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Simple Summary: Immune-based treatment strategies, which include immune checkpoint inhibi-
tion, have recently become a new frontier for the treatment of B-cell-derived lymphoma. Whereas
checkpoint inhibition has given oncologists and patients hope in specific lymphoma subtypes like
Hodgkin lymphoma, other entities do not benefit from such promising agents. Understanding the
factors that determine the efficacy and safety of checkpoint inhibition in different lymphoma subtypes
can lead to improved therapeutic strategies, including combinations with various chemotherapies,
biologics and/or different immunologic agents with manageable safety profiles.

Abstract: For years, immunotherapy has been considered a viable and attractive treatment option for
patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells
by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes
of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached
the market thanks to the simultaneous identification of inhibitory signals that dampen an effective
antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal
antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on
the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways.
These approaches have found a promising testing ground in both Hodgkin lymphoma and non-
Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune
system and commonly provide signals that regulate immune function. Although several trials have
already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma,
many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid
malignancies. In this sense, the mechanisms of effective antitumor responses are different between
the different lymphoma subtypes, while the reasons for this substantial difference remain partially
unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in
B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular,
we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of
fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches
with chemotherapeutics, biological agents and/or different immunologic therapies.

Keywords: immune checkpoint; lymphoid neoplasms; programmed death 1; cytotoxic T-lymphocyte
antigen 4; monoclonal antibodies; combination therapies

1. Biology of B-Cell Lymphoma

The term B-cell lymphoma encompasses different neoplasms characterised by an
abnormal proliferation of lymphoid cells at various stages of differentiation. B-cell lym-
phoma develops more frequently in older adults and immunocompromised individuals
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and includes both Hodgkin’s lymphomas (HLs) and most B-cell non-Hodgkin lymphomas
(B-NHLs). The latter accounts for up to 4% of the globally diagnosed cancers [1] and
are characterised by a malignant proliferation of mature or immature B-lymphocytes in
lymphoid tissues and extranodal territories such as the gastrointestinal tract, the central
nervous system (CNS), or, essentially, any other body organ [2]. Inherited events such as
chromosomal translocations, oncogene activation or even certain viral infections such as
the Epstein–Barr virus (EBV) may trigger lymphomagenesis [3]. B-NHLs are divided into
low and high grades, typically corresponding to indolent (slow-growing) lymphomas and
aggressive lymphomas, respectively. Indolent lymphomas include follicular lymphoma
(FL), marginal zone lymphoma (MZL), small cell lymphocytic lymphoma (SLL)/chronic
lymphocytic leukaemia (CLL) and Waldenström macroglobulinemia (WM). Early-stage
indolent B-cell lymphomas can often be treated with radiation alone, with long-term nonre-
currence. Early-stage aggressive disease is treated with chemotherapy and, often, radiation,
with a 70–90% curation rate. Aggressive lymphomas include both precursor lymphoid
neoplasms and numerous mature B-cell neoplasms like mantle cell lymphoma (MCL),
primary effusion lymphoma (PEL), Burkitt lymphoma (BL), diffuse large B-cell lymphoma
(DLBCL) and its many subtypes and variants, and unclassifiable B-cell lymphoma, with
features intermediate between DLBCL and BL. These entities usually require intensive
treatments, with some having a good prospect for a permanent cure [4].

1.1. Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) represents the most common type of B-
NHL in Western countries. The 2016 World Health Organization (WHO) classification of
lymphoid malignancies recognises several subtypes characterised by unique clinical and
pathological features, including primary DLBCL of the central nervous system (PCNSL),
primary cutaneous DLBCL, leg type, T-cell/histiocyte-rich large cell lymphoma, and EBV-
positive DLBCL of the elderly. Nevertheless, most cases of DLBCL fall into the “not
otherwise specified” (NOS) category [4].

DLBCL, like other cancers, develops in a complex tissue environment with a high
content of malignant and nonmalignant compartments of the disease, as well as extra-
cellular components that constitute the tumour microenvironment (TME). The cellular
and molecular features of TME have a profound prognostic impact [5] and include T-cells,
tumour-associated macrophages (TAMs), dendritic cells (DCs), neutrophils, natural killer
(NK) cells and stromal cells [6]. DLBCL harbours a noninflamed phenotype characterised
by lack of immune cell infiltration, which could explain the modest efficacy of immune
checkpoint blockade therapy in relapsed/refractory (R/R) DLBCL patients [7].

1.2. Primary Mediastinal B-Cell Lymphoma

Primary mediastinal B-cell lymphoma (PMBL) is a rare but aggressive lymphoma of
thymic B-cell origin, accounting for 3% of B-NHLs. Although it presents similar histology
to DLBCL, the genetic profile of PMBL is distinct and shares many features with classic
Hodgkin lymphoma (cHL, see below) [8]. Patients are generally not cured after first-
line treatment, and, after relapse, autologous stem cell transplantation (ASCT) is usually
beneficial. However, relapsed/refractory (R/R) PMBL cases have poor outcomes and are
often managed like other forms of DLBCL [9].

1.3. Follicular Lymphoma

Follicular lymphoma (FL) is the second most common B-NHL, accounting for 29–35%
of cases. It is a neoplasm of germinal centre B-cells, which display rearrangement of im-
munoglobulin (Ig) heavy and light chain genes and somatic hypermutation and express
common germinal centre markers such as BCL6, AID and CD10 [10–12]. FL generally
presents an indolent clinical course, with median overall survival (OS) of more than
15 years [10,13]. However, about 20% of patients relapse during the first 2 years after treat-
ment, and others evolve into transformed-FL (t-FL), a much more aggressive subtype [10].
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The crosstalk between malignant FL cells and the surrounding cells of their TME
is driven by some recurrent genetic events [14]. FL is strongly regulated by direct in-
teraction with a germinal centre (GC)-like microenvironment, including myeloid cells,
follicular helper T-cells (TFH), and stromal cells, that may orchestrate efficient immune
escape mechanisms [15]. The TME of FL also displays deregulation of the extracellular
matrix proteins involved in collagen deposition and organization [16]. Cancer-associated
fibroblasts (CAFs) are another important FL tumour-promoting actor, providing a niche
with high levels of factors involved in B-cell activation and the activation/recruitment of
some TME components such as TAMs [17]. The crosstalk between TFH cells and FL cells
is orchestrated by the interaction between antigen-loaded MHC class II molecules and
antigen-specific T-cell receptors.

