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Simple sequence repeats (SSRs) of short nucleotide motifs occur very frequently in the 5′
untranslated coding region (5′-UTR) of genes and have been implicated in the regulation of
gene expression. In this study, we identified an SSR with a variable number of CT repeats
in the 5′-UTR of the Litopenaeus vannamei IRF (LvIRF) gene that has been shown to
mediate antiviral responses by inducing the expression of Vago, a functional homolog of
mammalian IFN. We then explored the effects of varying the number of (CT)n repeats on
the expression of LvIRF using both dual-luciferase reporter assays and Western blots. Our
results demonstrate that the length of the (CT)n-SSR in this gene can influence the
expressional level of LvIRF, in that a shorter (CT)n repeat had a stronger ability to induce
the expression of LvIRF. Moreover, we found that the (CT)n repeat in LvIRF was
associated with viral resistance in shrimp. Individual shrimps with shorter (CT)n repeats
in the 5′-UTR of LvIRF exhibited high tolerance to white spot syndrome virus (WSSV), and
this trait was inherited in offspring. Taken together, these results indicated that this (CT)n-
SSR could be used as a molecular marker for shrimp breeding for WSSV resistance.

Keywords: computed tomography (CT) microsatellite, Litopenaeus vannamei IRF, white spot syndrome virus
(WSSV) resistance, molecular marker, Litopenaeus vannamei
INTRODUCTION

Simple sequence repeats (SSRs), also known as microsatellites or short tandem repeats (STRs), are
tandem repeats of short sequence motifs occurring ubiquitously in eukaryotic genomes. They
exhibit extensive polymorphism due to variations in the copy number of each specific repeat motif,
and are considered useful as genetic markers for genetic diversity analysis, DNA fingerprinting, and
linkage mapping. Several studies have suggested that SSRs are non-randomly distributed in the
genome, as untranslated coding regions (UTRs), and have more SSRs than coding regions, as well as
exhibit a strong bias towards di- and tri-nucleotides repeats (Metzgar et al., 2000; Wren et al., 2000;
Li et al., 2002; Morgante et al., 2002; Fujimori et al., 2003). SSRs in UTRs have been found to be
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associated with gene expression by affecting transcription factor
binding, methylation of CpG and/or DNA structure
modification (Li et al., 2004).

Some of the best-known examples of SSRs affecting gene
expression come from human genetic disorders. For example,
fragile X syndrome (FXS) has been attributed to the absence of
fragile X mental retardation 1 (FMR1) gene expression due to a
long CGG tri-nucleotide repeat in the FMR1 gene 5′-UTR
adjacent to the promoter that results in the FMR1 gene’s
epigenetic silencing (Colak et al., 2014). In another study, a
polymorphic (CA)nmicrosatellite identified in the 5′-UTR of the
prolactin 1 (prl 1) gene of tilapia has been associated with
differences in prl 1 gene expression and the growth responses
of salt-challenged tilapia (Streelman and Kocher, 2002). In
Drosophila, a series of polymorphic (GA)n microsatellite
sequences in promoter regions have been shown to bind to a
protein family called GAGA factors, which are involved in gene
expression (Tsukiyama et al., 1994; Berger and Dubreucq, 2012).
In mammalian cells, three novel downstream elements, which
show homology to GAGA factor binding sequences, can regulate
promoter activity and preferentially affect transcription start site
(TSS) selection at the 5′-UTR end of promoters (Lee et al., 2010).

Disease resistance is a low heritability trait that is easily
influenced by external environments. Designer breeding using
molecular markers is considered to be an effective method for the
cultivation of disease resistance and other complex traits in crops
and livestock (Xue et al., 2013). Whole genome resources and
transcriptome resources provide opportunities to dissect the
genes controlling complex traits and can be used to reveal the
coupling mechanisms of different genes, which in turn can
contribute to the use of functional genes as molecular markers
for designer breeding projects (Xue et al., 2015). In order to do
this, however, a thorough understanding of the functional genes
related to disease resistance is needed.

