
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Saunders ME, Rader R. 2019

Network modularity influences plant

reproduction in a mosaic tropical

agroecosystem. Proc. R. Soc. B 286: 20190296.

http://dx.doi.org/10.1098/rspb.2019.0296
Received: 3 February 2019

Accepted: 4 March 2019
Subject Category:
Ecology

Subject Areas:
ecology

Keywords:
ecosystem function, modularity, ecological

networks, plant – pollinator networks, diptera,

syrphidae
Author for correspondence:
Manu E. Saunders

e-mail: manu.saunders@une.edu.au
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4430051.

& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Network modularity influences plant
reproduction in a mosaic tropical
agroecosystem

Manu E. Saunders1,2 and Romina Rader1

1School of Environmental and Rural Science, and 2UNE Business School, University of New England, Armidale,
New South Wales 2351, Australia

MES, 0000-0003-0645-8277

Biodiversity influences ecosystem function, but there is limited understand-

ing of the mechanisms that support this relationship across different land

use types in mosaic agroecosystems. Network approaches can help to under-

stand how community structure influences ecosystem function across

landscapes; however, in ecology, network analyses have largely focused on

species–species interactions. Here, we use bipartite network analysis in a

novel way: to link pollinator communities to sites in a tropical agricultural

landscape. We used sentinel plants of Brassica rapa to examine how the

structure of the community network influences plant reproduction. Diptera

was the most common order of flower visitors at every site. Syrphidae

visits were the strongest contributor to the number of fertilized pods, while

visits by Syrphidae, Hymenoptera and Lepidoptera had the strongest effect

on the number of seeds per pod. Sentinel pots at forest sites were visited

by more unique species (i.e. species with higher d0) than sites in other land

uses, and dairy sites had more visitors that were common across the network.

Participation coefficients, which indicate how connected a single node is

across network modules, were strong predictors of ecosystem function:

plant reproduction increased at sites with higher participation coefficients.

Flower visitor taxa with higher participation coefficients also had the

strongest effect on plant reproduction. Hymenoptera visits were the best pre-

dictor for participation coefficients but an Allograpta sp. (Diptera: Syrphidae)

was the most influential flower visitor species in the landscape network.

A diverse insect community contributed to plant reproduction and connec-

tion among nodes in this system. Identifying the ‘keystone’ flower visitor

species and sites that have a strong influence on network structure is a signifi-

cant step forward to inform conservation priorities and decision-making in

diverse agroecosystems.
1. Introduction
Biodiversity is a key driver of ecosystem function, but a greater understanding

of the mechanisms that drive relationships between ecological community

structure and ecosystem function is needed to inform sustainable land manage-

ment [1,2]. Pollination by mobile organisms is essential to the provision of

ecosystem services in natural and modified habitats [3], yet pollination services

are under threat from multiple anthropogenic pressures, including many stres-

sors associated with land use intensification and modification [4]. The

expansion of agriculture is a major driver of land use change, often resulting

in a mosaic of different natural and anthropogenic land uses [5]. These land

use changes can affect the population dynamics of insect pollinators, in turn

impacting their functional role in plant reproduction. However, the extent to

which land use change has positive or negative effects on pollinator
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communities and associated pollination services depends on

the context, including characteristics of land use and the ecol-

ogy of interacting species [3,6].

Pollinator assemblages in agricultural landscapes are often

very different to those in less disturbed systems [7]. Changing

land use affects the abundance and richness of some pollinator

taxa in agricultural landscapes, resulting in ‘winner’ and ‘loser’

species (e.g. [8–10]). Yet diverse pollinator communities, often

with many common generalist species, are essential to enhance

production in multiple types of agroecosystems at different

scales [11–14]. Therefore, we need more studies that build an

understanding of community-level interactions across land use

types and develop methods for linking community structure

(e.g. composition and interactions) with ecosystem function [15].

Network approaches provide promising methods to

advance understanding of these relationships. Historically,

studies of plant–pollinator interactions focused on highly

specialized coevolved species, predominantly in natural sys-

tems with limited human impacts, and network approaches

have been adopted only recently to shift the focus to commu-

nity-level dynamics [16]. However, much of this work is

descriptive and there is still limited understanding of how

plant–pollinator network structure affects ecosystem function,

or associated ecosystem services (e.g. fruit/seed production).