1.4. Burkitt Lymphoma

Burkitt lymphoma (BL) includes a heterogeneous group of highly aggressive malig-
nancies of intermediate-sized B-cells that may be found infiltrating both nodal or extranodal
tissues in a diffuse pattern [18]. BL is invariably associated with chromosomal transloca-
tions that dysregulate the expression of c-MYC, and, consequently, several downstream
genes involved in the control of cellular processes such as cell cycle progression and apop-
tosis [19]. The malignant cells usually express the B-cell-specific surface markers CD19 and
CD20, as well as low-to-intermediate levels of common acute lymphoblastic leukaemia
(ALL) antigen (CD10/CALLA) [20].

The complex interplay between BL cells and the TME also regulates lymphomagenesis
and provides new insights for target immunotherapies. Like DLBCL, BL tumours harbour
a noninflamed environment with low infiltration of immune cells and are usually resistant
to immune checkpoint blockade. One of the hallmarks of the TME in BL tumours is the
high content of TAMs which contribute to tumour progression through the secretion of
cytokines and chemokines, and the expression of immune checkpoint proteins such as
programmed death ligand 1 (PD-L1) [21] (see below). The crosstalk between tumour cells,
TAMs, PD-1 signalling, viral antigens, and T-cells may result in the high prevalence of M2
macrophages in the TME and contribute to the failed immunity of BL patients [22].

1.5. Marginal Zone Lymphoma

Marginal zone lymphoma (MZL) originates from memory B-cells at the marginal zone
of lymphoid follicles and account for 5–15% of all NHLs [23,24]. Three distinct entities
have been described. Splenic (SMZL) and nodal marginal zone lymphoma (NMZL) arise
from the follicle marginal zone of the spleen and the lymph nodes, respectively [24–26].
Extranodal marginal zone lymphoma (EMZL) of the mucosa-associated lymphoid tissue
(MALT) is the most common subtype, accounting for about 60% of MZL cases. This entity
is strongly associated with chronic inflammation derived from autoimmune disease or
infection, such as Helicobacter pylori. Other tumours sites include eyes and ocular adnexa
(13%), skin (9%), lungs (9%) and salivary glands (8%) [23,27,28]. MZLs mostly have indolent
clinical courses, although NMZL has a poorer prognosis than other subtypes [25–27].

The course of MZL disease is strongly influenced by the TME, and this latter may
therefore represent a promising strategy for early diagnosis and therapy choice. SMZL
cells are supported by immune cells such as mast cells and macrophages, which may be
recruited by tumour cells through the secretion of cytokines and chemokines [29]. The TME
components of SMZL can regulate stromal cell proliferation, angiogenesis, extracellular
matrix remodelling, and induction of adhesion molecule expression [29]. The chronic
inflammation of MALT lymphomas not only triggers B-cell growth but also recruits T-cells,
macrophages and neutrophils to the site of inflammation, which contribute to genetic aber-
rations, DNA damage and genetic instability of the B-cells during somatic hypermutation
and class-switching recombination [30].



Cancers 2021, 13, 214 4 of 43

1.6. Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) originates from B-cells, a proportion of them being
antigen-experienced B-cells, in the mantle zone of lymph nodes. MCL is usually diagnosed
as a late-stage disease and may be observed in both the gastrointestinal tract and bone
marrow [31]. The diagnosis of MCL is mainly performed by a microscopic evaluation of a
biopsy, although the detection of chromosomal translocation t (11:14), with the consequent
cyclin D1 expression, is considered the molecular hallmark [32].

The crosstalk between MCL tumour cells and its microenvironment has a central role
in disease expansion [33]. MCL cells have shown constitutive expression of PD-1 and its
ligand PD-L1, which converts it into an interesting candidate for immunotherapy targeting
this checkpoint [34] (see below). Aggressive MCL cases are characterised by a low number
of T-cells [35] and a high frequency of regulatory T-cells (Treg) [36]. Moreover, follicular
dendritic cells (FDCs) have been shown to support MCL cell survival through a cell–cell
interaction mechanism [37]. Autocrine and paracrine secretion of soluble factors could
also have an important role within the MCL TME. Interestingly, the blood of MCL patients
contains high levels of several cytokines and chemokines, such as IL-8, CCL3 and CCL4,
which are correlated with poor survival [38].

1.7. Classical Hodgkin Lymphoma

Classical Hodgkin lymphoma (cHL) is a neoplasm derived from B-cells and is mainly
constituted by a small number of neoplastic mononuclear cells, i.e., Hodgkin cells, and
multinucleated Reed–Sternberg (HRS) cells. cHL accounts for 15–25% of all lymphomas
and represents the most common lymphoma subtype in children and young adults in the
Western world. The cell of origin (COO) is nowadays unequivocally considered to be a
(post)germinal centre B-cell [39]. Several genetic alterations, targeting a few pathways,
have been identified, but none of them can be considered “dominant”. The affected
pathways include NF-κB and JAK-STAT, whose aberrant activation fuel HRS cells with
proliferative and antiapoptotic stimuli [40]. Moreover, the LMP1 protein, encoded by EBV
that often latently infects HRS cells, likely contributes to NF-κB signalling since LMP1
mimics constitutively active CD402 [41].

