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miRNAs are conserved short non-coding RNAs that play a role in the modulation of
various biological pathways during tissue and organ morphogenesis. In this study, the
function of miRNA-221-3p in tooth development, through its loss or gain in function
was evaluated. A variety of techniques were utilized to evaluate detailed functional
roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal
capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry.
Two-day in vitro tooth cultivation at E13 identified altered cellular events, including
cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss
and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of
tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and
Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-
221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside
decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE)
in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of
in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices,
along with increased cellular proliferation and Shh expression along the Hertwig epithelial
root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth,
the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss
of function resulted in long and slender teeth with short mesiodistal length. This study
provides evidence that a suitable level of miRNA-221-3p is required for the modulation of
major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
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INTRODUCTION

The well-defined stages in which tooth development progresses
require an intricate and reciprocal signaling regulation between
both the dental epithelium and neural-crest-derived mesenchyme
(Balic and Thesleff, 2015). This reciprocal signaling frequently
involves signaling via Bmp, Shh, Wnt, and Fgfs throughout the
various stages of tooth development including initiation, bud,
bell, cap, and root morphogenesis (Jussila and Thesleff, 2012). In
particular during bud to cap transition Bmp, Shh, Wnt, and Fgf
signaling play a key role in maintaining the tooth crown structure
through enamel knot (EK) morphogenesis (Balic and Thesleff,
2015). In addition, the very same signaling governs hard tissue
formation via regulation of differentiation and secretion stages,
and tooth root morphogenesis by maintenance and proliferation
of HERS, which occurs at the cervical loop of the enamel organ
(Lungová et al., 2011; Li et al., 2017). In particular, Wnt signaling
is associated with the determination of tooth number, shape,
and hard tissue formation; whereas cellular behavior, such as
proliferation, apoptosis, differentiation, and migration of cells,
is regulated by Fgf, Shh, and Bmp signaling (Liu et al., 2008;
Balic and Thesleff, 2015). Disruption of the precise signaling
pathways during tooth development will lead to abnormal tooth
crown and root morphogenesis (Liu and Millar, 2010; Wang et al.,
2012; Wang and Feng, 2017). Therefore, the use of activators and
inhibitors on the signaling regulations, such as overexpression
vectors or siRNAs, are being investigated in a range of model
organs, including the tooth which may provide crucial knowledge
related to tooth crown and root morphogenesis (Aryal et al.,
2020; Neupane et al., 2020). To date, the signaling involved that
modulates the tooth crown and root has yet to be broadened
to specific molecules, such as miRNA. Consequently, functional
studies including miRNA, siRNA, lncRNA, exosome, and so on
have been utilized to define the developmental processes in tooth
organogenesis (Jiang et al., 2017; Aryal et al., 2020; Huang et al.,
2020) and therefore, require further research.

miRNAs are conserved short non-coding RNAs, an average
of 22 nucleotides in length. Mature miRNA are up to several
hundred nucleotides in length, called pri-miRNA, before being
processed by the enzymes Drosha and Dicer (Ha and Kim, 2014;
Wang et al., 2016). The biogenesis of miRNA is a complex
and dynamic process, and any disruption to these processes
could result in impaired production of mature miRNA/this,
in turn, can lead to an imbalance in tissue homeostasis and
disease progression (Trionfini et al., 2015; Barwari et al., 2016;
Wang et al., 2016). The role of miRNAs in the modulation
of various biological pathways including tissue and organ
morphogenesis, have been extensively studied (Bartel, 2004; Andl
et al., 2006; Yi et al., 2006; Cao et al., 2010; Wang et al., 2016;
Rahmanian et al., 2019; Barbu et al., 2020). The involvement of
miRNAs during tooth morphogenesis, which involves complex
and reciprocal interactions between epithelial and mesenchymal
tissue (Jussila and Thesleff, 2012; Huang et al., 2020), has also
been identified. During mammalian tooth development, miRNAs
regulate dental epithelial and mesenchymal cell differentiation
during the early and secretory stages of odontogenesis (Cao
et al., 2010; Li et al., 2015; Neupane et al., 2020). Functional
studies conducted on different miRNAs highlight their roles

during tooth morphogenesis. For example, miR-135a regulates
Bmp signaling (Kim et al., 2014), miR-31, and miR-138 regulate
differentiation of adult stem cell niche in mice incisors (Jheon
et al., 2011), and miR-31, miR-140, MiR-141, miR-143, miR-
145, miR-455, miR-689, miR-711, miR-720, and miR-875 regulate
ameloblast and odontoblast differentiation (Michon et al., 2010;
Liu et al., 2013, 2014; Funada et al., 2020). More than 700
miRNAs have been identified to date (Rahmanian et al., 2019),
and it is pertinent to identify the function of each of these
miRNAs to understand their precise roles within the signaling
pathways during tooth development. In this study, we selected
miRNA-221-3p as one of the candidate miRNA due to its
high expression identified by miRNA-Microarray experiment
utilizing the embryonic mice molar at E14 (unpublished data).
This prompted the investigation into the role of miRNA-221-
3p in signaling modulation during tooth development, which is
important for understanding the regulatory pathways involved in
tooth development.

