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Background: The association between the CYP17A1 and ATP2B1 SNPs and essential

hypertension (referred to as hypertension) is far from being consistent. In addition

to the heterogeneity of hypertension resulting in inconsistent results, gene–gene and

gene–environment interactions may play a major role in the pathogenesis of hypertension

rather than a single gene or environmental factor.

Methods: A case–control study consisting of 1,652 individuals (hypertension, 816;

control, 836) was conducted in Maonan ethnic minority of China. Genotyping of the four

SNPs was performed by the next-generation sequencing technology.

Results: The frequencies of minor alleles and genotypes of four SNPs were different

between the two groups (p < 0.001). According to genetic dominance model

analysis, three (rs1004467, rs11191548, and rs17249754) SNPs and two haplotypes

(CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A)

were negatively correlated, whereas rs1401982 SNP and the other two haplotypes

(CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G)

were positively associated with hypertension risk (p ≤ 0.002 for all). Two best

significant two-locus models were screened out by GMDR software involving

SNP–environment (rs11191548 and BMI ≥ 24 kg/m2) and haplotype–environment

(CYP17A1 rs1004467G-rs11191548C and BMI ≥ 24 kg/m2) interactions (p ≤ 0.01).

The subjects carrying some genotypes increased the hypertension risk.

Conclusions: Our outcomes implied that the rs1004467, rs11191548, and

rs17249754 SNPs and CYP17A1 rs1004467G-rs11191548C and ATP2B1

rs1401982G-rs17249754A haplotypes have protective effects, whereas the rs1401982

SNP andCYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G

haplotypes showed adverse effect on the prevalence of hypertension. Several

SNP–environment interactions were also detected.
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INTRODUCTION

Essential hypertension (referred to as hypertension) is a regular
multifactorial disease affecting about one-fourth of adults
worldwide (1). Conversely, most of its potential mechanisms
are still unknown. It is well-known that environmental factors,
including excessive salt intake, tobacco use, physical inactivity,
alcohol abuse, overweight, and obesity, increase blood pressure
(BP) levels (2), but about half of population BP changes are
determined by genetic factors (3, 4).

Genome-wide association studies (GWASs) can screen and

analyze hypertension risk genes (5). For instance, two large
GWASs (Global BPgen and CHARGE) have identified 14 risk
loci that reached genome-wide significant closely related to BP in
2009, including ATPase, Ca2+ transporting, plasma membrane
1 gene (ATP2B1) and cytochrome P450, family 17, subfamily
A, and polypeptide 1 gene (CYP17A1) (6, 7). The results about

single-nucleotide polymorphism (SNP) ofATP2B1 andCYP17A1
were tested and verified soon afterwards in different ethnic
groups (8–12). In particular, the reproductions about ATP2B1
and CYP17A1 were also conducted in Chinese Han population
according to the GWASs (4, 13). However, the evidence that
showed the relationship of ATP2B1 and CYP17A1 with the

hypertension risk from Maonan being one of China’s ethnic
minorities was still rare.

The CYP17A1 encodes the P450c17 protein, a member
of the cytochrome P450 superfamily of enzymes speeding
up plenty of chemical synthesis processes involving steroids,
cholesterin, and other blood fats (14). Recently, some articles
have reported that the CYP17A1 is related to hypertension,
and one reason for how this gene leads to hypertension may
be that genetic factors can influence the distribution of fat
in body, and then lipid metabolism disorders can cause BP
elevating (15–19). Several hypertension susceptibility genes are
also associated with lipid profile and fat distribution (17–19).
For instance, Zhang et al. reported that two SNPs (rs11191548
and rs1004467) in the CYP17A1 locus were correlated with
hypercholesterolemia in Han Chinese (19). In addition, in
2012, a Japanese research also found that the CYP17A1
rs1004467 SNP was associated with the reduction of two types
of fat, including visceral and subcutaneous (17). However,
Liu et al. had a different opinion regarding the relationship
between the CYP17A1 polymorphism and body mass index
(BMI) (4).