Genetic lesions of NF-κB pathway genes largely contribute to aberrant activation of
this cascade in a cell-intrinsic manner and/or by amplifying signals from the microenviron-
ment [42]. In addition, HRS cells are outnumbered by reactive cells in the TME, including
T- and B-lymphocytes, eosinophils, macrophages, mast cells, plasma cells and stromal
cells [43,44].

2. Immune Checkpoint Blockade in B-Cell Lymphoma

Among the armament of immunotherapies aimed at allowing the host’s own immune
system to detect and eliminate malignant cells, immune checkpoints blockers are able
to modulate molecules that regulate immune signalling, either positively, by promoting
the activation, maturation and proliferation of T-cells, or negatively, by blocking T-cell
activity, eventually leading to the programmed death of these latter (Figure 1). Most
B-NHLs, including BL, DLBCL, FL and CLL, are characterised by a low infiltration of
immune cells, a feature that may condition a priori the applicability of immune checkpoint
blockers. Although there is no evidence of a specific genetic immune escape program that
may prevent immune cells from entering the local TME to promote an effective antitumor
response in a determined lymphoma subtype, recent data support the notion that oncogenic
signalling can promote a “noninflamed” TME. As an example, PTEN, EZH2, and TP53
dysregulation have been associated with the downregulation of genes related to innate or
adaptive immunity in DLBCL, potentially leading to immune suppression, decreased HLA
expression and reduced T-cell infiltration [45–50]. The oncogene MYC, involved in the
pathogenesis of BL and other lymphoma subtypes, may also be involved in the regulation
of the immune environment by regulating the transcription of different immune checkpoint
molecules, including CD47 and PD-L1 [51].
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Figure 1. Therapeutic approaches based on immune checkpoint blockade in B-cell lymphomas. Different therapeutic
strategies to block PD-1/PD-L1 interaction are under clinical development in order to prevent PD-1-mediated attenuation
of TCR signalling, allowing for activity restoration of exhausted CD8+ T-cells. CTLA-4 inhibition by monoclonal antibodies
may induce tumour rejection through direct blockade of CTLA-4 competition for CD-80 (B7-1) and CD-86 (B7-2) ligands,
which enhances CD28 costimulation and, thus, activation. Alternative immune checkpoint molecules expressed on tumour
cells or immune cells in the TME can be simultaneously modulated to restore an effective antilymphoma immune response.

2.1. PD-1/PD-L1 Blockade
2.1.1. PD-1 Signalling Overview

Overexpression of PD-1 and its ligands, PD-L1 (CD274) and/or PD-L2 (PDCD1LG2),
by malignant neoplastic cells allows the ligation of PD-1 on T-cells and the consequent
induction of T-cell “exhaustion”, a phenomenon closely linked to peripheral tolerance and
homeostasis. That way, the malignant cells escape from the antitumor immune response in
a process known as immune evasion [52].

PD-1 is a protein encoded by the PDCD1 gene at chromosome 2q37.3, which contains
an extracellular domain, a transmembrane domain, and a cytoplasmic domain with two
tyrosine signalling motifs [53]. PD-1 is expressed on CD4+ and CD8+ T-cells, B-cells, NK
cells, macrophages, and some DCs during immune activation and inflammation [54,55]. On
B-cells, PD-1 is markedly regulated by B-cell receptor (BCR) signalling, lipopolysaccharide
(LPS), CpG oligodeoxynucleotides, and several proinflammatory cytokines [56] (Figure 1).
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The PD-L1 protein is encoded by the CD274 gene on chromosome 9p24.1 and harbours
two extracellular domains, a transmembrane domain, and a short cytoplasmic tail that lacks
signalling motifs [57]. The expression of PD-L1 is strongly affected by structural alterations
such as amplifications, gains, and translocations of chromosome 9p24.1 [58]. Remarkably,
9p24.1 amplification also induces Janus kinase 2 (JAK2) expression, leading to activation of
JAK/signal transducers and activators of transcription (STAT) signalling, which in turn, up-
regulates PD-L1 [41]. Upon engagement with PD-L1, PD-1 becomes phosphorylated by Src
family kinases and transmits a negative costimulatory signal through tyrosine phosphatase
proteins to attenuate the strength of T-cell receptor (TCR) signals and downstream sig-
nalling pathways such as PTEN–PI3K–AKT and RAS–MEK–ERK. The functional outcome
of this regulation is the inhibition of cytotoxic T-lymphocyte function [59–63].

In 70–87% of cHL patients, PD-L1 is detected on the surface of both HRS cells
and TAMs [64–68] and is associated with worse event-free survival (EFS) and shorter
progression-free survival (PFS) [64]. This overexpression can be consequent to EBV
infection [69]; in a large majority of cases, PDL-1 upregulation is the result of genetic
alterations of chromosome 9p24.1, thereby also affecting the expression of PDL-2 and
JAK2 [41,64,66,68]. Increased PDL-1 expression by TAMs following interferon (IFN)-γ sig-
nalling may be particularly relevant in cHL clinical outcomes due to the close relationship
between HRS and PD-1+ CD4+ T-cells [70,71].

In DLBCL, PD-L1 has been shown to be expressed by the nonmalignant compartment
in only 26% to 75% of the cases [65,72–75]. Godfrey et al. showed that 27% of DLBCL pa-
tients (especially from the nongerminal centre subgroup) presented a PD-L1 amplification
associated with inferior PFS following front-line chemoimmunotherapy [58,71,72,74,76–78];
this was more often detected in de-novo than transformed cases [65,76]. Similar to cHL, EBV
infection has been correlated with a much higher PD-L1 expression in DLBCL tumours [74].
The prognostic significance of PD-L1 expression in DLBCL patients is controversial, but
most of the studies have reported a poorer outcome in cases with PD-L1+ macrophages [74].
Additionally, overexpression of PD-L1 is associated with the immune escape gene signature
involving Bruton’s tyrosine kinase (BTK) and JAK/STAT signalling [79].