Recent work has shown that plant fitness may be related to

the plant’s position in the network (e.g. [17]), but the relationship

between whole-network structure and functional outcomes (e.g.

pollination success) requires further investigation [15,18]. Net-

work structure is influenced by landscape complexity and

composition [19,20], and emerging evidence suggests links

between network structure and ecosystem function [21]. Yet

it is still unclear how network interactions and associated

energy flows are partitioned across landscapes and habitats.

Spatially explicit analyses that link spatial connectivity of net-

works with ecosystem function are needed to increase

understanding of how interactions affect ecosystem stability

and resilience [21]. In particular, there is a need for recent

theoretical advances in this area to be adapted to solve

applied ecology and conservation problems, especially rel-

evant to ecosystem services [15,22].

Network analysis in communityecology has largely focused

on food webs, and host–parasitoid and plant–pollinator net-

works [23–25]. More recently, the utility of traditional

network approaches to solve conservation and applied ecology

problems has been demonstrated [22,26,27]. Greater under-

standing of how the structure of interaction networks

influences ecosystem function, as well as how landscape man-

agement influences network structure, is essential to inform

decisions that sustain biodiversity and ecosystem services in

managed landscapes [22]. Historically, analyses of network

structure have largely concentrated on global properties, such

as degree distribution. However, connectivity metrics, like mod-

ularity, may be more informative for understanding functional

properties [28]. Modularity focuses on the complementarity of

species in different modules (i.e. species may be redundant

within their own module but act as complements between mod-

ules [29]). Complementarity is an important mechanism to

identify in pollination networks, because diverse pollinator

assemblages bufferecosystem function (and associated services)

from temporal dynamics and climatic change [30–34]. The level

of specialization in pollination networks is also informative

because, while common or abundant pollinator species may

be important for providing pollination services in many
systems, relatively rare and specialized species are equally

important across different spatial and temporal scales [14].

Here, we investigate how land use type within an agricul-

tural matrix influences the structure of plant–pollinator

networks and the provision of ecosystem services. We use a data-

set of insect pollination of sentinel pots of a generalist crop plant,

Brassica rapa L., collected in four land use types (dairy, rotational

cropping, avocado orchard and remnant forest) across a tropical

agricultural landscape in north Queensland, Australia. We use a

novel systems approach, bipartite site–pollinator (cf. plant–pol-

linator) networks, to test whether the structure of pollinator

communities is linked to ecosystem function at the landscape

scale. Specifically, we ask the following questions:

1. How does land use type influence the composition and

flower visitation of insect pollinator orders and sentinel

plant reproduction?

2. How does land use type and distance between sites influ-

ence node specialization (d0) and modularity of the

bipartite site–pollinator species network?

3. Does node specialization (d0) and modularity of the site–pol-

linator species network influence sentinel plant reproduction?

2. Material and methods
(a) Field data collection
We collected data on flower visitation and plant reproduction for

sentinel pots of B. rapa ssp. chinensis at 20 sites (electronic

supplementary material, figure S1) in a tropical agricultural land-

scape in the Atherton Tablelands (178180 S, 1458290 E to 178360 S,

1458440 E), northeast Australia (data collected by RR from April

to May 2008, as part of a larger study of pollinator communities

in the study region from 2008 to 2010). B. rapa ssp. chinensis was

chosen as a suitable sentinel plant study species, as it is self-

incompatible [35], easy to grow, flowers within 30–50 days,

has been used as a sentinel species in other systems and is a gen-

eralist species that attracts a wide range of insect pollinators [36].

As insect pollinators respond to the density of floral resources at

the local scale [37,38], this provided some means of standardiz-

ation at a fine scale to conduct our floral visitation surveys.

Sites were selected within four different land uses: remnant

forest (n ¼ 6), avocado orchards (n ¼ 5), dairy pastures (n ¼ 4)

and rotational potato fields (n ¼ 5), which are four of the most

valuable and well-established industries in the study region

[39]. Each site was at least 1 km away from any other, and most

were more than 5 km away. We hypothesize that disturbance

intensity (from human management activities) was highest in

potato farms (rotational cropping), moderate in dairy pastures,

medium in avocado orchards and low in the remnant forest.