The shrimp species Litopenaeus vannamei is a worldwide
aquaculture species that was first introduced to China in the 1980s,
and its productionhas increased rapidly in the 21st century.However,
various shrimp diseases are responsible for huge losses, especially
thewhite spot syndrome virus (WSSV) (Flegel, 2012; Li et al., 2019b).
To date, there is no effective method to prevent WSSV infection in
shrimp, but selective breeding of WSSV-resistant species should be
an effective way to solve this problem.

In shrimp, innate immunity plays a key role in the defense
against a wide variety of invading microbes such as bacteria, fungi,
and viruses. Several signaling pathways are essential components of
innate immunity, including the Toll, IMD, and JAK/STAT
pathways (Li et al., 2019a; Li et al., 2019b). In recent studies, the
shrimp IRF-Vago-JAK/STATpathway, which is similar to the IRF-
IFN-JAK/STAT pathway in vertebrates, has been functionally
identified to play a significant role in defense against viruses
including WSSV (Li et al., 2015). The L. vannamei IRF (LvIRF) is
the first interferon regulatory factor (IRF) identified in crustaceans,
and has a similar protein nature as mammalian IRFs. LvIRF can be
activatedduring viral infection, and then translocates to the nucleus
to initiate the expression of the L. vannamei Vago4 (LvVago4) gene.
This is effectively an arthropod cytokine encoding a viral-activated
Frontiers in Genetics | www.frontiersin.org 2
secreted peptide through activating the JAK-STAT pathway to
restrict viral infection, similar to mammalian IFNs (Chen et al.,
2011; Paradkar et al., 2012; Wang and He, 2019).

The key constituents of innate immunity were regarded as
molecular markers for breeding disease resistance in shrimp. In
this study, we found a (CT)n microsatellite with a variable
number of CT motifs present in the 5′-UTR of the LvIRF gene.
We demonstrated that the number of (CT)n repeats modulates
the promoter activity of the LvIRF gene in a length dependent
manner, and observed that shrimp with different numbers of CT
repeats showed distinct tolerances to WSSV. Furthermore, we
demonstrate the use of the number of (CT)n repeats at this locus
as a molecular marker to selectively breed a new generation of
shrimp resistant to WSSV. In F2 offspring, the populations with
smaller numbers of (CT)n repeats were more resistant to WSSV.
MATERIALS AND METHODS

Experimental Animals and Pathogens
In order to investigate the relationship between (CT)n repeats
and the antiviral traits of L. vannamei, three different
populations of 100 healthy shrimp (TH01, TH03 and SP07)
were collected from the Hengxing shrimp farm in Zhanjiang city,
China. TH01 was collected from Vietnam, TH03 was collected
from China, and SP07 was collected from Saipan. The shrimp
body weight was 5.0 ± 1.0 g each, and each population of shrimp
was cultured in filtered sea water with a 2.5% salinity at 26°C in a
recirculating water tank and fed with fodder at rate of 5% of body
weight per day. WSSV was prepared from shrimp muscle tissue
previously infected with WSSV and stored at −80°C. The muscle
tissue was homogenized to prepare it as a WSSV inoculum at a
final concentration of 106 virions/50 ml, which was injected into
each shrimp (Li et al., 2014). All tanks were checked every 2 h
and dead shrimp were collected and marked. On the 10th day
(240 h) after infection, all shrimp were collected and marked. In a
study of the WSSV resistance of L. vannamei, the survival rate
curve showed a normal distribution using this injection infection
method (Huang et al., 2011). Therefore, we used mortality peaks
as the cut-off point for determining resistance, and each
population was divided into two groups: WSSV-susceptible
and WSSV-resistant. All experimental materials were stored at
−20°C with DNA holder and RNA holder (TakaRa, Dalian,
China) for downstream DNA and RNA extractions.