Genetic alterations of chromosome 9p24.1 of PD-L1 and/or PD-L2 have also been
reported in PMBL, and in two other lymphoma subtypes that arise in immune-privileged
extranodal sites, i.e., PCNSL, and primary testicular lymphoma (PTL) [58,71,80–83]. Ac-
cordingly, PD-L1 and PD-L2 are found to be overexpressed in a majority of PMBL pa-
tients [41,66,71,84] and about 50% of PCNSL and PTL patients harbour PD-1 ligand overex-
pression [80].

Regarding PD-1, receptor expression was detected in 39.5–68.6% of DLBCL cases [85],
and data support the notion that a high number of PD-1+ tumour-infiltrating lymphocytes
(TILs) are associated with favourable clinical features and prognosis [72,86]. In contrast to
DLBCL, FL tumour cells are largely negative for PD-L1 and PD-L2, and in this disease, the
TILS are characterised by high PD-1 expression and suppressed cytokine signalling [87].
Importantly, the presence of PD-1+ TILs is a favourable prognostic factor, whereas a low
number of TILs is associated with increased risk of histologic transformation [88,89].

Finally, in MCL, available data on the expression of PD-L1 are often conflicting. Several
studies have shown that PD-L1 expression is low or absent in MCL [65,90], whereas others
have shown a variable but constitutive expression of PD-L1 on tumour cells in both cell
lines and primary patient samples [34].

2.1.2. PD-1/PD-L1 Inhibition in B-Cell Lymphoma

The blockade of the PD-1/PD-L1 pathway (Figure 2) has transformed immunotherapy
with a promising increase in OS rates, leading to U.S. Food and Drug Administration
(FDA) approval of these immune checkpoint blockade drugs for the treatment of a broad
range of tumour types over the past decade. Two anti-PD-1 antibodies (nivolumab (BMS-
936558/ONO-4538, Opdivo®) and pembrolizumab (Keytruda®)) and three anti-PD-L1
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antibodies (durvalumab, atezolizumab, and avelumab) have been approved for the treat-
ment of various types of cancer, including lymphomas [68,91–96].

Figure 2. Clinical evolution of immune checkpoint-based therapies in B-cell lymphoma over the last 20 years (according to
https://beacon-intelligence.com/checkpoint; data actualised in September 2020).

Nivolumab and pembrolizumab, two fully humanised IgG4-kappa-blocking mono-
clonal antibodies, target the PD-1 receptor on human T-cells [97–99]. Nivolumab binds
specifically to PD-1 and does not affect the related members of the CD28 family, such as
CD28, CTLA-4, inducible co-stimulator, and B- or T-lymphocyte attenuator. The blockade
of the PD-1 signalling pathway by nivolumab induces both the proliferation of lympho-
cytes and the release of IFN-γ. Pembrolizumab binds with high affinity to human PD-1,
blocking receptor ligation by both PD-L1 and PD-L2 and leading to enhanced T-lymphocyte
immune responses in preclinical models of cancer, with the modulation of key cytokines
like interleukin (IL)-2, tumour necrosis factor (TNF)-α, and IFN-γ [100,101].

Most DLBCL patients were initially thought to be not amenable to PD-1 blockade
since PDL-1/2 alterations are nonfrequent in this disease, and, accordingly, PD-1 blockade
therapy has been disappointing to date in R/R DLBCL and FL. While several ongoing
clinical trials are evaluating the use of pembrolizumab in different DLBCL subtypes,
this antibody failed to improve PFS in ASCT-relapsed patients [102]. Similarly, a first
phase-1b dose-escalation cohort expansion study evaluating nivolumab in R/R DLBCL
patients (NCT01592370) and a subsequent larger phase-2 study (NCT02038933) in ASCT-
relapsed and ASCT-ineligible DLBCL patients reported overall response rates (ORRs)
<40% [78,97,100,103] (Table 1). In contrast, in CLL patients with Richter’s transformation
(RT), the recent phase-2 trial, MC1485 (NCT02332980), demonstrated an ORR of 44%,
including 1 complete response (CR), 2 partial responses (PR) and median PFS and OS of
5.4 months and 10.7 months, with manageable adverse events (AEs; Table 2). As expected,
those patients displayed higher levels of PD-L1 expression related to the presence of
chromosome 9p24.1 amplification or EBV infection [104].

Considering the recurrent alteration of the PD-L1 gene in PCNSL and PTL and the
poor prognosis of these rare subtypes of DLBCL [80], nivolumab was evaluated in patients
with R/R PCNSL or R/R PTL, in whom it demonstrated impressive activity (NCT02857426),
with clinical and radiographic response and PFS extended to 13+ to 17+ months for some pa-
tients [105]. The phase-2 CheckMate 436 clinical trial further demonstrated that nivolumab
combined with brentuximab vedotin represents a promising therapy in PBML patients
post-ASCT or after ≥2 prior chemotherapy regimens [106]. Similarly, pembrolizumab
therapy has also yielded excellent results in PMBL patients. In the phase-1b multicohort
KEYNOTE-013 study, the ORR was 41%, while the median duration of response (DOR) and
OS were not reached in this subset of patients [107]. The subsequent international phase-
2 KEYNOTE-170 study (NCT02576990), with 53 R/R PBML patients enrolled, reported
an ORR of 45% (including 13% CR) [108]. As expected, the magnitude of chromosome
9p24.1 abnormality was associated with PD-L1 expression in responding patients [108].
Importantly, in both KEYNOTE studies, no patient who previously achieved CR relapsed
during the follow-up. Altogether, these results led to the accelerated FDA approval of
pembrolizumab in 2018 for the treatment of R/R PMBL [99].

https://beacon-intelligence.com/checkpoint
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Similarly, the phase-1/2 studies employing nivolumab and pembrolizumab have
reported high ORRs in patients with R/R cHL; the patients that reached CR were char-
acterised by higher PFS [67,68,109–112] (Table 1). In subsequent phase-2 studies, pem-
brolizumab led to 100% OS and 82% PFS at 18 months in post-ASCT consolidation settings,
suggesting that pembrolizumab could be used in high-risk patients after ASCT to remodel
the immune landscape [113]. Following these trials, pembrolizumab is currently being
used in frontline and salvage regimens in R/R cHL patients [114].