Sentinel pots were germinated at CSIRO Atherton and placed

in the field at budding stage, arranged together as a potted

flower ‘island’ at the site in an open area for maximum light

availability. All sites had 15–18 individual budding plants and

all plants were watered every 3–5 days. All observations were

carried out between 10.00 and 16.00 on sunny or partly cloudy

days within a temperature range of 16–258C during peak flower-

ing of potted plants. Observations were not conducted if it was

raining or if wind speed was greater than 5 m s21. Six rotations

of site observations were conducted during the sampling

period. Sites were chosen at random in each sampling rotation

so that each observation per site was conducted on different

days at different times of the day (i.e. independent replicates).

Each full rotation took approximately 2–4 days, depending on

the weather. Flower visitation frequency of insect taxa was

measured by observing potted ‘islands’ at each site and record-

ing species and number of visits of all insect visitors that
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landed on any potted flower during six 30 min observation

periods at each site. Individuals of insect species that could not

be identified in the field were collected (outside of the obser-

vation period) and returned to the laboratory for identification.

All insects were identified to species or morphospecies; hereafter,

we simply use the term species.

Approximately 60 days after first flowering, pots were

returned to the shade-house and the following plant attributes

were recorded: the number of inflorescences per plant; the

number of flowers per inflorescence that were not fertilized

(these were identified by withered pedicels); the number of ferti-

lized seed pods per inflorescence; the number of seeds within

each seed pod. As the number of flowers varied among plants

and sites, individual plant reproductive success was standar-

dized for the number of open flowers available to pollinators,

subsequently measured as: (i) the proportion of fertilized seed

pods, defined as the number of seed pods per plant/(number

of unfertilized flowers þ number of seed pods per plant); and

(ii) the number of seeds in each pod. Hereafter, we call these

‘fertilized pods’ and ‘number of seeds per pod’ respectively.

(b) Statistical analysis
To assess differences in the community composition of taxonomic

orders among land use types (question 1), we used non-metric

multi-dimensional scaling (NMDS) and a PERMANOVA test

(both based on Bray–Curtis similarities). We used a generalized

linear model with a quasi-Poisson error structure (to account for

overdispersion) to compare differences between total visits for

each taxonomic order: Diptera, Hymenoptera, Coleoptera and Lepi-

doptera. We removed Hemiptera from this analysis, because this

order was represented by only eight individuals observed at one

avocado site (see supplementary data under ‘Data accessibility’

below). We used generalized linearmodels (GLMs) to identify differ-

ences between land use types for the following variables: species

richness of flower visitors; total number of visits per site; average

proportion of fertilized pods per site; average number of seeds per

pod. Models for richness, visits and seeds per pod had quasi-Poisson

error structures to account for overdispersion, and the model for fer-

tilized pods had a quasi-binomial error structure. Models for seeds

and fertilized pods were based on average values per site and

were weighted with variance per site to account for this [40].

To test community relationships between biodiversity and

ecosystem function (question 2), we used bipartite network

analysis (bipartite package [41]) in a novel way: to link pollinator

communities to sites in a tropical agricultural landscape [22].

Based on traditional plant–pollinator networks, we replaced

plants with habitats and constructed a weighted (total visits)

bipartite network linking sites (lower level nodes) with flower

visitor species observed at the site (higher level nodes). Because

our flower visitor data are collected from one plant species

(B. rapa) at every site, we control for differences in the relative

attractiveness of the sampled plant community at each site; there-

fore, a site ‘node’ is representative of habitat attributes. For each

site and flower visitor, we calculated the node specialization or

discrimination index (d0). For sites, low d0 near 0 indicates ‘gen-

eralist’ sites, which mostly attract flower visitors that are

common across the landscape, and high d0 close to 1 indicates

‘specialist’ sites, which mostly attract species that are not found

at other sites [42]. Similarly for flower visitors, low d0 means

they are common across the landscape, and high d0 means they

are only found at one site. Unlike some other node metrics, d0

corrects for relative abundance of interacting nodes and is

robust to effects of matrix size [42,43]. In addition to the

whole-landscape network, we also constructed individual net-

works for each land use to aid interpretation. We calculated

‘node strength’ for each pollinator species node in the networks

to identify key nodes influencing network structure. For
example, in this network, the strongest nodes indicate which

flower visitors the sites depend on most [43].