ATP2B1 is attributed to the family of P-type primary ion
transport ATPases (10). The associations of two SNPs (rs1401982,
a common intronic variant, and rs17249754, a common
intergenic variant with the strongest association of the SNPs)
in the ATP2B1 region with both BP and risk of hypertension
susceptibility were previously found by GWASs (6, 7, 11) and
replicated in the Japanese (8, 9), Korean (10), East Asian (12),
and Chinese populations (13). Wang et al. reported that two
loci (rs17249754 and rs1401982) were negatively associated with
hypertension in a Chinese population (13). However, a Korean
genome epidemiology study showed that ATP2B1 rs17249754
polymorphism may be increased the incident hypertension,
when sodium was excessively consumed (20). Tabara et al.

also demonstrated that the rs1401982 minor allele may be at
higher risk of hypertension in the Japanese (8). The underlying
mechanism of ATP2B1 affecting BP may be that the ATP2B1
encodes plasma membrane calcium ATPase with an important
function in intracellular calcium homeostasis (21, 22). Therefore,
some studies have suggested that ATP2B1 polymorphism may
change arterial stiffness by affecting vascular reactivity (13, 23).

The above studies have shown significant association between
the CYP17A1–ATP2B1 SNPs and hypertension, but others also
showed no association between them. The contradictory results
may be related to the following factors (14): (1) ignoring the
influence of environment–environment, environment–gene, and
gene–gene interactions on BP parameters; (2) some variants
found in GWASs may not be functional and have little effect
on BP phenotype; (3) variation found in GWASs may have
linkage disequilibrium (LD) with some functional variants
rather than their own role; (4) the frequency of a high-
risk genotype is not alike in different races. For example,
in the International 1000 Genomes database (https://www.
ncbi.nlm.nih.gov/variation/tools/1000genomes/), the frequency
of rs1004467GG genotype in the Chinese Han population was
0.364, which was slightly higher than the genotype frequency
of 0.322 in the Japanese population, but both were significantly
higher than that (0.104) in the European population. These
differences may be caused by evolutionary divergence, or it
may be the result of negative selection of rs1004467 risk alleles
in European populations. Therefore, we should continue (1)
to evaluate the differences in genotypes and allele frequencies
in other populations of different ancestry; (2) to screen larger
cohorts with clinical BP abnormalities; and (3) to evaluate gene–
gene (G×G) and gene–environment (G× E) interactions on BP
and hypertension, which are very meaningful and necessary (14).

Maonan is one of the mountain ethnic groups with a
small population in China (24). Its living environment, dietary
structure, lifestyle, and genetic background are different from
the local Han population (25–28). Our previous popular survey
found that the prevalence of hypertension in this ethnic group
was higher than that in the local Han population (49 vs. 31%, p <

0.001) (24). However, up to now, the reason for these differences
in BP levels between the two ethnic groups and their risk factors
has not been understood. Therefore, the purpose of this research
was to test the association ofATP2B1 (rs1401982 and rs17249754)
and CYP17A1 (rs1004467 and rs11191548) SNPs, and their
haplotypes, G × G and G × E interactions, with hypertension
in the Maonan population.

METHODS

SNP Selection
There were five steps for screening four SNPs of CYP17A1
and ATP2B1: (1) SNPs belonging to tagging SNPs were
detected by Haploview (Broad Institute or MIT and Harvard,
Cambridge, MA, USA, version 4.2). (2) CYP17A1 (rs1004467
and rs11191548) and ATP2B1 (rs1401982 and rs17249754) SNPs
were then chosen by SHEsis Main (http://analysis.bio-x.cn/
myAnalysis.php). (3) The minor allele frequency (MAF) of the
SNPs was more than 1%. (4) SNPs may be associated with
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hypertension according to the previous investigations. (5) SNP-
related information was acquired from NCBI dbSNP Build 132
(http://www.ncbi.nlm.nih.gov/SNP/).

