune cell types may be driving the

methylation signal associated with severe COVID-19. We used the

eFORGE 2.0 tool26 to identify a cell-type-specific signal for the top

1,000 hypo- and hyper-methylated differentially methylated sites

associated with COVID-19 based on detecting enrichment of over-

lap with histone marks from the Roadmap Epigenomics project. We

found that the top 1,000 hypomethylated CpGs were significantly

enriched in enhancer regions of primary neutrophils from peripheral

blood (E030) using the 15 chromatin states model from the Roadmap

Epigenomics project27 (P = 7.11e−315, Q value = 1.1e−310). In con-

trast, we found that the top 1,000 hypermethylated CpGs typically

associated with transcriptional repression were significantly enriched

in transcription start site regions of (E033) primary T cells from cord

blood (P = 1.2e−285, Q value = 1.85e−281), (E041) primary T helper

cells (P= 1.08e−264,Q value= 8.34e−261), and (E044) primary T reg-

ulatory cells (P = 8.48e−239, Q value = 4.38e−235). These findings

confirm dysregulation of neutrophils and T cells as disease-relevant

cell types for severe COVID-19 and suggest an epigenomic signature

ofCOVID-19based on aberrantDNAmat cell-type-specific regulatory

regions of the host genome.

Genome-wide DNAm data have been used to develop epigenetic

clocks to accurately estimate chronologic age and a predictor of lifes-

pan in immune cells and tissues.28–31 Infectious diseases such as HIV

accelerate the epigenetic clock32,33 suggestive of damaging effects of

an RNA pathogen on the host immune cell epigenome. To study epige-

netic age in severe COVID-19, we examinedHorvath’s measure of epi-

genetic age acceleration according to thePhenoAge epigenetic clock29

and assessed DNAm inferred mortality risk according to GrimAge.30

Individuals with severe COVID-19 were estimated to have a signif-

icantly increased epigenetic age acceleration compared with unin-

fected controls and influenza (P < 0.05; Fig. 2A). Moreover, we also

observed a significant increase in mortality risk in severe COVID-19

compared with uninfected controls, primary HIV, and HIV/COVID-19

coinfection (P < 0.05; Fig. 2B). Interestingly, we did not observe sig-

nificant decreases in DNAm-based telomere length in severe COVID-

19 compared with uninfected controls (P value = 0.22; Fig. 2C). How-

ever, validating previous reports inHIV, we found that individuals coin-

fected with HIV and mild/moderate COVID-19 had an estimated sig-

nificantly shorter telomere length compared with uninfected controls,

influenza, and severeCOVID-19 (P<0.05; Fig. 2C).Wealsoutilizedour

DNAm dataset to infer previously validated DNAm-based biomarker

estimates for mortality including renal function biomarker cystatin

C and fibrosis marker TIMP metallopeptidase inhibitor 1 (TIMP-1).30

Estimated levels of biomarkers cystatin and TIMP-were significantly

increased in severe COVID-19 compared with uninfected controls

(P < 0.05) and influenza (P < 0.05) (Fig. 2D and E). Additionally, cys-

tatin and TIMP-1were significantly increased in individuals coinfected

with HIV and mild/moderate COVID-19 compared with primary HIV

(P < 0.05). Overall, these findings suggest severe COVID-19 is detri-

mental to host immune cell epigenomes and perturb the epigenetic

clock.

Altogether, this epigenetic DNAm profiling study provides the

first evidence for a distinct methylome signature in peripheral blood

obtained from severe COVID-19 participants characterized by dra-

matic cell-type composition changes, hypomethylation of inflamma-

tory genes, hypermethylation of IFN-related genes, and perturbations

to the epigenetic clock and epigenetic inferred mortality risk. Our

findings support the notion that SARS-CoV-2 dramatically reshapes

peripheral blood and lung tissue host immune cell landscapes and may

hijack the host epigenome by modifying cellular DNAm states. This

may occur through viral RNA shed from dying cells in tissues and

circulating viral protein components such as the ORF3a,34 ORF6,35

spike,membrane, and nucleocapsid36 that have been shown to hamper

the host immune response. SARS-CoV-2 likely alters other epigenetic

mechanisms such as histone modifications and noncoding RNA in a

cell-type and context-dependent fashion. Future research will need to

need to replicate these findings in additionalCOVID-19 cohorts, exam-

ine whether DNAm differences are apparent in mild/moderate cases

of COVID-19 that progress to severe disease, andwhether an indelible

epigenetic imprint of COVID-19 persist after recovery in convalescent

patients.
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