Modularity is an important indicator of network complexity

and may play a key role in network function; higher levels of mod-

ularity may increase the resistance of a network to disturbance

[44–46]. Modularity itself is mostly useful when comparing

multiple networks. However, the analysis also allows the identifi-

cation of key nodes (in this case, sites or flower visitors) that

influence the robustness and interaction structure of the network.

We used the QuanBiMo algorithm, following the method and

code described in [47], to calculate modularity (Q) for the

landscape network and used the nullmodel function (100 ran-

domizations; method ‘vaznull’) to convert Q to a z-score; a

z-score above approximately 2 indicate the network is signifi-

cantly more modular than random networks. We calculated

participation coefficients (also called between-module connec-

tivity, c-values or inter-module connectivity) and within-module

degree (also called z values) for each site and flower visitor species

within the network to identify which sites and flower visitor

species were important connectors in the network. Participation

coefficients can identify transition zones between environmen-

tally different regions and may describe edges where taxa from

different regions mix [48]. We used the null models (described

above) to calculate recommended thresholds for participation

coefficients and within-module degree for each network level,

based on 95% confidence intervals (see electronic supplementary

material for code). This method is recommended to objectively

define critical thresholds for weighted networks [47]. We used

these thresholds to identify network hubs (high participation coef-

ficient, high within-module degree), between-module connecters

(high participation coefficient, low within-module degree),

within-module hubs (high within-module degree, low partici-

pation coefficient) and peripheral sites/species (low

participation coefficient, low within-module degree) [22,44,47].

To determine whether land use influenced site node metrics,

we used linear models to test for a significant difference among

land uses for each site node metric (d0 and participation coeffi-

cient). We also evaluated this using linear models for flower

visitor d0 (grouped by all species found in each land use); flower

visitors with high d0 are found at very few sites, while lower d0

indicates generalist flower visitor species that are found across

many sites within the landscape. To determine whether spatial

proximity of sites influenced the similarity of node metrics, we cal-

culated the distance (in kilometres) between each pair of sites and

the difference between node metrics (participation coefficient and

d0) for each pair of sites and used standard linear models to deter-

mine whether sites closer together in the landscape had more

similar node metrics: response variables were Euclidean pairwise

similarity between site node metrics and the predictor was pair-

wise metric distance between sites.

To determine whether the network influence of a site is associ-

ated with plant reproduction (question 3), we focused on two

metrics for each site: the participation coefficient and discrimi-

nation index (d0). These metrics indicate an individual node’s

influence on the robustness of the functional network, as well as

its role in connecting other nodes and modules across the land-

scape network. The d0 index indicates a site’s level of

specialization (in terms of attracted flower visitors) relative to

the rest of the network. We used GLMs to describe the relationship

between plant reproduction (mean fertilized pods; mean number

of seeds per pod) and the participation coefficient and d0 for each

site (n ¼ 20). Fertilized pod (proportions) and seed data (counts)

had high variance-to-mean ratios (seeds ¼ 4.2; fertilized pods ¼

1.8), so we used a quasi-binomial error structure for fertilized

pod models and quasi-Poisson for seed set models to account

for overdispersion. Models were weighted with the variance of

the response variable to account for variation in the data that

would be masked by using average values for each site [40].
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We then used a model selection procedure to explore

whether node metrics (participation coefficients and d0) were

influenced by pollinator community metrics or landscape com-

position. We calculated the proportion of each land use within

100 and 250 m buffers around each site in ArcGIS using the

layer ‘Wet Tropics LU 2009’ (Department of Environment and

Science, State of Queensland, 2018). These buffer distances

were independent of each other (no overlap) and are representa-

tive of landscape influences on our focal taxa (insect pollinators)

in the study region [49]. From this, we calculated the richness of

different land use types within each buffer and the proportion of

land use of the same type as the study site. We ran Gaussian

GLMs to test the response of each node metric (participation

coefficient, d0) to two sets of predictors: (i) pollinator community

(total visits; species richness; Hymenoptera visits; Syrphidae

visits; other Diptera visits; Coleoptera visits); and (ii) landscape

composition (land use richness 100 m; land use richness 250 m;

proportion of same land use 100 m; proportion of same land

use 250 m). We used a model selection procedure (package

MuMIn [50]) to identify the predictor from each set that

explained most of the variation in each node metric. We used

DAICc less than 2 to indicate the most explanatory models; if

the intercept-only model was ranked the most appropriate, no

subsequent models were considered suitable [51].