Research Populations
A total of 1,652 Maonan subjects were randomly extracted
from previously stratified random samples to conduct a cross-
sectional study of hypertensive molecular epidemiology (29).
The participants were aged 18–90 years with an average age
of 56.6 ± 13.1 years in controls and 56.7 ± 12.3 years in
hypertensives. The detailed description of the selection criteria
for Maonan participants can be found in two previous studies
(24, 30). Besides, all participants were also demonstrated to be
Maonan ethnic group by Y chromosome and mitochondrial
diversity studies (31). Subjects had complete data on BP and
other laboratory parameters and no various related illnesses
such as cardiovascular disease, secondary hypertension, and
nephropathy. Calculating sample quantity was performed using
quanto software (32). All participants had signed informed
consent. All the research programs of this project have been
approved by the Ethics Committee of the First Affiliated Hospital
of Guangxi Medical University (No: Lunshen-2014-KY-Guoji-
001; Mar. 7, 2014) (31).

Epidemiological Survey
International standardization methods were used for the
epidemiological survey (24, 33). Trained health professionals
collected data such as demographics, medical history, and
lifestyle elements by standardized questionnaires. Alcohol and
cigarette usage was designated into either one of two groups
(yes or no) (34). BMI (kg/m2) was calculated as weight/(height2).
Sitting BP was determined three times after taking a rest at least
5min using a manual sphygmomanometer, and the average of
three readings was used for BP analysis (24).

Serum Lipid Measurements
Serum cholesterol (TC), triglyceride (TG), high-density
lipoprotein cholesterol (HDL-C), and low-density lipoprotein
cholesterol (LDL-C) were tested by commercially available
enzyme assays (31), and all the tests were carried out by an
automatic analyzer in the Clinical Science Experiment Center
of the First Affiliated Hospital, Guangxi Medical University
(31, 35).

Genotyping
The genome DNA was isolated from venous blood white cells
with phenol-chloroform (36). All DNA samples were saved at
−80◦C for the next analysis. Genotyping of the four SNPs
was achieved by next-generation sequencing techniques [Sangon
Biotech (Shanghai) Co; Ltd] (31). The sense and antisense
primers used in this study are shown in Supplementary Table 1.

Diagnostic Criteria
Hypertension was defined as an average systolic blood pressure
(SBP) ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90
mmHg, or using drugs for treating high BP (37). Hyperlipidemia
was diagnosed as an average TC > 5.17 mmol/L, and/or TG >

1.70 mmol/L (31, 38). Age subgroup was divided into two groups:

<60 and ≥60 years (34, 35). A BMI < 24, 24–28, and > 28
kg/m2 was defined as normal weight, overweight, and obesity,
respectively (36).

Statistical Analyses
Statistical analyses of the data were realized by the SPSS
22.0 (31), which was the statistical software (SPSS Inc.,
Chicago, IL, USA). Differences in quantitative data of normal
distribution, non-normally distributed data, and qualitative data
between hypertension and control participants were analyzed
by t-test, Wilcoxon–Mann–Whitney test, and chi-square test,
respectively. The analyses of Hardy–Weinberg equilibrium
(HWE), genotype and allele frequencies, pairwise LD, and
haplotype frequencies were mainly performed by the SHEsis
online genetics software (http://analysis.bio-x.cn/myAnalysis.
php) (31, 39). Logistic regression analyses employed not only
the association between SNPs and hypertension, but also the
interactions of G × G and G × E on the risk of hypertension
after adjustment of sex, age, cigarette smoking, drinking,
BMI, and hyperlipidemia (35, 36). A p-value < 0.05 was
considered statistically significant. The best G × G and G × E
interaction combination was screened byGeneralizedmultifactor
dimensionality reduction (GMDR) (31, 40–42). Then, the best
model with the maximation of cross-validation consistency
was chosen (36, 43). Finally, the prediction accuracy of the
recognitionmodel was statistically tested by a sign test (providing
empirical p-values) (31). G × G and G × E interactions of the
best model were presented by hierarchical interaction graphs
and interaction dendrograms of MDR (43). Besides, traditional

TABLE 1 | General characteristics of the study subjects.