In this study, miRNA-221-3p, one of the conserved miRNA,
was investigated via an in vitro organ cultivation system, and
a loss and gain of function assay using miRNA-221-3p specific
inhibitors and its mimics. miRNA-221-3p is has been well studied
in cancer (Liu et al., 2014; Tao et al., 2014; Zheng et al., 2014;
Ihle et al., 2015; Wang et al., 2019), wound healing (Xu et al.,
2020), and bone metabolism (Maeda et al., 2017), through
modulation of signaling pathways. More importantly, miRNA-
221-3p is predicted to regulate Shh and Wnt signaling through
Ptch1 and Dkk2 inhibition, respectively (Agarwal et al., 2015).
In cancer cells, miRNA also regulates proliferation and apoptosis
(Ihle et al., 2015; Yang et al., 2019), and these cellular events are
also important for tooth morphogenesis. Given the important
role of Wnt and Shh signaling in tooth development (Jussila
and Thesleff, 2012; Balic and Thesleff, 2015), it is pertinent
to investigate signaling modulation of miRNA-221-3p in tooth
development. Therefore, in this study, we have elucidated the
functional roles of miRNA-221-3p during tooth crown and
root morphogenesis.

MATERIALS AND METHODS

Animals
All experiments involving animals were performed according to
the guidelines of the Kyungpook National University, School
of Dentistry, Intramural Animal Use and Care Committee
(KNU-2020-0107). Mice were kept in an optimal environment,
maintaining relative humidity (55%) and temperature (25◦C)
with access to food and water ad libitum. For time-mated
pregnant mice, embryonic day 0 (E0) was assigned to the
day in which a vaginal plug was confirmed. All experiments
described in this study were independently performed in
triplicate as a minimum.

In situ Hybridization
mRNA and miRNA in situ hybridizations were performed
as described previously (Neupane et al., 2020). For miRNA
in situ hybridizations, a 5′- and 3′- DIG-labeled miRCURY
LNATM miRNA custom detection probe was hybridized using
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the miRNA ISH buffer set according to the manufacturer’s
instructions (Exiqon, Skelstedet, Denmark, cat no. 90000).
The miRCURY LNATM miRNA custom detection probe for
221-3P (/5DigN/AAACCCAGCAGACAATGTAGCT/3Dig_N/)
was purchased from Qiagen (Qiagen, Hilden, Germany,
cat. no. 339115 YCD002344-BCG). For section in situ
hybridizations, digoxigenin (DIG)-labeled antisense RNA
probes were hybridized overnight to examine the detailed
expression patterns of genes as described previously (Aryal et al.,
2020; Neupane et al., 2020).

In vitro Organ Cultivation and Renal
Capsule Transplantation
E13 embryos that are at the bud stage of tooth development,
underwent microdissection isolation of the embryonic tooth
germs. These were subsequently cultured in DMEM (HyClone,
Logan, UT, United States; cat. no.-SH30243.01) with 10%
fetal bovine serum (Hyclone, Logan, UT, United States) and
antibiotics, and cultivated using a modified Trowell’s culture
method for 2 days, as previously described (Aryal et al., 2020;
Neupane et al., 2020). To check the loss and gain of function of
miRNA-221-3p, tooth germs were cocultivated with transfecting
400 nM of the inhibitor (Qiagen, Hilden, Germany, miCURY
LNATM miRNA Power Inhibitor, cat no. 339131 YI04102471-
DDB) or (mimic miCURY LNATM miRNA Mimic, cat no.
339173 YM00471077-ADB) of the miRNA-221-3p as previously
described (Neupane et al., 2020). After transfection of miRNA at
E13 for 2 days, the cultivated tooth germs were transplanted into
the kidney capsule of adult ICR male mice as previously described
(Aryal et al., 2020; Neupane et al., 2020). Differing groups of mice
were sacrificed at either 1-week or 3-week post-transfection, and
the calcified teeth were harvested.

Histology and Immunohistochemistry
Histology and immunostaining were carried out as described
previously (Aryal et al., 2020; Neupane et al., 2020). Hematoxylin
and eosin (H&E) staining were employed to examine the
detailed morphology of the in vivo and in vitro tooth.
Primary antibodies were directed against Ki67 (Cat# RM-
9106-s, Thermo Scientific, United States); ROCK1 (Cat#
ab45171, Abcam); E-cadherin (Cat# AF748, R&D Systems,
United States); β-catenin (Cat# 8814S, Cell Signaling
Technology, MA, United States); pSMAD (Cat# 9511S, Cell
Signaling Technology, MA, United States); AMELX (Cat#
ab153915, Abcam, United States) and NESTIN (Cat# ab11306,
Abcam, United States). The secondary antibodies used in this
study were biotinylated goat anti-rabbit or anti-mouse IgG.
Immunocomplexes were visualized using a diaminobenzidine
tetrahydrochloride (DAB) reagent kit (Cat# 00-2014; Zymed
Laboratories, United States) and goat Anti-Rabbit Alexa
Fluor@488 (Cat# ab150077, Abcam, United States); goat Anti-
Mouse Alexa Fluor@647 (Cat# ab150115, Abcam, United States).
The DAB stained slides were mounted with xylene based
mounting medium Malinol and immunofluorescent slides
were mounted with VECTASHIELD R© Antifade Mounting

Medium containing DAPI (Cat# H-1200-10, Vector laboratories)
and cover slipped.