All analyses were conducted in R v. 3.5.0 (R Foundation,

2018) and PAST 3.15 [52].
3. Results
(a) Effect of land use type on pollination services
Community composition of taxonomic orders of flower

visitors differed between land use types (total SS ¼ 3.07,

within-group SS ¼ 1.97, F ¼ 2.946, p ¼ 0.02), but there was

high overlap at the landscape scale (electronic supplementary

material, figure S2). Diptera species were the most common

flower visitors (n ¼ 890) and were the only group recorded

at every site (figure 1; electronic supplementary material,

table S1). Almost half (48%) of all visits to sentinel flowering

potted plants were by Syrphidae species (see electronic

supplementary material). Hymenoptera were the second

most common visitors (n ¼ 158), and there was no difference

between numbers of Lepidoptera (n ¼ 60) and Coleoptera

(n ¼ 26) visitors (figure 1).

All visitation and plant reproduction variables differed

between land uses (figure 2; electronic supplementary

material, table S2). Species richness and total number of

visits of flower visitors were highest at dairy sites and

lowest at forest sites (figure 2a,b; electronic supplementary

material, table S2). Sentinel plant reproduction was highest

at potato sites and lowest at forest sites (figure 2c,d ). Syrphi-

dae visits were also the strongest contributor to the number

of fertilized pods, while visits by Syrphidae, Hymenoptera

and Lepidoptera had the strongest effect on the number of

seeds per pod (electronic supplementary material, figure S3).

(b) Site – pollinator network structure and
landscape effects

The landscape network (figure 3) was significantly modular

(Q ¼ 0.56, z ¼ 4.39; electronic supplementary material,

figure S4). Site node metrics did not differ between land

use types: participation coefficient (F ¼ 0.56(3,16); p ¼ 0.65)

and d0 (F ¼ 2.54(3,16); p ¼ 0.09; electronic supplementary

material, figure S5). There was a significant difference
between land use types in the number of unique versus

common species (flower visitor d0) recorded within each

land use (F ¼ 7.73(3,65); p , 0.001). Sentinel pots at forest

sites were visited by more unique species (i.e. species with

higher d0) than sites in other land uses, and dairy sites

had more visitors that were common across the network

(electronic supplementary material, figure S6).

For our analysis of network hubs, we identified rec-

ommended critical thresholds for sites (participation

coefficient greater than 0.60 and within-module degree greater

than 1.88) and for flower visitors (participation coefficient

greater than 0.57 and within-module degree greater than

3.12). No sites or flower visitors were considered network

hubs (i.e. they did not exceed thresholds for both metrics; elec-

tronic supplementary material, figure S7). Four flower visitor

species were important between-module connectors in the

network (high participation coefficient, low within-module

degree): Diptera: Sphaerophoria sp.; Hymenoptera: Homalictus
sp. and Apis mellifera; Lepidoptera: Hesperiidae sp.

Distance between pairs of sites had a negative effect on the

pairwise difference between each site’s d0 index (i.e. sites that

were closer together were less similar in their level of visitor

specialization compared with sites that were further apart;

electronic supplementary material, table S3). This means that

more specialized sites were scattered across the landscape,

not aggregated in space. There was no effect of geographical

distance between sites on similarity in participation

coefficients (electronic supplementary material, figure S8).
(c) Network structure and ecosystem function
Allograpta sp. (Diptera: Syrphidae) was the most influential

flower visitor species (node strength ¼ 4.94) in the landscape

network (figure 3). The influence of Syrphidae was also appar-

ent in each individual land use network: Syrphidae species

were the strongest flower visitor node in each individual

land use network: forest and avocado (Allograpta sp.), dairy

and potato (Sphaerophoria sp.) (electronic supplementary

material, figure S9).
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Sites with higher participation coefficients had higher rates