Parameter Control Hypertension t(χ2) p

Number 836 816

Age (years) 56.7 ± 13.1 56.7 ± 12.3 −0.01 0.99

Body mass index (kg/m2) 22.9 ± 4.47 25.3 ± 4.14 −10.79 <0.001

Waist circumference (cm) 77.4 ± 9.6 83.3 ± 10.2 −11.96 <0.001

Systolic blood pressure (mmHg) 119 ± 11 151 ± 16 −46.34 <0.001

Diastolic blood pressure (mmHg) 74 ± 8 92 ± 10 −37.88 <0.001

Glucose (mmol/L) 6.06 ± 1.32 6.43 ± 1.46 −5.41 <0.001

Total cholesterol (mmol/L) 4.87 ± 0.88 5.18 ± 0.99 −6.74 <0.001

Triglyceride (mmol/L) 1.26 (0.93) 1.68 (1.18) −10.55 <0.001

HDL-C (mmol/L) 1.30 ± 0.23 1.24 ± 0.31 4.45 <0.001

LDL-C (mmol/L) 3.08 ± 0.41 3.25 ± 0.55 −7.28 <0.001

Male/female 426/410 415/401 0.002 0.97

Smoking status [n (%)]

Non-smoker 614 (73.4) 608 (74.5)

Smoker 222 (26.6) 208 (25.5) 0.24 0.62

Alcohol consumption [n (%)]

Non-drinker 659 (78.8) 633 (77.6)

Drinker 177 (21.2) 183 (22.4) 0.38 0.54

Normal distribution quantitative data are presented as mean ± SD. Non-normal

distribution data such as triglyceride are expressed as median (interquartile range).

Qualitative variables are expressed as percentages (%). LDL-C, low-density lipoprotein

cholesterol; HDL-C, high-density lipoprotein cholesterol.
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statistical approaches were applied to test the outcomes from
MDR analyses, and p < 0.016 was considered statistically
significant after Bonferroni correction (0.05/3) (36, 43).

RESULTS

Demographic Characteristics
The demographic parameters of 1,652 subjects are shown in
Table 1. Compared with the control group, hypertensive patients
had higher BMI, SBP, DBP, blood glucose, TC, TG, and LDL-C,
but lower HDL-C (p < 0.001). However, there was no difference
in age, sex ratio, smoking, and drinking between the control and
case groups (p > 0.05 for all).

Genotype and Allele Frequencies and
Hypertension
As shown in Table 2, the minor allele and genotype distribution
of the rs1004467, rs11191548, rs1401982, and rs17249754 SNPs
was different between the patient and control groups (p< 0.001).
Figure 1 shows the genotype and allele frequencies of each SNP
in control and hypertension groups. The genotype distribution
was consistent with the HWE (p > 0.05 for all). Simultaneously,
the rs1401982 SNP enhanced the risk of hypertension, whereas
the rs1004467, rs11191548, and rs17249754 SNPs decreased the
susceptibility of hypertension in the dominant model (p ≤ 0.002
for all).

Haplotypes and the Risk of Hypertension
LD analysis showed that the four SNPs did not have statistical
independence in the control or case group. However, the
LD between the rs1004467 and rs11191548 (D’ = 0.950)
or between the rs1401982 and rs17249754 SNPs (D’ =

0.951) was strong in both control and hypertension groups
(Supplementary Figure 1; Supplementary Table 2). As
shown in Table 3, the most common haplotypes were
CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-
rs17249754G (≥ 67% of the samples). The frequencies of
CYP17A1 rs1004467A-rs11191548T, CYP17A1 rs1004467G-
rs11191548C, ATP2B1 rs1401982A-rs17249754G, and ATP2B1
rs1401982G-rs17249754A haplotypes were significantly different
between the control and case groups. Meanwhile, the haplotypes
of CYP17A1 rs1004467A-rs11191548T, CYP17A1 rs1004467G-
rs11191548C, and ATP2B1 rs1401982G-rs17249754A had
a protective effect for hypertension, whereas the haplotype
of ATP2B1 rs1401982A-rs17249754G revealed an increased
susceptibility of disease (p < 0.001).

G × G and G × E Interaction on
Hypertension
The GMDR model was utilized to analyze the interaction of G
× G and G × E among SNPs, haplotypes, BMI, age, gender,
alcohol, and/or cigarette usage on the risk of hypertension.
Table 4 summarizes the results of G × G and G × E interactions
of the two and three loci models derived from GMDR analysis.
A significant two-locus model revealed a potential SNP–
environment interaction between the rs11191548 SNP and BMI
≥ 24 kg/m2 (p = 0.01), with a cross-validation consistency

(7/10) and a testing accuracy of 62.7%. Another significant two-
locus model (CYP17A1 rs1004467G-rs11191548C and BMI ≥ 24
kg/m2, p= 0.0004) indicated a potential haplotype–environment
interaction, with a cross-validation consistency (9/10) and a
testing accuracy of 63.5%.