Histological sections were photographed using a Leica
DM2500 with and without fluorescent setting. ImageJ1 was
used to measure the fluorescence of the images as described
previously (Neupane et al., 2021). Briefly, fluorescence images
were split for different channels and integrated density
and background fluorescent were measured in defined
region of interests. The total corrected cell fluorescence
was measured as: [Integrated density-(area X background
fluorescence)]. Fluorescence was measured in sections
obtained from minimum of three independent experiments
(n = 3) for each group. Data were evaluated for significance
using unpaired, two-tailed t-test. A p-value of <0.05
indicates significance.

For colocalization analysis the correlation index (Pearson’s
correlation coefficient) of colocalized pixels between the green
(β-Catenin) and blue (DAPI for nucleus) colors were measured
in ImageJ and plotted as graph in GraphPad Prism as described
previously (Neupane et al., 2021). Briefly, the color of image was
split into component channels and the green and blue channel
were used to evaluate the colocalization using ImageJ plugin
“Colocalization.” If the green (β-Catenin) was localized in the
nucleus, it will colocalize with the blue (DAPI for nucleus) that
will produce the correlation index of colocalization. Higher the
correlation index, higher will be the colocalization and vice versa.

The number of Ki67 positive cells in DAB stained sections
were counted in defined area of 200 × 200 µm2 in mesenchyme
adjacent to the enamel knot. Whereas number of Ki67 positive
cells from fluorescent labeled sections were presented as % of
Ki67 positive cells (green) in total numbers of nuclei (blue) in
the given field. GraphPad Prism (version 8) was used to calculate
the test statistics and plot the graph. Briefly, after splitting the
channels to blue (DAPI for nuclei) and green (Ki67) in ImageJ,
the individual channels were processed through thresholding,
binary processing (close, open, and watershed) and finally particle
measurement (Supplementary Figure 1). This will give an
approximate number of DAPI positive cells from blue channel
and Ki67 + cells from the green channel which was used to
calculate the % Ki67 positive cells in total number of cell.

Quantitative RT-PCR (qPCR)
Quantitative RT-PCR (qPCR) was performed as previously
described (Aryal et al., 2020; Neupane et al., 2020). RNA was
extracted from E13 + 36 and 48 h incubation with miRNA-
221-3p inhibited and mimic transfected tooth germs, and qPCR
was subsequently performed to examine the loss and gain of
function effect of miRNA-221-3p. The mRNA and the miRNA
qPCR results for each sample were normalized to those of
Hprt and snoRNA135, respectively. Data were represented as
means ± SD. Mean expression levels were determined by
comparing experimental and control groups using the Student’s
t-test. A p-value of <0.05 indicates significance. The experiments
are repeated at least three times to check the reproducibility of

1http://imagej.net/
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the data. Primer sequences used in the qPCR assays are detailed
in Supplementary Table 1.

RESULTS

miRNA-221-3p Modulates Cellular
Events During Tooth Development
The developing tooth germ is at the bud and cap stage at the
embryonic stage E13 and E14.5, respectively (Figures 1A,B).
During bud stage, the expression of miRNA-221-3p was restricted
along the invaginated epithelium (Figure 1C) with intense
expression noted along the enamel knot (EK), IEE, outer
enamel epithelium (OEE), and dental papilla (DP) at cap
stage (Figure 1D). These specific expression patterns suggest
a role for miRNA- 221-3p in the bud to cap stage transition
of tooth development that ultimately regulates the signaling
of the tooth crown and root morphogenesis. To evaluate the
functional role of miRNA-221-3p in tooth development, the
in vitro cultivation of tooth germ with miRNA-221-3p inhibitor
and its mimic was performed. This significantly altered the
expression level of miRNA at E13 for 36 h (Figures 1E,F).
According to the database TargetScan, miRNA-221-3p is broadly
conserved among vertebrates and predicted to target Ptch1
(Figure 1G and Supplementary Figure 2; Agarwal et al., 2015).
Inhibition and mimic of miRNA-221-3p increased and decreased
the level of Ptch1, which is in agreement with the seed sequence
prediction of Agarwal et al. (2015) (Figures 1G–I). A 2-day
cultivation of tooth with an inhibitor and mimic resulted in
a decrease and increase in tooth size, respectively, along the
buccolingual and mesiodistal axis, in comparison to the control
(Figures 1J–O). This altered tooth size during in vitro organ
cultivation, suggests a possible change in cellular behaviors,
including cell proliferation, apoptosis, and cell migration, which
are all crucial for determining tooth size (Setkova et al.,
2006). Therefore, to understand the precise role of miRNA-
221-3p in the cellular events including proliferation, apoptosis,
and cell adhesion, we utilized Ki67, E-cadherin, and ROCK1
immunohistochemistry and TUNEL assay. Compared to the
control (Figure 2A), the cellular proliferation, in particular
at the IEE and dental mesenchyme adjacent to the IEE, was
decreased in the inhibitor-treated specimens (Figures 2B,D and
Supplementary Figure 3). However, an increase in the mimic-
treated specimens was observed (Figures 2C,D). Similarly, the
TUNEL positive cells are significantly decreased in the inhibitor-
treated specimens compared to control and mimic (Figures 2E–
G and Supplementary Figure 3). Meanwhile, the number of
apoptotic cells in the EK was similar to that in the control
and mimic-treated specimens (Figures 2E,G,H). To understand
these cellular events further, we evaluated the localization
patterns of E-cadherin and ROCK1 (Figures 2I–L). ROCK1,
which is a downstream target of RhoA small GTP-binding
proteins, regulates cell adhesion, cytokinesis, cell proliferation,
and apoptosis and regulates actin cytoskeleton dynamics forming
a complex with E-cadherin (Zohrabian et al., 2009; Smith et al.,
2012). In addition, ROCK1 and E-cadherin primarily localize
in the enamel organ and regulate the cellular proliferation in