Analysis of Allelic Polymorphism,
Promoter Sequences and Preparation of
Expression Vectors
GenomicDNAwas extracted frommuscle tissue using the E.Z.N.A.
Tissue DNA Kit (Omega Bio-tek, Doraville, GA, USA). The LvIRF
cDNA had previously been deposited in the NCBI GenBank
(KM277954), and the L. vannamei IRF-5′-UTR was used as a
DNAtemplate forPCRamplification (Table1) (Li et al., 2015).PCR
products were electrophoresed on 20% polyacrylamide gels at 80 V
for 8 h in 1 × TBE running buffer (89 mM Tris-boric acid, 2 mM
EDTA, pH 8.0). The polymorphic bands were purified using the
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E.Z.N.A. Gel Extraction Kit (Omega Bio-tek, Doraville, GA, USA),
followed by cloning into the pMD-19T vector (TakaRa, Dalian,
China) and sequence confirmation. The sequences were analyzed
and compared using BioEdit (Hall, 1999), and those with different
in length were chosen for polymorphism analysis by sequencing.

Total RNA was extracted using the RNeasy Mine Kit (Qiagen,
Hilden, Germany) and reverse transcribed into cDNA using the
PrimeScript RT reagent kit (TakaRa, Dalian, China). The ORF of
LvIRF without a stop codon was used as a cDNA template for
PCR amplification (Table 1). PCR products were then cloned
into the pAc5.1-His/V5 A vector (Invitrogen, Carlsbad, CA,
USA) to generate pAc-IRF-V5 and the sequence was
confirmed. Different length LvIRF-5′-UTR sequences were then
amplified from pMD-19T vectors and cloned into the pAc-IRF-
V5 vector to generate pAc-IRF-(CT)n-V5. These were
sequenced, and a pair wise alignment was then performed. The
promoter regions of LvVago4 were cloned into the PGL-3 basic
vector (Promega, Madison, WI, USA) to generate a luciferase
reporter gene plasmid (Chen et al., 2011).

Dual-Luciferase Reporter Assays
To detect the effects of LvIRF on the promoters of LvVago4
genes, dual-luciferase reporter assays were performed using
Drosophila Schneider 2 (S2) cells with pAc-IRF-(CT)n-V5 that
contained different numbers of CT repeats as IRF-expressing
vectors. Cells in each well of a 96-well plate (TPP, Switzerland)
were transfected with 0.05 mg PGL-LvVago4 vector as a reporter
plasmid, 0.005 mg pRL-TK renilla luciferase (Promega, Madison,
WI, USA), and 0.05 mg of expression plasmid, LvIRF vector or
empty expression vector as controls. The pRL-TK renilla
luciferase plasmid was used as an internal control. 48 h after
transfection the firefly and renilla luciferase activities were
measured, according to the manufacturer’s instructions. Each
experiment was performed in triplicate.

Western Blot and Quantitative RT-PCR
The pAc-IRF-(CT)n-V5 vector was transfected into S2 cells.
After 72 h, cells were harvested and lysed in NP-40 lysis buffer
with protease inhibitor cocktail (Sigma, St. Louis, MO, USA).
Frontiers in Genetics | www.frontiersin.org 3
Western blot was performed with a rabbit anti-V5 antibody
(Sigma, St. Louis, MO, USA) as a primary antibody, and alkaline
phosphatase-conjugated goat anti-rabbit as a secondary antibody
(Sigma, St. Louis, MO, USA). ImageJ was then used to measure
the gray-level values and calculate the ratio of LvIRF and b-actin.
Quantitative RT-PCR was performed for the analysis of IRF gene
expression, and the EF-1a gene was detected as an internal
control (Table 1).

Microsatellite Genotyping
The CT microsatellite from the LvIRF 5′-UTR region was
genotyped using FAM fluorogenic probes followed by capillary
electrophoresis to discriminate allele size. Primers (Table 1) were
designed to amplify a 202 bp fragment containing 18 CT repeats
that was used as a reference, and deviation from this size allowed
us to deduce the number of CT repeats for different alleles.
Samples were sequenced and analyzed using an ABI Genetic
Analyzer 3730 XL. We classified the alleles into two groups:
short (S) alleles were ≤ 18 repeats, and long (L) alleles were > 18
repeats, based on the median (the (CT)n repeat numbers ranged
from 13 to 24) that was adopted by referring to other reports
(Gregorek et al., 2013; Dias et al., 2017).