Entropy-based interaction dendrograms obtained from
MDR analysis are shown in Figure 2, which exhibited the
strongest antagonistic effect of the SNP–SNP interaction
(rs1401982 and rs17249754), SNP–environment interaction
(rs11191548 and BMI ≥ 24 kg/m2), haplotype–haplotype
interaction (CYP17A1 rs1004467A-rs11191548T and CYP17A1
rs1004467G-rs11191548C), and haplotype–environment
interaction (CYP17A1 rs1004467G-rs11191548C and age),
respectively. In order to obtain the OR and 95% CI for the
joint effects, we implemented an interaction study by logistic
regression analyses (Table 5). When the SNP–environment
interaction was analyzed, we found that the individuals with
rs11191548 TC/CC genotypes and BMI ≥ 24 kg/m2 raised the
risk of hypertension (adjusted OR = 1.45, 95% CI = 1.08–1.94,
p = 0.014) compared to the individuals with rs11191548 TT and
BMI ≥ 24 kg/m2.

DISCUSSION

In this cross-sectional study of hypertensive molecular
epidemiology, the association of the ATP2B1 and CYP17A1
SNPs, and their haplotypes, G × G and G × E interactions, with
hypertension in the Maonan population was observed for the
first time. The main findings are as follows: (1) The genotype
and allele frequencies of the CYP17A1 rs1004467, CYP17A1
rs11191548, ATP2B1 rs1401982, and ATP2B1 rs17249754 SNPs
were significantly different between the control and hypertension
groups. (2) The ATP2B1 rs1401982 SNP enhanced the risk
of hypertension, whereas the CYP17A1 rs1004467, CYP17A1
rs11191548, and ATP2B1 rs17249754 SNPs decreased the
prevalence of hypertension in the dominant models. (3) The
frequencies of CYP17A1 rs1004467A-rs11191548T, CYP17A1
rs1004467G-rs11191548C, ATP2B1 rs1401982A-rs17249754G,
and ATP2B1 rs1401982G-rs17249754A haplotypes were
significantly different between the control and case groups. (4)
The CYP17A1 rs1004467A-rs11191548T, CYP17A1 rs1004467G-
rs11191548C, and ATP2B1 rs1401982G-rs17249754A haplotypes
had a protective effect for hypertension, whereas the ATP2B1
rs1401982A-rs17249754G haplotype increased the risk of
hypertension. (5) Several interactions including rs11191548-BMI
≥ 24 kg/m2 (SNP–environment) and rs1004467G-rs11191548C-
BMI ≥ 24 kg/m2 (haplotype–environment) on the risk of
hypertension were also observed. (6) The individuals with
rs11191548 TC/CC genotypes and BMI ≥ 24 kg/m2 raised the
risk of hypertension.

In the past 10 years, according to the results of GWAS
scans, both ATP2B1 and CYP17A1 have correlation with BP
and/or hypertension (6, 7). However, the genetic association
between the ATP2B1 or CYP17A1 and hypertension was
conflicting. The most important reasons for the discrepant
outcomes may be that hypertension is a complicated illness
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TABLE 2 | Correlation between the CYP17A1–ATP2B1 polymorphisms and hypertension.