the IEE (Aryal et al., 2020). In our study, the colocalization
of ROCK1 and E-cadherin was evenly distributed along the
IEE in the control specimen (Figures 2I,M,Q). In contrast,
inhibiting and mimicking of miRNA-221-3p decreased the
intensity of fluorescence of E-cadherin and ROCK1 in the IEE
(Figures 2J–L,N–P,R,S). These observations suggest thatmiRNA-
221-3p modulates proliferation and determines the size of the
developing tooth through ROCK1 and E-cadherin mediated cell
adhesion. This will eventually regulate the tooth crown and root
morphogenesis in later stages of tooth development.

miRNA-221-3p Modulates Tooth
Development-Related Signaling
Molecules
There is high conservation of signaling molecules belonging
to Bmp, Fgf, Shh, and Wnt pathways to achieve proper tooth
development from initiation to eruption (Jussila and Thesleff,
2012). To evaluate whether the inhibition and mimicking of
miRNA-221-3p during odontogenesis altered tooth development-
related signaling molecules, we employed qPCR at E13 + 2 days
to evaluate the expressions of these signaling molecules as
described previously (Aryal et al., 2020; Neupane et al.,
2020). Tooth germ culture at E13 + 2 days with inhibitor
upregulated the Ptch1 and with the mimic downregulated the
Ptch1 expression consistent with our hypothesis that miRNA-
221 targets Ptch1. Meanwhile Axin2, β-catenin, Bmp2, Fgf4, Shh,
Smo, Gli1, Gli2, and Gli3 were downregulated, whereas Bmp4
was upregulated in the inhibitor-treated specimen (Figure 3A).
In contrast, β-catenin, Lef1, Fgf4, Shh, Smo, Gli1, Gli2, and
Gli3 were upregulated, with Bmp4 downregulated in the mimic-
treated specimen (Figure 3B). Except Shh target genes, the
expressions of Wnt, Bmp, and Fgf-related signaling molecules
were almost similar in both 36 and 48 h in in vitro cultivated
tooth germs (Figures 3A,B and Supplementary Figure 4).
Wnt/β-catenin signaling negatively regulates the odontogenic
epithelial cell proliferation during the bell stage of tooth
development (Lu et al., 2019) and has a role in crown and
tooth root morphogenesis. To determine the role of miRNA-
221-3p in Wnt signaling modulation, immunohistochemistry
with β-catenin was performed in E13 + 2 days in vitro
cultivated tooth germs. The active form of β-catenin was
localized in the cytoplasm and nucleus of IEE in the control
tooth at E13 + 2 days (Figures 3C,I,J). However, an increase
in the localization of β-catenin was observed comparatively
within the nucleus in the inhibitor and mimic-treated specimen
(Figures 3D,E,I,J and Supplementary Figure 5) suggesting that
Wnt signaling is negatively regulated by miRNA-221-3p during
tooth cap and bell stages. Previous study suggested that Wnts
and Bmp4 are the key mediators of odontogenic epithelial–
mesenchymal interactions, and that Wnt signaling is upstream
of Fgf, Shh, and Bmp signaling during tooth development
(O’Connell et al., 2012). This suggests that Bmp signaling would
be indirectly affected when the levels of miRNA-221-3p are
altered. Therefore, immunohistochemistry of pSMAD1/5/8 was
performed on inhibitor and mimic to miRNA-221-3p-treated
teeth. The epithelial localization of pSMAD1/5/8 was almost
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FIGURE 1 | Expression of miRNA-221-3p and loss and gain of function in developing tooth germ. H&E staining showing the developing tooth germ at the bud and
cap stage (A,B). Section in situ hybridization showing expression of miRNA-221-3p along the invaginated epithelium at the bud stage (C) and along the IEE, OEE,
EK, DP, and cervical loop at the cap stage (D). Mimic and inhibitor significantly altered the miRNA expression level of miRNA-221-3p at E13 for 36 h (E,F, n = 3)
(corresponding to data in Supplementary Table 2A). Conserved seed sequence of miRNA-221-3p with Ptch1 gene (G). The expression level of Ptch1 increased
with miRNA-221-3p inhibition (n = 3), while decreased with mimic (H,I, n = 3) (corresponding to data in Supplementary Table 2B). The culture of tooth germs with
mimic and inhibitor at E13 for 2 days show alteration in the length of developing tooth mesio-distally and bucco-lingually (J–O, n = 8). The dotted lines define the
boundary of epithelium and mesenchyme (A–D). H&E, hematoxylin and eosin staining; E, enamel organ; IEE, inner enamel epithelium; OEE, outer enamel epithelium;
EK, enamel knot; DP, dental papilla; Me, mesial; Di, distal; Bu, buccal; Li, lingual. Data were evaluated for statistical significance using unpaired, two-tailed t-test. *,
**, ***, and **** indicate p < 0.05, 0.01, 0.001, and 0.0001, respectively. Scale bars: 500 µm (J–L), 50 µm (A–D).
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FIGURE 2 | Altered cellular events after loss and gain of function of miRNA-221-3p. The cellular proliferations especially at the EK and dental mesenchyme adjacent
to the IEE increased in the mimic and decreased in the inhibitor-treated tooth germs (A–D, n = 4). Loss and gain of miRNA-221-3p at E13 for 2 days show
decreased apoptotic cells along the EK of inhibitor-group compared to control and mimic (E–H, n = 3). Localizations of ROCK1 (green) (I–L) (n = 3) and E-cadherin
(red) (M–O, n = 3) along the enamel organ, showing decreased intensities in the inhibitor and mimic specimens, compared to control (Q–S, n = 3). The dotted circles
in the IEE (A–C,E–G) define the EK, the dotted lines define the boundary of epithelium and mesenchyme (A–O) and the squares (A–C) defines the area where Ki67
positive cells are counted. EK, enamel knot. Data were evaluated for statistical significance using unpaired, two-tailed t-test. * and ** indicate p < 0.05 and 0.01,
respectively, NS, not significant. Scale bars: 50 µm (A–O).