Establishment of HX-CTS and HX-CTL
Generations
TheL. vannameibreedingprogramwas carried out at theHengxing
shrimp farm inZhanjiang city, China. Choosing theHX150301 and
HX1403 populations as founder stocks, two ponds were stocked
with spawners, with one pond named the HX-CTS population
where the parents contained short CT repeats in the LvIRF 5′-UTR,
while the other one pond only contained longCT repeats, whichwe
named the HX-CTL population (Figure 5A). When the shrimp
from each pond had a body weight of 5 g, we used the artificial
WSSV challenge experiment mentioned above, to draw survival
rate curves.

Statistical Analysis
Allelic frequency calculations were performed using PopGen32
software (Yeh and Boyle, 1997). We used 2 × 2 contingency
TABLE 1 | The primers used in this study.

Names Sequences (5′–3′) Size/bp Tm/°C

PCR
LvIRF-5′UTR-F ATCGGGATCCACTCGCAGATAC 202 56
LvIRF-5′UTR-R GGCGACCTTAGACCGACGAGTT
Protein expression
pAc-LvIRF-5′UTR-F GGGGTACCATCGGGATCCACTCGCAGAT 202 56
pAc-LvIRF-5′UTR-R GGGAATTCGGCGACCTTAGACCGACGAG
pAc-LvIRF-F GGTATCCAATGCCGCCATCTTTCACCAATG 1086 60
pAc-LvIRF-R GGTCTAGACGGCAACGTCCTCTCGCCGGCA
Quantitative RT-PCR
LvIRF-F ACGCTGCCCTCTTTCGCTAC 162 60
LvIRF-R ACGCTGTGAACCTGAAGTATCG
LvEF-1a-F GTATTGGAACAGTGCCCGTG 143 60
LvEF-1a-R ACCAGGGACAGCCTCAGTAAG
PCR for genotyping
LvIRF-5′UTR-F FAM-ATCGGGATCCACTCGCAGATAC 202 56
LvIRF-5′UTR-R GGCGACCTTAGACCGACGAGTT
December 2019 | Volume 10 | Artic
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tables and Fisher’s exact test to obtain P-values with odds ratios
(ORs) and 95% confidence intervals (95% CIs) to calculate
significance, as well as two-tailed unpaired t-tests and
ANOVA. Bonferroni corrections were applied to account for
the multiple testing of the CT genotype frequency [*p corr <
0.0042 (0.05/12)] and genotype groups [*p corr < 0.0167 (0.05/
3)], following Fisher exact tests (Lewitter et al., 2012). ANOVA
tests were followed by Tukey post hoc tests (*p < 0.05).
RESULTS