SNP Genotype Control

(n = 836)

Hypertension

(n = 816)

χ
2 p Adjusted OR

(95% CI)

*p

CYP17A1 AA 410 (49.0) 487 (59.7) 22.9 1.07E-005 1 –

rs1004467 A>G AG+ GG 426 (51.0) 329 (40.3) 0.66

(0.54–0.81)

<0.001

MAF 511 (30.6) 376 (23.0) 23.8 1.09E-006

PHWE 0.26 0.47

CYP17A1 TT 436 (52.1) 538 (65.9) 33.08 6.55E-008 1 –

rs11191548T>C TC+ CC 400 (47.9) 278 (34.1) 0.57

(0.46–0.7)

<0.001

MAF 461 (27.6) 314 (19.2) 31.93 1.64E-008

PHWE 0.66 0.19

ATP2B1 GG 91 (10.9) 47 (5.8) 22.42 1.36E-005 1 –

rs1401982 G>A GA+ AA 745 (89.1) 769 (94.2) 1.83

(1.24–2.7)

0.002

MAF 1142

(68.3)

1235

(75.7)

22.24 2.45E-006

PHWE 0.26 0.81

ATP2B1 GG 460 (55.0) 544 (66.7) 24.06 5.97E-006 1

rs17249754 G>A GA+ AA 376 (45.0) 272 (33.3) 0.68

(0.55–0.84)

<0.001

MAF 425 (25.4) 302 (18.5) 23.0 1.65E-006

PHWE 0.36 0.63

CYP17A1, cytochrome P450 17A1; ATP2B1, ATPase, Ca2+ transporting, plasma membrane 1; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium. p is the probability of

chi-square test; *p is the probability of logistic regression analyses. The symbol “–” means there is no data.

FIGURE 1 | Genotype and allele frequencies of the four CYP17A1–ATP2B1 SNPs in the control and hypertension groups.

that is influenced by various environmental elements, small
effect polygenes, and their interactions (44). The genotype and
allele frequencies of the CYP17A1–ATP2B1 SNPs are different

in distinct races, ethnic groups, or populations according
to the International 1,000 Genomes database (https://www.
ncbi.nlm.nih.gov/variation/tools/1000genomes/). The CYP17A1
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TABLE 3 | Association between the haplotypes and hypertension risk.

Haplotype Hypertension Fre. Control Fre. χ
2 p OR (95% CI)

rs1004467A-rs11191548C 12.56 (0.008) 15.61 (0.009) – – –

rs1004467A-rs11191548T 1,243.44 (0.76) 1,145.39 (0.69) 24.16 9.04E-007 1.48 (1.26–1.72)

rs1004467G-rs11191548C 301.44 (0.19) 445.39 (0.27) 31.86 1.70E-008 0.62 (0.53–0.73)

rs1004467G-rs11191548T 74.56 (0.05) 65.61(0.04) 0.83 0.36 1.17 (0.83–1.64)

rs1401982 A-rs17249754A 9.61 (0.006) 16.16 (0.010) – – –

rs1401982A-rs17249754G 1,225.39 (0.75) 1,125.84 (0.67) 22.96 1.68E-006 1.45 (1.25–1694)

rs1401982G-rs17249754A 292.39 (0.18) 408.84 (0.25) 21.67 3.28E-006 0.67 (0.57–0.79)

rs1401982G-rs17249754G 104.61 (0.06) 121.16 (0.07) 0.97 0.33 0.87 (0.67–1.15)

The haplotype is combined with CYP17A1 rs1004467-rs11191548 and ATP2B1 rs1401982-rs17249754. Control Fre., the frequency of haplotypes in control individuals; Hypertension

Fre., the frequency of haplotypes in hypertension subjects. Rare Hap (frequency < 3%) has been ignored in control and case subjects.

TABLE 4 | GMDR analysis of SNPs, haplotypes, and environments showed different interactions.

Locus no. Best combination Training Bal.

Acc

Testing Bal.

Acc

Cross-validation

consistency

χ
2 p OR (95% CI)

SNP–SNP interaction

2 Rs11191548,

rs17249754

0.58 0.56 8/10 1.55 0.21 1.71 (0.69, 4.2)

3 Rs1004467,

rs11191548,

rs1401982

0.59 0.57 8/10 1.82 0.18 1.82 (0.74, 4.47)

SNP–environment interaction

2 Rs11191548, BMI ≥

24

0.64 0.63 7/10 6.07 0.01 3.26 (1.27, 8.38)

3 Rs11191548, BMI ≥

24, gender

0.66 0.64 6/10 6.81 0.009 3.41 (1.35, 8.61)