similar in all specimens, however, the mesenchymal localizations
of pSMAD1/5/8 were stronger in the inhibitor-treated specimen
compared to control and mimic-treated specimens (Figures 3F–
H,K,L). This suggests a role for miRNA-221-3p during the
cap and bell stages of tooth development that also affects
the tooth crown and root morphogenesis. Similarly, section

in situ hybridization was performed to examine the Shh and
Fgf signaling after inhibition and mimicking of miRNA-221-
3p. Shh activity in the developing tooth is very dynamic
throughout tooth development, including tooth crown and root
morphogenesis (Seppala et al., 2017). The expression of Shh
was expanded along the entire IEE of the control specimen
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FIGURE 3 | Altered expressions of signaling molecules after loss and gain of function of miRNA-221-3p. Signaling molecules including Axin2, β-catenin, Bmp2,
Bmp4, Fgf4, Shh, Gli1, Gli2, and Gli3 are significantly altered in the inhibitor and mimic-treated specimens (A,B, n = 3) (corresponding to data in Supplementary
Table 2B). Epithelial localization of β-catenin (green) along IEE, showing comparatively increased nuclear localization of β-catenin in the inhibitor and mimic-treated
specimens compared to control (C–E,I,J, n = 3). DAPI (blue) stains the nuclei. Epithelial and mesenchymal localization pattern of pSMAD1/5/8 (green) after inhibition
and mimic of miRNA-221-3p, showing intense mesenchymal localization in the inhibitor-treated specimens compared to control and mimic (F–H,K,L, n = 3). Section
in situ hybridization of in vitro cultivated tooth germs showing expressions of Shh (M–O, n = 3) and Fgf4 (P–R, n = 3) along the EK and IEE. β-Cat, β-Catenin; EK,
enamel knot; IEE, inner enamel epithelium; Mes, mesenchyme. Dotted line demarcate the boundary of epithelium and mesenchyme (C–H,M–R). Data were
evaluated for statistical significance using unpaired, two-tailed t-test. * indicate p < 0.05; NS, not significant. Scale bars: 50 µ (C–N).

(Figure 3M), however, the inhibitor-treated tooth germ had
confined expression patterns along the EK only (Figure 3N).
However, the expression of Shh in the mimic-treated specimen
was expanded along the EK, although its expression pattern was
not continuous along the entire IEE and ectopically expressed
in the dental papilla (Figure 3O), suggesting miRNA-221-3p
modulates Shh in the developing tooth potentially through Ptch1
inhibition. Meanwhile, Fgf4, which determines invagination of
dental epithelium, tooth shape, and cusps formation, and also
ameloblast and odontoblast differentiation (Li et al., 2014) was
expressed along the EK of the in vitro cultivated tooth germs.
However, the expression pattern of Fgf4 is extended in the
EK of mimic-treated tooth germ compared to the control and
inhibitor (Figures 3P–R), suggesting the potential role ofmiRNA-
221-3p in crown morphogenesis that ultimately affecting the
root morphogenesis.