Analysis of the (CT)n Variation in the 5′-UTR
of the LvIRF Gene
LvIRF has been shown to bind the promoter of LvVago4 to
regulate its transcription, which plays a role in the defense
against WSSV infection (Li et al., 2015). In the present study,
we found a (CT)n repeat in the 5′-UTR region of the LvIRF gene
and designed primers to amplify the 5′-UTR including the (CT)n
motif. PCR amplification of genomic DNA from 20 shrimp
collected from diverse genealogies was performed and the
amplified products had various lengths, ranging in size from
190 to 230 bp (Figure 1A). Sequencing results showed that the
(CT)n microsatellite was polymorphic in this region, and could
be further divided into a long (CT)n repeat and a short (CT)n
repeat. Fourteen sequences, different in (CT)n motif number
only, were chosen for further study. A pair wise alignment was
then made using part of these sequences, such as (CT)10+5, (CT)
14+5, and (CT)18+7 (Figure 1B).
Frontiers in Genetics | www.frontiersin.org 4
Estimating the Effect of (CT)n Motif
Number Variation on LvIRF Expression
To investigate whether the variable numbers of (CT)n motif in
the 5′-UTR of LvIRF are implicated with its expression, dual-
luciferase reporter analysis in Drosophila S2 cells was carried out.
The 5′-UTRs of the LvIRF gene harboring various (CT)n motifs
were cloned into pAc-5.1-His/V5 A to generate pAc-IRF-(CT)n-
V5 vectors for protein expression (Figure 2A). Three vectors,
including 15, 19, and 25 (CT)n repeats, were constructed and
transfected into S2 cells. The pAc-IRF-V5 and pAc-5.1-His/V5 A
empty vector were also transfected into S2 cells as controls. To
estimate the effect of (CT)n motif number variation on LvIRF
expression, Western blotting was then performed. The results
showed that the ratio of LvIRF and b-actin with (CT)15 was twice
as large as that with (CT)25 in terms of gray-level values (Figure
2B). Previous reports have shown that the promoter of LvVago4
contains a conserved IRF binding motif that was confirmed to be
targeted by LvIRF (Li et al., 2015). To further confirm the above
results (Figure 2B), dual luciferase reporter assays were
performed using luciferase-expressing vectors containing the
LvVago4 promoter (Figure 2C). Maximal expression of LvIRF
was observed in cells transfected with pAc-IRF-(CT)15, which
was 1.5-fold higher than in cells with pAc-IRF-(CT)25 (p <
0.001), and 2.3-fold higher than in cells with pAc-IRF-V5 (p <
0.001). Considering that the (CT)n repeat is composed of two
parts, we explored whether the different numbers of the two (CT)
n repeats were implicated in LvIRF expression. We observed that
the pAc-IRF-(CT)11+5 and pAc-IRF-(CT)10+6 showed no
significant differences on the promoter activities of LvVago4.
FIGURE 1 | Polymorphisms in the 5′-UTR of LvIRF. (A) PCR amplified 5′-UTRs from 20 L. vannamei individuals were analyzed by agarose gel. Length
polymorphisms between individuals was observed. The (CT)n repeat motifs was marked in red, transcription start site (TSS) was marked in green, and translation
start site (ATG) was marked in red. The locations of primers LvIRF-5′UTR-F/R (expected size 202 bp) was shown to analysis the polymorphism of (CT)n repeat in
shrimp. (B) Multiple sequence alignment of LvIRF 5’-UTRs. Variation in the numbers of (CT)n motifs, with a long (CT)n repeat (Part 1) and a short (CT)n repeat (Part 2),
were distinctly observed.
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Similar results were observed in three other groups that
contained a total of 17, 18, and 19 repeats, respectively (Figure
2D). Taken together, these results revealed that the expression of
LvIRF was only affected by the total number of (CT)n copies.

Specific (CT)n Microsatellite Genotypes
Were Associated With WSSV-Resistance
According to the survival rate curve, we chose the mortality peaks
(Figure 3, arrow) as the cut-off points for dividing each population
of shrimp into two groups: WSSV-susceptible (Sus., died before
mortality peaks) and WSSV-resistant (Res., died after mortality
peaks) (Table 2). This phenotype was then genotyped in all three
shrimp populations (Figure 4). The allelic distribution profile for
each population was different. The number of (CT)n repeats in
TH01 were skewed towards 18, 19, or 20 (Figure 4A), while TH03
was rich in 17, 18, or 20 (Figure 4B), and SP07 had an isolated peak
at 20 (Figure 4C). The large difference in this allelic distribution
indicated that the three populations used in this study had
Frontiers in Genetics | www.frontiersin.org 5
different genetic backgrounds, and showed a large degree of
genetic stratification.

Moreover, therewas a significantdifferencewhencomparing the
allelic distributionbetween Sus. group andRes. groups. In theTH01
population, the (CT)18 genotype was enriched in the Res. group
associated with WSSV resistance, and showed a very significant
difference with the Sus. Group (Fisher exact test: p < 0.00008, OR =
12.667, 95% CI = 4.09 - 39.225) (Figure 4D). On the contrary, the
(CT)20 genotype was enriched in the Sus. Group (Fisher exact test:
p = 0.00004, OR= 0.19, 95%CI = 0.085 - 0.427) (Figure 4D). In the
SP07 population, the (CT)14 genotype was enriched in the Res.
group (Fisher exact test: p = 0.0022, OR = 4.768, 95% CI = 1.726 -
13.168) (Figure 4F). In the TH03 population, the (CT)20 genotype
was enriched in the Sus. Group (Fisher exact test: p = 0.0061, OR =
0.24, 95% CI = 0.086 - 0.671), although this difference was only
nominally significant (Figure 4E).