Haplotype–haplotype interaction

2 G-C, A-G 0.56 0.56 9/10 2.58 0.11 1.64 (0.88, 3.06)

3 A-T, G-T, A-G 0.56 0.56 10/10 3.11 0.08 1.72 (0.93, 3.21)

Haplotype–environment interaction

2 G-C, BMI ≥ 24 0.64 0.63 9/10 12.75 0.0004 3.23 (1.69, 6.18)

3 Age, BMI ≥ 24, G-C 0.64 0.64 7/10 12.51 0.0004 3.12 (1.65, 5.9)

p, adjusting for gender, age, smoking, alcohol consumption, BMI, and hyperlipidemia. The haplotype is combined with CYP17A1 rs1004467-rs11191548 and ATP2B1 rs1401982-

rs17249754.

rs1004467G allele frequency in Chinese Dai in Xishuangbanna,
China (CDX), Han Chinese in Beijing, China (CHB), and
Southern Han Chinese (CHS) was 28.49, 36.41, and 35.71%,
respectively. The CYP17A1 rs11191548C allele frequency in
CDX, CHB, and CHS was 25.27, 29.61, and 28.10%, respectively.
The ATP2B1 rs1401982G allele frequency in CDX, CHB, and
CHS was 27.96, 34.95, and 39.05%, respectively. The ATP2B1
rs17249754A allele frequency in CDX, CHB, and CHS was 18.82,
32.04, and 36.67%, respectively. In the present study, we found
that the MAF of these SNPs was lower than other Chinese,
especially in the hypertension group, but it was higher in our
study populations than in Europeans or Africans. These results
might also be a reasonable explanation for the distinct prevalence
of hypertension between Chinese and Europeans or Africans.

Maonan people not only like to eat beef, pork, and animal
viscera, all of which are rich in saturated fatty acid, but also like
sour marinated meat, snails, and sour pickles that contain a lot of

salt (36). High-fat diet is an important element leading to obesity,
dyslipidemia (45), atherosclerosis, and hypertension (46, 47). In
particular, high-salt diet has a significant impact on hypertension
(2, 4, 15). Therefore, the eating habits of Maonan residents may
explain the differences in BMI, BP, TC, and TG values between
the control and case groups.

There was no statistical significance in alcohol and cigarette
consumption rates between control and hypertension groups
in our research. The effects of drinking and smoking on
hypertension have been reported by previous articles. The extent
to which alcohol is associated with hypertension may be partly
related to the amount of alcohol consumed (48–51). Low levels
of alcohol use mean no different from or slightly lower BP
(48–51), and high levels of alcohol consumption are a strong
predictor of the high BP risk (48, 52). Smokers usually have
higher BP than non-smokers (53, 54). However, the effects
of alcohol and tobacco on the risk of hypertension in many
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FIGURE 2 | Different types of interaction dendrogram for gene–gene (A,C) and gene–environment (B,D) on the hypertension risk. Orange color (synergy); blue color

(strong antagonism interaction). The elements with stronger interaction are closer at the leaves of the tree.

studies were still inconsistent (48–51). We assume that these
discrepancies could be due to numerous factors, including
sample size, misclassification bias according to participants’ self-
reported questionnaires, ethnicities, age groups, and gender,
warranting that further research should take into account the
factors above (48–51, 55, 56). To address the possibility that
many genetic variants associated with hypertension found by
the GWASs might be the result of different environmental as
well as direct genetic effects (57), our study used some examples,
including eating habits and alcohol and cigarette consumption.

In the current study, minor allele and genotype frequencies
of all four SNPs had a difference in control and case groups
(p < 0.001). These results showed that CYP17A1 and ATP2B1
SNPs were correlated with hypertension and genetic factors
might play a part in susceptibility to hypertension. Furthermore,
according to genetic dominance model analysis, three SNPs
(rs1004467, rs11191548, and rs17249754) and two haplotypes
(CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-
rs17249754A) were negatively correlated with hypertension
risk, while the rs1401982 SNP and the other two haplotypes
(CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-
rs17249754G) were positively associated with hypertension risk
(p ≤ 0.002). Meanwhile, GMDR analysis showed no statistical
difference between the interaction of CYP17A1 and ATP2B1 on
hypertension. However, two best significant two-locus models
were screened out involving SNP–environment (rs11191548
and BMI ≥ 24 kg/m2) and haplotype–environment (CYP17A1

rs1004467G-rs11191548C and BMI ≥ 24 kg/m2) interactions
(p ≤ 0.01). The participants with the rs11191548 TT genotype
and BMI ≥ 24 kg/m2 had higher risk of hypertension than the
individuals with the rs11191548 TC/CC genotypes and BMI≥ 24
kg/m2. G × E interaction on the development of hypertension
was also observed in this cross-sectional study.