Loss of miRNA-221-3p Alters Tooth
Crown and Root Morphogenesis
Renal capsule transplantation was utilized to determine whether
inhibition and mimicking of miRNA-221-3p occurred during

tooth crown and root development, a technique previously used
(Aryal et al., 2020; Neupane et al., 2020). The developmental
timeline of in vitro (E13 + 2 days) and 1-week renal
calcified teeth was similar to the in vivo post-natal 3 (PN3)
mice. The double-layered HERS grew apically and meets OEE
and IEE leaving no interposing layers of stellate reticulum
(SR) and stratum intermedium (SI) (Figures 4A–C). The
ameloblasts (Am) and odontoblasts (Od) are in their secretory
phase and secrete extracellular matrix (Em) (Figures 4A–C).
Consistently, the inhibition of miRNA-221-3p demonstrated
a smaller tooth with a reduction in Em secretion, while
mimicking the miRNA did not show an alteration in tooth
size (Figures 4A–C). Therefore, we evaluated the localization
patterns of major extracellular matrix protein of enamel:
amelogenin (AMELX) and odontoblast differentiation marker:
NESTIN. The localization patterns of AMELX and NESTIN were
almost similar in both control and mimic-treated specimens,
whereas the localization intensity decreased in the inhibitor-
treated specimen (Figures 4D–F). Meanwhile, the localization
of NESTIN had an increase in intensity in the dental pulp
cells along with secretory odontoblasts in the inhibitor-
treated specimen, in comparison to the control and mimic
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FIGURE 4 | Altered histogenesis and cellular events in 1-week renal calcified teeth. H&E staining showing 1 week renal calcified teeth after loss and gain of function
of miRNA-221-3p (A–C, n = 3). The inhibitor-treated tooth (B) is comparatively smaller with reduced extracellular matrix secretion compared to control and mimic
(A,C). The localizations of AMELX and NESTIN are weaker in inhibitor-treated specimen compared to mimic and control (D–F, n = 3). H&E staining showing HERS in
1-week calcified teeth (G–I). The cellular proliferation (green) along the HERS is higher in the inhibitor-treated specimen compared to mimic and control (J–M, n = 3).
DAPI (blue) stains the nuclei. Boxes in G–I are magnified views. Dotted lines (J–L) indicate the HERS. H&E, hematoxylin and eosin; Am, ameloblasts; Od,
odontoblasts; AMELX, amelogenin; HERS, hertwig’s epithelial root sheath. Data were evaluated for statistical significance using unpaired, two-tailed t-test. ∗ Indicates
p < 0.05; NS, not significant. Scale bars: 200 µm (A–F), 50 µm (G–L).
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specimen (Figures 4D–F). In addition, the epithelial cells of
HERS in 1-week renal calcified teeth were columnar shaped
in the inhibitor-treated specimen in comparison to control
and mimic, which were cuboidal in shape (Figures 4G–I).
This led us to examine the cellular proliferations along
the HERS, and it was identified that cellular proliferation
of HERS was comparatively higher in the inhibitor-treated
specimen compared to mimic and control (Figures 4J–M
and Supplementary Figure 1). As HERS play an important
role in tooth root formation, we further examined the
expression of the signaling molecule Shh, which plays an
important role in HERS during tooth root formation (Nakatomi
et al., 2006; Ota, 2008; Li et al., 2017). The section in situ
hybridization demonstrated intense expression of Shh along
the HERS within the inhibitor group compared to control
and mimic (Supplementary Figure 6). To confirm whether
altered proliferation and signaling in HERS in the inhibitor-
treated specimen would have impacted tooth morphology,
we employed 3-week renal capsule calcified teeth, and their
morphometric measurements were taken (Figure 5). The
particular measurements taken were crown length, mesiodistal
length, root length, and absolute tooth length. Inhibition of
miRNA-221-3p results in a longer and slenderer tooth compared
to control and mimic (Figures 5A–H). However, in the inhibitor-
treated specimen the mesiodistal length is significantly shorter,
while the root and absolute tooth length is significantly longer
(Figures 5B,E,G).

DISCUSSION

The complex and dynamic molecular interactions involved in
tooth development are well understood and have highlighted the
importance of spatiotemporal functions of signaling molecules
during odontogenesis (Jussila and Thesleff, 2012; Huang et al.,
2020). Experimental approaches, such as in vitro cultivation and
loss and gain of function of signaling molecules, demonstrate
their precise roles during tissue and organ morphogenesis (Jiang
et al., 2017; Aryal et al., 2020; Huang et al., 2020). In this
study, miRNA-221-3p, a conserved miRNA within the animal
kingdom (Agarwal et al., 2015; Mari et al., 2016; Abak et al., 2018),
was evaluated through knockdown and mimicking of function,
during mice molar development. The precise expression of
miRNA-221-3p has been identified to overlap with the expression
of known transcription and paracrine factors, such as Bmp2,
Bmp4, Bmp7, Wnt3, Wnt10a, Wnt10b, Fgf4, and Shh (Jussila
and Thesleff, 2012; Balic and Thesleff, 2015), during important
stages of tooth development (Figure 1). This demonstrates its
modulating role during odontogenesis that prompted us to
examine its role during molar development in detail.