Two ongoing and three completed clinical trials evaluated the safety and efficacy of
the humanised IgG1 monoclonal anti-PD-L1 antibody atezolizumab (MPDL-3280A), in
combination with the anti-CD20 antibody obinutuzumab, for the treatment of aggressive
B-cell lymphoma. A phase-1/2 trial (NCT02596971) evaluated the safety and efficacy
of atezolizumab, in combination with either obinutuzumab + the alkylating agent ben-
damustine or obinutuzumab + chemotherapy (CHOP) in FL patients, and atezolizumab
+ rituximab + chemotherapy in DLBCL patients. The analysis from 40 patients demon-
strated high efficacy (ORR of 95%) and durable responses (24 months for 80% of patients)
for the combinational approach. Another phase-1/2 study (NCT02631577) that enrolled
38 patients with R/R FL demonstrated durable clinical responses and the remarkable ORR
of atezolizumab, in combination with obinutuzumab, plus the immunomodulatory drug
lenalidomide. Nevertheless, a phase-1 trial (NCT02220842), including 14 patients with
R/R FL and 17 patients with R/R DLBCL, showed the weak efficacy of atezolizumab in
combination with obinutuzumab or the EZH2 inhibitor tazemetostat. Subsequently, a mul-
ticentre phase-2 trial (NCT03276468) assessed the antilymphoma activity of atorolimumab
associated with Veneto lax (a BCL-2 inhibitor) and blinatumomab in three cohorts: R/R
FL patients, R/R DLBCL patients and iNHLs, including MZL and MALT cases. The data
from the 58 DLBCL patients enrolled at the time of the primary analysis demonstrated that
the efficacy of combinatory therapy is comparable with currently available options for this
population, with durable responses. The phase-1/2 clinical trial NCT02729896 evaluated
the combination of atezolizumab with obinutuzumab and polatuzumab, an anti-CD79b,
in 13 participants with R/R FL and atezolizumab with the anti-CD20 antibody rituximab
and polatuzumab in 21 participants with R/R DLBCL. The percentage of participants
with an objective response (CR + PR) was 33.33–57.14% (depending on the polatuzumab
dose) for FL patients and 25% for DLBCL patients. The results of a large phase-1 clinical
trial (NCT02500407) that enrolled 72 iNHL patients (including 69 FL) and 141 cases with
aggressive B-NHL (87 DLBCL and 29 tFL) to evaluate the combination of atezolizumab
with mosunetuzumab, a bispecific CD20-CD3 monoclonal antibody, demonstrated high
response rates and durable complete remissions, as well as the maximum tolerated dose.
The ORR and CR of the iNHL patients across all dose levels were 64% and 42%, respectively.
The ORR and CR of aggressive NHL patients across all dose levels were 34.7% and 18.6%,
respectively (Table 1).

According to the outcome of the NP39488 study (NCT03533283), the combination of
atezolizumab with glofitamab, another bispecific antibody designed to target CD20 on the
surface of B-cells and CD3 on the surface of T-cells, resulted in low ORR in 38 aggressive
B-NHL patients or iNHL.

The use of CAR-modified T-cells targeting specific tumour cell antigens to enhance im-
mune responses against tumour cells is certainly a great breakthrough in oncoimmunother-
apy research. In NHLs, targeting CD19-malignant B-cells has proven highly efficacious
in the refractory-disease setting, resulting in T-cell activation, proliferation and secretion
of inflammatory cytokines and chemokines, with consequent tumour cell lysis [115,116].
KTE-C19 (Axi-cel) is an autologous anti-CD19 CAR T-cell that was approved by the FDA in
October 2017 for the treatment of R/R aggressive B-cell lymphomas after two or more lines
of systemic therapy. As PD-1/PD-L1 blockade has been shown to be upregulated after CAR
T-cell infusion, the ZUMA-6 clinical trial (NCT02926833) evaluated outcomes of KTE-C19
combined with the anti-PD-L1 atezolizumab. The data suggested that PD-L1 blockade
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with atezolizumab after KTE-C19 has a manageable safety profile and a promising efficacy
outcome (Table 1).