Since the (CT)n repeat numbers ranged from 13 to 24 in the
three populations, the repeat length cut-offs for allelic
FIGURE 2 | (CT)n repeats implicated in the expression of LvIRF. (A) Structures of 5′-UTRs harboring different (CT)n repeats and IRF coding sequence in pAc-5.1/His
A vectors. (B) Western blots of LvIRF expression driven by different (CT)n repeat numbers. Gray level value ratios of LvIRF and b-actin in table, and the expression
level from cells with pAc-IRF was set as the baseline (1.0). The ratio of LvIRF and b-actin with (CT)15 was twice as much as that with (CT)25. (C-D) Dual-luciferase
reporter assays of LvIRF expression, (C) LvIRF expression with different total numbers of (CT)n repeats, (D) LvIRF expression with same total numbers of (CT)n
repeats but different numbers of the two distinct (CT)n repeats. LvIRF expression with (CT)15 was 1.2-fold higher than that with pAc-IRF-(CT)19 (p < 0.05) and 1.5-fold higher
than that with pAc-IRF-(CT)25 (p < 0.001). The pAc-IRF-(CT)11+5 and pAc-IRF-(CT)10+6 transfected cells showed no significant differences on the promoter activities of
LvVago4, similar to the other three groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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categorization were defined as ≤18 repeats for short (S) alleles
and >18 repeats for long (L) alleles. Following allele classification,
we could attribute to each individual one of three bi-allelic
genotypes: S/S, S/L, or L/L. Genotype distribution frequencies
were then determined and are shown for each population in
Figures 4G–I. Associated with WSSV resistance, the TH01
population showed a very significant difference in the S/S
genotype (Fisher exact test: p < 0.0003, OR = 28.053, 95% CI =
3.417 - 230.33) and the L/L genotype (Fisher exact test: p <
0.0003, OR = 0.107, 95% CI = 0.036 - 0.322). Similar to the TH01
population, the S/S genotype associated with WSSV resistance
showed a significant difference in the TH03 population (Fisher
exact test: p = 0.0005, OR = 6.476, 95% CI = 2.194 - 19.095),
while the L/L genotype showed a significant difference in the
SP07 population (Fisher exact test: p = 0.0054, OR = 0.129, 95%
CI = 0.027 - 0.613).

Allelic distribution showed that S alleles tended to be enriched
in Res. groups and L alleles tended to Sus. groups. We then
compared the bi-allelic genotype distribution between the Sus.
and Res. groups, and shrimp with the S/S genotype in the 5′-UTR
of the LvIRF gene were resistant to WSSV, while those with L/L
were susceptible to WSSV. The above results suggested that the
shrimp with a short (CT)n repeat in the 5′-UTR of LvIRF were
more resistant to WSSV than those with longer (CT)n repeats.
Frontiers in Genetics | www.frontiersin.org 6
Short CT Microsatellite Genotypes
Improve the Resistance of Shrimp
Populations to WSSV
Based on our breeding scheme illustrated in Figure 5A, we
obtained two new shrimp populations. HX-CTS, containing
short (CT)n repeats in the 5′-UTR of LvIRF, and HX-CTL,
which only contained long (CT)n repeats. Figure 5B shows the
allelic distribution in these two populations, which were as
expected, and the HX-CTS population contained the (CT)14
and (CT)15 genotypes, while the HX-CTL population did not.
The survival rate curve after WSSV infection is shown in Figure
5C. The survival rate curves of the two populations could be
easily separated, as the HX-CTS mortality rate reached 50% 16 h
later than the HX-CTL population. We also measured the LvIRF
gene expression in gills by quantitative RT-PCR (Figure 5D).
There was no difference at 0 h, but after 12 h of WSSV infection,
the expression of LvIRF in the HX-CTS population was twice
that of the HX-CTL population, which was a significant
difference (p = 0.02). These results suggested that shrimp
containing a smaller number of (CT)n repeats in the 5′-UTR
of LvIRF were more resistant to WSSV infection, thereby
improving their survival rate in this assay.
DISCUSSION