The prevalence of hypertension is increasing year by year,
so new and more effective measures are urgently needed to
prevent and treat hypertension. However, this depends on the
discovery of mechanism of BP regulation. Although lifestyle
intervention can successfully reduce BP in some patients, there
are still a number of patients with hypertension who need
new drugs to decrease BP. GWASs have confirmed that the
ATP2B1 encoding plasma membrane Ca2+ ATPase 1 (PMCA1)
is strongly associated with BP and hypertension. Several studies
have confirmed that PMCA1 plays a physiological role in
regulating BP and resistance artery function. PMCA1 may be a
potential target for the treatment of essential hypertension (58).
At present, the specific mechanism of hypertension has not been
fully clarified, and further studies are needed to explore this. This
study may provide new information and ideas for the scientists
in this field.

There are several potential limitations in our study. First, the
number of controls and patients with hypertension was relatively
small. Larger samples are necessary to confirm our findings in
this study. Second, the general characteristics of the two study
populations were different. The potential effects of these factors
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TABLE 5 | Various types of interactions were analyzed by logistic regression analysis.

Variable 1 Variable 2 OR (95% CI) P

SNP–SNP interaction

Rs1401982 Rs17249754

GG No 1 –

GG Yes 1.55 (0.24–10.27) 0.65

GA+AA No 3.12 (0.49–19.88) 0.23

GA+AA Yes 2.26 (0.35–14.49) 0.39

SNP–environment interaction

Rs11191548 BMI ≥ 24

TT No 1

TT Yes 4.38 (3.31–5.79) <0.001

TC+CC No 1.03 (0.76–1.39) 0.87

TC+CC Yes 1.45 (1.08–1.94) 0.014

Haplotype–haplotype interaction

A-T G-C

Non-carriers Non-carriers 1

Non-carriers Carriers 0.63 (0.44–0.91) 0.012

Carriers Non-carriers 1.02 (0.73–1.42) 0.92

Carriers Carriers – –

Haplotype–environment interaction

G-C Age ≥ 60

Non-carriers No 1 –

Non-carriers Yes 1.61 (1.35–1.91) <0.001

Carriers No 0.78 (0.62–0.99) 0.041

Carriers Yes 0.75 (0.58–0.96) 0.023

P, adjusting for gender, age, smoking, alcohol consumption, BMI, and hyperlipidemia. G-C and A-T are combined with CYP17A1 rs1004467-rs11191548. p < 0.016 was considered

statistically significant after Bonferroni correction (0.05/3).

on BP and hypertension could not be completely eliminated
even if the statistical analyses were adjusted. Third, a small
number of patients with hypertension received some secondary
prevention drugs. Some of these drugs may have a certain effect
on BP and hypertension. Fourth, it is worth noting that the four
SNPs tested in this study may have LD with some functional
variants rather than their own role on BP and hypertension. Fifth,
diet and physical activity have a significant impact on BP and
hypertension. The statistical analysis of this study failed to adjust
the effects of dietary nutrients and physical activity intensity on
BP and hypertension. This is also the deficiency of this article.
Finally, statistical significance is not entirely consistent with
biological significance.

CONCLUSIONS

Our outcomes implied that the rs1004467, rs11191548, and
rs17249754 SNPs and CYP17A1 rs1004467G-rs11191548C
and ATP2B1 rs1401982G-rs17249754A haplotypes revealed
protective effects on hypertension, whereas the rs1401982
SNP and CYP17A1 rs1004467A-rs11191548T and ATP2B1
rs1401982A-rs17249754G haplotypes showed adverse effect

on the prevalence of hypertension. The rs11191548-BMI ≥ 24
kg/m2 interaction on hypertension was also observed.
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