The epithelial–mesenchymal interactions up to, and beyond
the bud stage plays a significant role in normal tooth progression
and development (Jussila and Thesleff, 2012; Huang et al.,
2020). The altered signaling molecules that arise as a result
of inhibition and mimicking of miRNA-221-3p during the
bud stage of tooth development, highlighted its role in signal

FIGURE 5 | Altered tooth morphology in 3-week renal calcified teeth. Three weeks renal calcified teeth showing buccal view (A–C). Schematic diagram showing
MDL, CH, RL, and TL of renal calcified teeth (D). Statistical analysis showing MDL, CH, RL, and TL of 3-week renal calcified tooth (E–H, n = 5). Inhibition of
miRNA-221-3p makes tooth longer and slenderer compared to control and mimic (A–C). The mesio-distal length is significantly shorter, while root length is
significantly longer in the inhibitor-treated specimen (B,E,G). The dotted lines demarcate the boundary of crown and root (A–C). MDL, mesio-distal length; CH,
crown height; RL, root length; TL, total length; Mes, mesial; Dis, distal. Data were evaluated for statistical significance using unpaired, two-tailed t-test. ∗ Indicates
p < 0.05; NS, not significant. Scale bars: 500 µm (A–C).
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modulation during odontogenesis. Normally, the activation of
Wnt/β-catenin signaling occurs in the dental epithelial and
adjacent mesenchymal cells. However, upon inhibition, it resulted
in the developmental arrest at the bud stage and short root
phenotype (Liu et al., 2008; Liu and Millar, 2010; Han et al.,
2011). In our study, the inhibition of miRNA-221-3p during
bud stage showed downregulation of β-catenin along the dental
epithelium. Therefore, it can be suggested that miRNA-221-
3p plays a modulating role in Wnt/β-catenin signaling during
crosstalk between epithelium and mesenchyme, due to the
optimal level of Wnt/β-catenin signaling being essential for the
developmental progression of the tooth (Wang and Feng, 2017).
Similarly, the developmental role of Bmp, a member of the
TGF- β- superfamily, also plays a vital role during early and late
tooth differentiation (Thesleff, 2003; Jussila and Thesleff, 2012;
Wang et al., 2012). In our study, the inhibition of miRNA-221-
3p resulted in increased Bmp signaling and intense mesenchymal
localization of pSMAD1/5/8 in the inhibitor-treated specimen.
This altered Bmp signaling resulted in decreased cellular
proliferation and apoptosis in the dental epithelium and adjacent
mesenchyme, as in previous reports (Wang et al., 2012; Kim et al.,
2014). This would result in a smaller tooth size at E13 + 2 days
(Figure 1). A miRNA target prediction tool miRDB (Chen and
Wang, 2020) predicts more than 530 targets of miRNA-221-
3p. Among some of the notable targets are cyclin-dependent
kinase inhibitors, Bcl2 like 11, Bmpr1a, and Lrp10 suggesting
that change in tooth size resulted from change in combination of
different signaling pathways related to cell cycle arrest, apoptosis,
BMP and WNT signaling. Future works are needed for the
validation of putative role of miRNA 221-3p on modulation of
these molecules.

Inhibition of miRNA-221-3p decreased the expression of
Fgf4, which in general, promotes proliferation, determines
tooth cusps (Jernvall et al., 1994; Du et al., 2017), and
prevents cell apoptosis in the dental epithelium and mesenchyme
(Vaahtokari et al., 1996; Jernvall et al., 1998). Kratochwil et al.,
2002 showed that Fgf4 is completely lost in Lef1 knockout
teeth which is arrested at bud stage and recombinant Fgf4
rescued this phenotype. Consistent with this, we expected
smaller tooth size with decreased level of Fgf4 in inhibitor
treated specimen. Pharmacological inhibition of Fgf signaling
by SU5402 blocked the epithelial morphogenesis and tooth
mineralization in zebrafish (Jackman et al., 2004) which also
suggest that Fgf4 is important signaling for proper tooth crown
morphogenesis. It also contributed to decreased tooth size
through decreased cell proliferation and increased apoptosis. At
the same time, Shh induced proliferation in a differential manner
and determines tooth shape and affects ameloblast polarization
through odontoblast differentiation and loss of Shh did not
change the expression of other signaling molecules like Fgf4,
Bmp2, and Wnt10b (Dassule et al., 2000). However, loss of
Shh altered the expression patterns in developing dental tissues
suggesting that the loss of Shh results in a change of cell fate, from
proliferative to a less proliferative enamel knot-like population
(Dassule et al., 2000) which reinforce our hypothesis that miRNA
modulation of Shh signaling is crucial for crown morphogenesis
and evident in inhibitor-treated specimen. Consistent with