Our study examined the role of an SSR with a (CT)nmotif in the
5′-UTR, as well as its repeat length variation, in the
transcriptional regulation of the IRF gene of L. vannamei and
the association of its genetic variations with WSSV resistance.
Microsatellite repeats, especially (CT)n motifs, exist in
abundance in the 5′-UTRs of several eukaryotic genes
(Bhattacharyya et al., 2004; Mohammadparast et al., 2014;
Zhao et al., 2014). The microsatellites are present in the
vicinity of TSSs, indicating that they are likely involved in
regulating target gene transcription (Castillo-Davis, 2005;
Simpson and Ayyar, 2008). Our first goal was to investigate the
highly polymorphic CT repeat located in the core promoter of
the LvIRF-5 ’-UTR. Genotyping demonstrated a high
heterogeneity of alleles, with lengths ranging from 13 to 24
repeats. In order to elucidate the role of (CT)n variation in the 5’-
UTR of the LvIRF gene, we selected (CT)n variant alleles from
different individuals and found that shrimp with smaller
numbers of (CT)n repeats exhibited an enhanced tolerance to
WSSV infection.

SSRs in the UTRs sequences or within promoter regions are
thought to play a role in the regulation of gene expression. In
Catharanthus roseus, Tryptophan decarboxylase (Tdc) gene
expression is affected by the length of a (CT)n microsatellite in
the 5’-UTR of this gene (Kumar and Bhatia, 2016). The chickpea
CaIMP gene, with length variations of (CT)n repeat motifs
present in the 5’-UTR, were differentially transcribed, and were
shown to be associated with drought tolerance (Joshi-Saha and
Reddy, 2015). Recently, a genome-wide survey of the
contribution of microsatellites to gene expression in humans
identified 2,060 significantly expressed microsatellites that were
FIGURE 3 | Survival rate curves for TH01, TH03 and SP07 shrimp. Three
shrimp populations from different sources; TH01 from Vietnam, TH03 from
China, and SP07 from Saipan. Arrows used to indicate the mortality peak
times for the Sus. group (died before mortality peaks) and Res. group (died
after mortality peaks).
TABLE 2 | Timing of mortality peaks and numbers of shrimp in each group.

Sample Time/h WSSV-Susceptible WSSV-Resistant

TH01 66 40 30
TH03 78 44 26
SP07 118 48 22
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enriched in conserved regions, colocalize with regulatory
elements, and may modulated certain histone modifications
(Gymrek et al., 2016; Lieben, 2016). In our study, dual-
luciferase reporter assays and Western blots clearly showed
that the expression of the LvIRF gene was affected by the total
of (CT)n repeat numbers. In particular, shorter repeats [(CT)15]
showed higher expression of LvIRF than longer repeats [(CT)25].