Durvalumab is a selective, high-affinity, humanised IgG1-kappa monoclonal antibody
against PD-L1 [117]. In vitro and in vivo xenograft assays have demonstrated that durval-
umab evokes a 75% tumour growth reduction in the presence of tumour-reactive human
T-cells, supporting the immunological mechanism of action of this drug [118]. Currently,
ten clinical trials are underway to investigate the use of durvalumab as monotherapy or
in combination with other reagents or CAR T-cells to treat B-NHL patients. Data from
murine lymphoma models suggest that the BTK inhibitor ibrutinib, combined with an
anti–PD-L1 therapy, may have synergistic antitumor activity [119]. A phase-1b/2 study
(NCT02401048) evaluating the efficacy and safety of the combination of ibrutinib and
durvalumab in patients with R/R DLBCL or FL has highlighted longer PFS and OS in
patients with FL compared to those with DLBCL. However, the efficacy of ibrutinib + dur-
valumab treatment demonstrated similar activity to single-agent ibrutinib [120] (Table 1).
FUSION NHL 001 (NCT02733042) is a phase-1/2, open-label, multicentre study to assess
the safety and tolerability of durvalumab as monotherapy or in combination with different
regimens (lenalidomide ± rituximab; ibrutinib; rituximab ± bendamustine (an alkylat-
ing agent)) in subjects with B-NHL or CLL. From the 106 enrolled participants, 23 were
FL, 37 were DLBCL, 17 were MCL, 5 were MZL, 1 was t-FL, 5 were cHL and 18 were
CLL/SLL. The efficacy of the durvalumab and rituximab or durvalumab and lenalido-
mide + rituximab combination was evaluated initially in 3 B-NHL patients. The ORR of
durvalumab and rituximab therapy was 33.3% and reached 66.7–80% with the addition
of lenalidomide. A remarkable ORR was seen in ten MCL patients after durvalumab and
ibrutinib combination therapy. The combination treatment of durvalumab, rituximab and
bendamustine led to an ORR of 88.9% in FL patients and 30% in DLBCL patients. On
the other hand, none of FL (n = 5), MCL (n = 5) or DLBCL (n = 10) patients responded to
durvalumab as a monotherapy. Although these early findings are encouraging, serious
AEs were commonly seen in patients treated with durvalumab when administrated either
alone or in combination therapy (Table 2). Another phase-2, two-arm, open-label clinical
trial (NCT03003520) is ongoing to evaluate the safety, activity, and predictive biomarkers
of durvalumab in combination with chemoimmunotherapy (R-CHOP) or lenalidomide
plus R-CHOP, followed by Durvalumab consolidation therapy, in previously untreated
subjects with DLBCL. The ORR from the evaluable patients of the durvalumab–R-CHOP
arm showed that 54.10% of the patients achieved CR but 51% of the cases presented serious
AEs. Finally, NCT03310619 (PLATFORM) and NCT02706405 are two studies aimed at
determining the safety, tolerability, and efficacy of CAR T-cells (JCAR017 and JCAR014,
respectively) in combination with durvalumab in subjects with R/R B-cell malignancies.
Among the first 11 evaluable patients, investigators reported an ORR of 91%, including
64% CR. The NCT02706405 study enrolled 15 patients, in which 12 were DLBCL, 2 were
high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, and 1 was
PMBL. The ORR from the 12 evaluable patients was 50%, with 42% CR and 8% PR. Only
one patient who achieved CR has relapsed.
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Table 1. Clinical evaluation of immune checkpoint-based therapies blockade for the treatment of B-cell lymphomas.

Targets Drug/Regimen Trial ID Phase N Disease Response DOR/PFS/OS Ref

PD-L1
CD20

Atezolizumab
+ Obinutuzumab
+ Bendamustine/

Atezolizumab
+ Obinutuzumab

+ CHOP

NCT02596971 1/2 40 FL, DLBCL ORR = 95%
CR = 75%

PFS = 74.9%
OS = 86.4%
(24-month)

[121]

PD-L1
CD20

Atezolizumab
+ Obinutuzumab
+ Lenalidomide

NCT02631577 1/2 20 FL ORR = 85%
CR = 80% 14.5 months [122]

PD-L1
CD20
EZH2

Atezolizumab
+ Obinutuzumab/

Atezolizumab
+ Tazemetostat

NCT02220842 1 43 FL, DLBCL ORR = 16%
CR = 5% PFS = 1.90 months [123]

PD-L1
CD20
BCL2

Atezolizumab
+ Obinutuzumab

+ Venetoclax
NCT03276468 2 58 DLBCL ORR = 23.6% N/A [124]

PD-L1
Mosunetuzumab/

Atezolizumab
+ Mosunetuzumab

NCT02500407 1 218 FL, DLBCL,
t-FL, iNHL

ORR = 64.1%
(iNHL)/34.7% (others)

CR = 42.2%
(iNHL)/18.6% (others)

92.6% (5.8 months,
iNHL)

68.2% (8.8 months,
aNHL)

[125]

PD-L1
Atezolizumab
+ CD20-TCB

(RG6026)
NCT03533283 1 36

FL, DLBCL,
MCL, PMBL,
LPL, iNHL

ORR = 36%
CR = 17% N/A [126]

PD-L1
Atezolizumab

+ KTE-C19
(Axi-cel)

NCT02926833 1/2 28 DLBCL ORR = 75%
CR = 46% not reached [127]

PD-L1
BTK

Durvalumab
+ Ibrutinib NCT02401048 1/2 61 FL, DLBCL ORR = 25% PFS = 4.6 months

OS = 18.1 months [120]

PD-L1 Durvalumab
+ R-CHOP NCT03003520 2 46 DLBCL CR = 54.1% PFS = 12 months [128]

PD-L1 Durvalumab
+ JCAR014 NCT02706405 1 13

DLBCL
LBCL

HG-BCL

ORR = 50%
CR = 42% N/A [129]

PD-1 Pembrolizumab NCT01953692 1b 31
DLBCL, FL,
PMBL, cHL,

MM

ORR = 58.1%
CR = 19.4%
PR = 38.7%
SD = 22.6%
PD = 19.4%

DOR: not reached
PFS = 11.4 months [130]

PD-1 Pembrolizumab NCT02650999 1/2 12 DLBCL, FL,
MCL, PMBL

ORR = 27%
CR = 9%
PR = 18%
SD = 9%

PD = 64%

N/A [131]

PD-1 Nivolumab NCT02038933 2 121 DLBCL,
B-NHL

ORR = 18%
CR = 5%
PR = 14%
SD = 14%
PD = 49%

DOR = 7.4 months [7]

PD-1 Nivolumab NCT02038946 2 116 FL ORR = 4% DOR = 114 months [68]

PD-1 Pembrolizumab
+ ASCT NCT02362997 2 31 DLBCL, PMBL,

iNHL CR = 59% OS = 93%
PFS = 58% [102]

PD-1
CD20

Nivolumab
+ Rituximab NCT03245021 1 19 FL, B-NHL

ORR = 84%
CR = 47%
PR = 37%
PR = 5%

SD = 11%

N/A [132]

PD-1 Pembrolizumab
+ R-CHOP NCT02541565 1 33 DLBCL, FL ORR = 90%

CR = 77%
PFS = 83%

(2-year) [133]
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Table 1. Cont.