of plant reproduction, while more specialized sites (d0) had

lower rates of plant reproduction (electronic supplementary

material, figure S10). Hymenoptera visits were the best predic-

tor for participation coefficients, but no community-level metric

(i.e. species richness, total visits or visits per pollinator group)

explained variation in d0 (electronic supplementary material,

table S4). Landscape composition within 100 m or 250 m

did not affect either node metric (electronic supplementary

material, table S5).
4. Discussion
Understanding which species are present in a given commu-

nity and how they connect with other species and habitats is

an important tool to understand ecosystem function in modi-

fied landscapes. This is because species respond differently to

their habitats, and communities at selected sites within habi-

tats are rarely uniform. Incorporating species identities and

site level interactions acknowledges the relative contributions

by different taxa to local communities, which is overlooked

when using standard metrics such as species richness. In

this study, a diverse insect community contributed to connec-

tions among nodes and plant reproduction. Species richness

and total number of pollinator visits differed across land

use types and Diptera, particularly generalist Syrphidae

species, were the most frequent flower visitors across all

land uses. Sentinel plant reproduction was highest in the
more disturbed land uses (i.e. cultivated potato sites) and

lowest at remnant forest sites. Syrphidae visitors were also

the strongest contributor to the number of fertilized pods,

while visits by Syrphidae, Hymenoptera and Lepidoptera

had the strongest effect on the number of seeds per pod.

Importantly, we found that elements of network modular-

ity (i.e. structural indicators of network connectivity in the

landscape) had a positive influence on plant reproduction via

the insect pollination of a sentinel plant. Participation coeffi-

cients were a useful predictor of a site’s or flower visitor’s

influence on ecosystem function: sites with higher coefficients

had higher rates of plant reproduction, and flower visitor

taxa with high coefficients were identified as having the great-

est effect on plant reproduction. While visits by Hymenoptera

were the best predictor for participation coefficients, two syr-

phid species, Allograpta sp. and Sphaerophoria sp., were also

identified as key nodes in the landscape-scale and land use net-

works. Yet participation coefficients were not significantly

related to other community-level metrics, including total

visits or species richness, nor to surrounding landscape compo-

sition. This suggests that the relationship between

participation coefficients and plant reproduction is different

to that of other standard community metrics and requires

greater research attention. In other types of networks, higher

participation coefficients have been associated with increased

cognitive [53] and metabolic [54] function. Here, we show that

participation coefficients may also be an indicator of ecologi-

cal function in a heterogeneous landscape. Identifying

highly connected flower visitor species that have a strong
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influence on network structure is a significant step forward to

inform conservation priorities and decision-making in diverse

agroecosystems. For example, the key pollinator taxa we

identified here (Allograpta and Sphaerophoria spp.) are

common pollinators for a wide range of plant families in Aus-

tralia and globally [55–57], yet very little is known about their

ecology and distribution in Australia. Steps to incorporate

their resource and habitat needs into habitat and management

plans are a critical next step to ensure their conservation.

Understanding the causes and consequences of modular-

ity is important as it can have a positive effect on stability and

ecosystem function [44,58,59], especially in human-domi-

nated landscapes and disturbed systems [60]. Although this

modularity–stability relationship is generally considered in

terms of mutualistic plant–pollinator networks [44], future

work should aim to determine how this translates to pollina-

tor–habitat networks [22]. The landscape network in this

study was significantly modular compared with a random

network. While site node metrics did not differ between

land use types, sentinel pots at forest sites were visited by

more unique species (i.e. species with higher d0) than sites

in other land uses, and dairy sites had more visitors that

were common across the network. Modules comprising mul-

tiple sites from different land uses contained a diverse

assemblage of flower visitors from different taxonomic

groups, whereas five modules contained only one site (all

forest or dairy sites), all of which were dominated by Diptera

species. Single site modules thus had unique attributes com-

pared to other sites in the network. For example, in these

modules, we found predominantly calyptrate flies at dairy

sites, and the rarely observed taxa (e.g. Culicidae, Epydridae)

in the modules containing only a forest site.
These results suggest that modules in our network rep-