IFNs are a group of secreted cytokines with activities that
inhibit viral replication, and are able to regulate the functions of
several types of immune cells. In mammals, type I and III IFNs
exhibit significant antiviral activities, and are considered to be
central to antiviral innate immunity (Levy et al., 2011). The IRF
family is a group of transcription factors that plays critical roles
in the activation of IFNs (Ikushima et al., 2013). LvIRF is an IRF
in crustaceans, with functions similar to mammalian IRFs. LvIRF
mediates the IRF-Vago-JAK/STAT pathway in shrimp, and has
been shown to inhibit viral (WSSV) replication, analogous to the
Frontiers in Genetics | www.frontiersin.org 7
IRF-IFN-JAK/STAT pathway in vertebrates (Li et al., 2015). We
used shrimp populations with allelic distribution differences to
analyze the relationship between LvIRF genotype and WSSV
resistance. Our results demonstrated that the LvIRF (CT)n repeat
number was associated with WSSV resistance in shrimp. Smaller
numbers of repeats showed significant resistance to WSSV,
perhaps due to the higher LvIRF expression. We selected three
populations of shrimp with different genetic backgrounds and
allelic distributions of LvIRF to analyze the association between
(CT)n repeats andWSSV resistance, and obtained similar results.
This indicated that the regulation of LvIRF expression by an SSR
with a (CT)n motif in the 5′-UTR was widespread in L.
vannamei. Studies have shown that the IRF-IFN-JAK/STAT
pathway is a broad-spectrum antiviral pathway in vertebrates
(Thompson et al., 2014; Qin et al., 2016). LvIRF had similar
functions to mammalian IRF, indicating that the IRF-Vago-JAK/
STAT pathway may induce immune responses to a wide range of
FIGURE 4 | (CT)n microsatellite polymorphism allele distribution and genotype frequency in three different shrimp populations. (A–C) The allelic distribution in three population:
TH01 (A), TH03 (B) and SP07 (C). (D–F) The allelic distribution in two groups of the three population (Fisher exact test: *p = 0.0042). (G–I) The genotype frequency in two
groups of the three populations (Fisher exact test: *p = 0.0167). Associated with WSSV resistance, the TH01 and TH03 populations showed a significant difference in the S/S
genotype, and the L/L genotype show a significant difference and was associated with WSSV susceptible in the SP07 population. *p < 0.05, **p < 0.01, ***p < 0.001.
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viruses, including WSSV. Microsatellite polymorphisms
associated with disease and biological traits have also been
reported. For example, more than 25 inherited human
disorders have been shown to be caused by STRs (Sun et al.,
2018), including FXS (Colak et al., 2014), Huntington’s disease
(Wheeler et al., 2007), Friedreich’s ataxia (Shishkin et al., 2009),
and idiopathic short stature (Dias et al., 2017).

We also used the microsatellite of LvIRF as a molecular marker
tobreed twopopulationsofoffspring,whichcontaineddifferent SSR
genotypes and exhibited distinct tolerances to viral infection. The
shrimp with small numbers of (CT)n repeats had a stronger
antiviral immune response, as manifested by observation of an
increased LvIRF gene expression and the prolonged survival time
after WSSV infection. Thus, the identified SSR could be candidate
marker for shrimp breeding forWSSV resistance. In fact,molecular
markers have been widely reported in the breeding of several cash
crops, including rice and wheat (Xue et al., 2018). For example, by
analyzing the agronomic traits of rice varieties throughout the
Frontiers in Genetics | www.frontiersin.org 8
world, a number of molecular markers have been obtained for
marketable traits, such as grain size: GLW7/OsSPL13 (Si et al.,
2016), chilling tolerance: COLD1 (Ma et al., 2015), disease
resistance: Pigm (Deng et al., 2017), and nitrate-use efficiency:
NITR1.1 (Hu et al., 2015). Some successful cases of molecular
marker assisted breeding have also been reported in aquatic
animals. For instance, using transcriptome sequencing analysis,
eight IFN system genes were identified as anti-disease molecular
markers for resistance breeding of gibel carp (Mou et al., 2018). The
use of molecular markers has made shrimp designer breeding
possible in the future.

In summary, we identified an SSR of a (CT)n repeat located in
the 5′-UTR of LvIRF and demonstrated that the total length of
these (CT)n -SSRs could influence the levels of gene expression.
In addition, we also demonstrated that this SSR was associated
with WSSV resistance. Our results provide some insights into
how this SSR could be used as a molecular marker in breeding of
WSSV-resistant shrimp. Further work needs to be done to
FIGURE 5 | WSSV challenge in selective breeding offspring. (A) Schematic representation of the selective generations. (B) The allelic distribution in two populations,
HX-CTS and HX-CTL. (C) The survival rate curves of HX-CTS and HX-CTL. (D) Quantitative RT-PCR was performed in triplicate for each sample using the EF-1a
gene as an internal control by the Livak (2−△△CT) method. Expression levels in gill were used to determine the mean fold change (means ± SD, n = 5), and the
expression level of the HX-CTL population at 0 h was used as a baseline (1.0). 12 h after infection with WSSV, LvIRF expression in HX-CTS was 2.1-fold higher than
that of HX-CTL 12 h after infection with WSSV. *p < 0.05, ns, not significant.
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investigate the feasibility of other molecular markers in
shrimp breeding.
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