Targets Drug/Regimen Trial ID Phase N Disease Response DOR/PFS/OS Ref

PD-1
TLR4
CD20

Pembrolizumab
+ G100

+ Rituximab

NCT02501473
(Discontinued) 1/2 18 FL, MZL

ORR = 33.3%
PR = 33.3%
SD = 61.1%
PD = 5.6%

N/A N/A

PD-1
Pembrolizumab
+ cyclophosph.

+ DPX-Survivac
NCT03349450 1 17 DLBCL 2 CR, 2 PR, 2 SD N/A [134]

PD-1
BTK

Nivolumab
+ Ibrutinib NCT02329847 1/2 144 DLBCL, FL,

CLL-RT, SLL

CR = 61%
PR = 14%
SD = 3%

N/A [135]

PD-1
BTK

Pembrolizumab
+ Acalabrutinib NCT02362035 1/2 61 DLBCL, cHL,

CLL, MM, WM

ORR = 26%
CR = 7%
PR = 20%
SD = 30%
PD = 36%

PFS = 1.9 months [136]

PD-1
BTK
PI3K

Pembrolizumab
+ Ibrutinib
+ Idelalisib

NCT02332980 2 29
FL, CLL,

CLL-RT, MZL,
RT, WM, SLL

ORR = 17%
CR = 3%
PR = 7%

N/A [104]

PD-1
CDK

Pembrolizumab
+ Dinaciclib NCT02684617 1 128 DLBCL, FL,

CLL, MM
ORR = 18%
3 CR, 4 PR

DOR = 4.9 months
PFS = 2.1 months [137]

PD-1
HDAC

Pembrolizumab
+ Vorinostat NCT03150329 1 30 DLBCL, PMBL,

FL, cHL
ORR = 30%
CR = 30%

DOR = 6 months
PFS = 59% [138]

PD-1
HDAC

Pembrolizumab
+ Entinostat NCT03179930 2 22 FL, cHL ORR = 92% N/A [139]

PD-1 Nivolumab
+ Lenalidomide NCT03015896 1/2 10

DLBCL, FL,
MCL, MZL,
WM, cHL

1 CR, 2 PR, 3 PD N/A [138]

PD-1
CD30

Nivolumab
+ Brentuximab

vedotin
NCT02581631 1/2 30

DLBCL, PMBL,
PTCL, CTCL,

MF, SS

ORR = 73%
CR = 37%
SD = 10%
PD = 10%

DOR = not reached
PFS = 63.5%
(6 months)

[106]

PD-1
CD19
CD22

Pembrolizumab
+ AUTO3 NCT03287817 1/2 24 DLBCL, t-FL,

PMBL
ORR = 75%
CR = 63% N/A [140]

PD-1
CD19

Pembrolizumab
+ Tisagenlecleucel NCT03630159 1 8 DLBCL 1 PR

2 PD N/A [141]

PD-1
CTLA-4

Nivolumab
+ Ipilimumab NCT01592370 1/2 169 cHL, B-NHL,

T-NHL, MM

ORR = 20%
PR = 20%
SD = 7%

DOR = not reached
PFS = not reached
OS = not reached

[142]

CTLA-4 Ipilimumab NCT00089076 1/2 18 DLBCL, FL,
MCL 1 CR, 1 PR N/A [143]

CTLA-4
CD20

Ipilimumab
+ Rituximab NCT01729806 1 33 DLBCL, FL,

MCL ORR = 24% PFS = 2.6 months,
FL = 5.6 months [144]

CTLA-4
PD-1

Ipilimumab
+ Nivolumab NCT01822509 1 28 B-NHL ORR = 32% PFS = 1 year [145]

CTLA-4 Ipilimumab
+ Lenalidomide NCT01919619 2 11 DLBCL, FL,

MCL ORR = 73% 4.6–12 months [146]

CD47
CD20

Hu5F9-G4
+ Rituximab NCT02953509 1b/2 115 DLBCL, iNHL

ORR = 36%
(DLBCL)/61% (iNHL)

CR = 15%
(DLBCL)/24% (iNHL)

SD = 12%
(DLBCL)/24% (iNHL)

N/A [147]

CD47
CD20

TTI-621
+ Rituximab NCT02663518 1 32 DLBCL

ORR = 29%
CR = 14%

(monotherapy)
ORR = 24%

CR= 4% (combination)

N/A [148]
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Table 1. Cont.