our results, inhibition of Shh by 5E1 and Forskolin during
tooth organ culture resulted decreased proliferation, increased
apoptosis leading to altered tooth phenotype (Cobourne et al.,
2001). In quiescent state, Ptch1 suppress the Smoothened
which in turn controls the Gli transcriptional effectors in
the repressive forms. In the presence of SHH ligand, the
Ptch1 suppression of Smoothened is relieved and the signal
is transduced through activation of Gli transcription factors
(Cohen et al., 2015) which is tightly regulated process. When
tooth are cultivated in presence of miRNA-221-3p inhibitor,
Ptch1 is elevated which may interfere the regulation of Shh
signaling through extended Smoothened suppression. On the
other hand, mimicking the miRNA-221-3p lowers the Ptch1
in the system and Smoothened may no longer be suppressed
which may bypass the early step of Ptch1-Shh binding which
ultimately affects the Shh signaling cascade resulting altered Shh
expression in the cultured tissues. Also, these altered expression
area would be explained by spatiotemporal specific expression of
genes which are required for harmonious organogenesis rather
than just changing in expression levels during development.
These results demonstrate the tight regulation of signaling
molecules during the early stages of tooth development, which
lay the foundation for the complete morphogenesis of crown
and root. In addition, mesenchymal expressed Bmp signaling
is also important for HERS development and tooth root
formation (Hosoya et al., 2008), further suggesting that the
signaling modulation by miRNA-221-3p will guide the tooth root
formation possibly through modulation of Wnt/β-catenin and
Bmp signaling. Previous studies have demonstrated the role of
ROCK1 in ameloblast differentiation (Otsu et al., 2011) and the
association of ROCK1 and cadherin complex for maintaining
cellular adhesion (Smith et al., 2012). However, E-cadherin-
mediated cellular adhesion was decreased with inhibition and
mimicking of miRNA-221-3p in our study (Figure 2), suggesting
that miRNA-221-3p modulates ROCK1 and E-cadherin-mediated
maintenance of actin cytoskeleton and cellular adhesion that
ultimately regulates the differentiation stage of tooth and
crown morphogenesis.

During mice molar development, at around PN2, crown
formation is almost completed and the root formation initiates
with the emergence of HERS (Lungová et al., 2011). The corono-
apical extension of the OEE and IEE along the cervical loop
forms HERS and guides for the development of roots (Lungová
et al., 2011; Li et al., 2017). HERS, which is regarded as the
signaling center for tooth root formation and contains various
signaling molecules and transcription factors (Huang et al.,
2009; Lungová et al., 2011; Li et al., 2017). For tooth root
progression, the cellular proliferation of HERS together with
adjacent mesenchymal cells is evident (Lungová et al., 2011;
Sohn et al., 2014; Li et al., 2017). In this study, the inhibition
of miRNA-221-3p showed increased proliferative cells along
the HERS and its adjacent mesenchymal cells (Figure 4). The
epithelial cells of HERS had Shh expression, and the reciprocal
interactions of Shh signaling along the HERS epithelium and
adjacent mesenchymal cells, would play a significant role in tooth
root formation (Nakatomi et al., 2006; Ota, 2008; Li et al., 2017).
However, this study demonstrated an increased expression of Shh
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along the HERS in the inhibitor group compared to control and
mimic (Supplementary Figure 6). This may have contributed
to increased proliferation of HERS and ultimately affected tooth
height, which is consistent with previous studies that showed
the partial rescue of root development by Shh in the rootless
K14-Cre;Smad4fl/fl (Huang et al., 2010; Hosoya et al., 2020).
In addition, cell proliferation is reduced around the HERS in
homozygous Ptcmes mutants affecting the tooth root formation
(Nakatomi et al., 2006) further reiterating that the long and
slender teeth in 3-week renal calcified miRNA-221-3p inhibitor-
treated teeth are a result of increased proliferation and intense
Shh expression. The inhibition of miRNA-221-3p at the bud and
cap stage resulted in a decreased expression of Shh after 2 days
(Figure 2), however, the knockdown effect at this stage would
result in a return of its expression patterns after the inhibitor
was removed. Therefore, it can be speculated that 1-week renal
calcified teeth had comparatively increased expression patterns
of Shh along the HERS in the inhibitor group compared to
control and mimic (Supplementary Figure 6). As the transient
knockdown of genes can result in a regain of its expression at
a certain time point (Eadon et al., 2017), it can also be deduced
that the inhibition of miRNA-221-3p may also be regained and
upregulate the Shh expression in the HERS after 1-week.

In conclusion, miRNA-221-3p modulates the Shh and Wnt
signaling during cap and bell stages of tooth development,
and the reciprocal interaction between the mesenchyme and
epithelium, in turn, regulates other signaling molecules, such
as Fgf and Bmp. These changes in signaling eventually
determine the fate of tooth crown and root morphogenesis
through hard tissue formation. Therefore, we conclude that
the modulation of miRNA-221-3p signaling may explain some
of the processes involved in the integrative and fine-tuning
networks of signaling molecules involved in tooth development.
In addition, it is required to examine the detailed signaling
regulations of SHH signaling through miRNA-221-3p using
pharmacological modulators of miRNA inhibited tooth culture
and, rescue of β-catenin and Fgf signaling. Furthermore it
also would be necessary to reveal the consequence signaling
including p-ERK, Etv4, Etv5, and so on using genome wide

screening methods to define the detailed signaling modulations
in tooth morphogenesis.
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