resent common niches [61,62] (i.e. matches between site

attributes and flower visitor traits). This is further supported

by the fact that the sites in each module did not appear to be

grouped by geographical proximity (see electronic

supplementary material, figure S1 for landscape map), and

distance between sites had no effect on their similarity as

module connectors. These results support recent studies

that suggest that habitat heterogeneity (and temporal

dynamics) is the most common cause of modules in field

ecology networks [59]. Where landscape is considered, it

appears that module structures may also be associated with

major habitat divisions between structurally dissimilar habi-

tats (e.g. freshwater and terrestrial, forest and cropland

[46,63,64]). Hence, the dominance of calyptrate Diptera in

modules dominated by dairy sites is not surprising, because

Diptera are common in livestock systems, where they source

multiple resources needed for their life cycle (e.g. carrion and

dung [65,66]). Recent evidence shows pollinating Diptera

taxa also rely on forest remnants in the same tropical landscape

[49]; in our study, this is reflected in the diversity of Diptera

species (especially Syrphidae) present in modules containing

forest sites and the higher number of specialized Diptera

species at forest that were absent in other land use types.

In our network, node specialization (d0) appeared to have a

negative effect on ecosystem function. This effect was prob-

ably driven by the fact that two forest sites were the only

sites with a d0 index of 1 (highly specialized interactions),

and visits by insects to sentinel pots were lowest in forest

patches. Several dairy and potato sites also had high d0,
because of a number of species at these sites that were not

recorded anywhere else; yet these sites were also visited by
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other common insect taxa and had high rates of plant repro-

duction. Forest sites thus had the lowest rates of plant

reproduction out of all land uses. This result, however, does

not indicate that forest fragments are not contributing to eco-

system function in this landscape as we did not specifically

test how habitat quality attributes (e.g. nesting sites, non-

floral resources, environmental conditions) influence site

specialization and only two of the forest sites appeared to be

highly specialized in interactions. Rather, the variation

across forest sites is probably due to our a priori selection of cat-

egorical land use types that attempted to standardize local

habitat conditions but could not control for the influence of

the surrounding matrix at greater spatial scales. Our landscape

composition analysis showed that none of the landscape pre-

dictors (land use richness and heterogeneity within 100 and

250 m) had an effect on site node metrics—this may because

the database layer used to measure land use was too coarse,

or other local or landscape factors influenced site-level vari-

ations, such as the quality of nesting sites, non-floral

resources or other environmental conditions. In order to

more accurately assess how habitat quality attributes influence

site specialization, future work would benefit from collecting

information on structural attributes of individual sites. For

example, we found greater overlap in community composition

between forest and avocado sites compared to dairy or potato.

This is likely to be because perennial tree crop orchards are

more similar to the local forest in terms of physical structure

and temporal dynamics, compared to open grassland or

rotational crop systems [67].

Further, because the sentinel plant used is an exotic fast-

growing annual plant that is more commonly found in open

disturbed systems compared with clearings in unmanaged

tropical rainforest [36,68,69], it is difficult to tease apart

whether interactions between generalist pollinators and a

generalist model crop plant increased pollination services in

habitats suitable to the pollinators it interacts with or was a

function of the sentinel plant selected. Our sentinel plant

standardized the local floral resources available to local

flower visiting insects and enabled us to compare visitation

to the same plant across different sites and land use types
without the biases of differences in floral structure, nectar

and other resources. Selecting a single focal plant as a sentinel

species therefore has its limitations, and future studies could

attempt to use multiple plant species with different floral

traits and habitat needs to tease apart habitat effects from

the traits of the particular sentinel plant selected.

We have shown that network analysis can be applied in

novel ways to understand important links between biodiversity

and ecosystem function. By linking pollinator communities to

sites in an agricultural mosaic landscape, using sentinel pots

of a single plant species, we have shown how diverse groups

of pollinators across the landscape contribute to plant repro-

duction in multiple habitat types. This approach has great

potential to be applied in other systems, with valuable out-

comes for conservation and management of ecosystem

services in agricultural landscapes. An important next step is

to increase knowledge on what aspects of landscape compo-

sition and habitat structure influence a site’s participation

coefficient, as this may enable land managers to adopt practices

that support network connectivity.
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