Targets Drug/Regimen Trial ID Phase N Disease Response DOR/PFS/OS Ref

CD47
CD38

TTI-622
+ Daratumumab NCT03530683 1 19 DLBCL, MCL,

FL
CR = 10%
PR = 10% N/A [149]

CD47
CD20

ALX148
+ Rituximab NCT03013218 1 33 DLCBL, MCL,

FL, MZL
ORR = 41%/62.5%

CR = 9%/11% N/A [150,
151]

CD40 Dacetuzumab NCT00103779 1 50 DLBCL, MCL,
FL, MZL

CR = 2%
PR = 10%
SD = 26%

N/A [152]

CD40 Dacetuzumab NCT00435916 2 46
Relapsed

FL, DLBCL,
MZL

ORR = 9%
CR = 4%
PR = 4%
28% SD

N/A [153]

CD40 Lucatumumab NCT00670592 1/2 111
(74)

FL, MZL, MCL,
DLBCL

33% OR
5% CR
29% PR
52% SD

N/A [154]

CD40
CD20

Dacetuzumab
+ Rituximab

+ chemotherapy
NCT00655837 1 30 DLBCL

ORR = 47%
CR = 20%
PR = 27%

PFS = 25 weeks [155]

CD40
CD20

Dacetuzumab
Rituximab

+ chemotherapy
NCT00529503 2 154

(101) DLBCL, FL

67% OR
18% SD
33% CR
33% PR

not reached [156]

CD27 Varlilumab NCT01460134 1 90
(18)

MCL, MZL,
DLBCL, CLL,

cHL, TCL
SD = 16% DOR = 6%

(14-month) [157]

CD80
CD20

Galiximab +
Rituximab NCT00363636 3 337 FL 51% 12 months [158]

CD80 Galiximab NCT00575068 1/2 38 FL ORR = 63% PFS = 11.7 months [159]

CD80
CD20

Galiximab
+ Rituximab NCT00048555 1/2 73 FL ORR = 62% 11.7 months [160]

CD80
CD20

Galiximab
+ Rituximab NCT00117975 2 61 FL 72.1% 2.9 years [160]

4-1BB Urelumab NCT01471210 1 60 DLBCL, FL,
B-NHL

ORR = 6%
(DLBCL)/12%

(FL)/17% (others)

PFS = 8.1 weeks
(DLBCL)/8.9 weeks

(FL)/13.4 weeks
(others)

[161]

4-1BB
CD20

Urelumab
+ Rituximab NCT01775631 1 46 DLBCL,

FL
ORR = 10%

(DLBCL)/35% (FL)

PFS = 9 weeks
(DLBCL)/

40.4 weeks (FL)
[161]

4-1BB
CD20

Utomilumab
+ Rituximab NCT01307267 1 67 FL, MCL,

DLBCL ORR = 21 PFS = 4.6 months [162]

CD70 SGN-CD70A NCT02216890
Terminated 1 38 DLBCL, FL,

MCL
PR = 15%
SD = 30% PFS = 1.9 months [163]

Abbreviations: FL, follicular lymphoma; t-FL, transformed follicular lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell
lymphoma; MZL, marginal zone lymphoma; B-NHL, B-cell non-Hodgkin lymphoma; iNHL, indolent B-cell non-Hodgkin lymphoma;
aNHL, aggressive B-cell non-Hodgkin lymphoma; LBCL, large B-cell lymphoma; HG-BCL, high-grade B-cell lymphoma; cHL, classical
Hodgkin lymphoma; CLL-RT, chronic lymphocytic leukaemia Richter transformation; PMBL, primary mediastinal B-cell lymphoma; PTCL,
peripheral T-cell lymphoma; CTCL, cutaneous T-cell lymphoma; MF, myelofibrosis; SS, Sezary syndrome; MM, multiple myeloma; ORR,
overall response rate; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; DOR, duration of response;
PFS, progression-free survival; OS, overall survival; NA, not available.

2.2. CTLA-4 Signalling and Inhibition

Cytotoxic T-lymphocyte antigen 4 (CTLA-4 or CD152) is expressed by both CD4+
and CD8+ T-cells and mediates T-cell activation together with CD28 as both receptors
are homologous and share a pair of ligands, CD80 and CD86, found on the surface of
APCs [164]. The interaction between CTLA-4 and both ligands is of higher affinity and
avidity than CD28 and plays opposite roles. While CD28 mediates T-cell costimulation in
conjunction with TCR signals, CTLA-4 and its interaction with its ligands drive the inhibi-
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tion of T-cell responses, although the precise mechanisms are not fully understood [165].
Two CTLA-4 blocking antibodies have been developed: tremelimumab, the first full hu-
man CTLA-4 antibody [166], and ipilimumab, an anti-CTLA-4 IgG2 monoclonal antibody
and IL-2 stimulant [167]. Both agents are able to recognise human CTLA-4 and to block
its interaction with CD80 or CD86 [168], potentiating an antitumor T-cell response [169].
Though ipilimumab binds to the same epitope, with a similar affinity as tremelimumab,
the higher dissociation rate of ipilimumab may indicate a dynamic binding to CTLA-4,
which may provide it with an improved pharmacokinetic profile [170].

While only one ongoing trial is evaluating the efficacy of tremelimumab as a single
agent and in combination with durvalumab and the JAK/STAT inhibitor AZD9150 in R/R
DLBCL patients, several trials have evaluated the efficacy of ipilimumab in lymphoma
patients in combination with other existing therapies (mostly rituximab and nivolumab).
The first phase-1/2 trial evaluating ipilimumab in relapsed settings was launched in
2004 with 18 lymphoma patients (NCT00089076). Although only two patients could be
evaluated, both had clinical responses: 1 DLBCL patient had a CR of 31+ months and
1 FL patient had a PR for up to 19 months [143]. Due to the study design of phase 1,
the trial was finally terminated. Subsequently, a phase-1 clinical trial was launched in
2012 to assess the effect of ipilimumab in combination with rituximab in the same cases
as the previous trial (NCT01729806). The enrolment was formed by patients with FL
(n = 13), DLBCL (n = 7), MCL (n = 2), SLL (n = 2) and 9 patients with an undetermined
diagnosis. At 7 weeks, toxicity was evaluated and considered as manageable (Table 2).
The combination of rituximab and ipilimumab resulted in more effective B-cell depletion,
together with an increase in IL-2 and TNF-α levels; both phenomenons were associated
with treatment response [144]. Ipilimumab was also evaluated in patients with relapsed
hematologic malignancies after an allogeneic stem cell transplant (Allo-SCT) in combination
with lenalidomide (NCT01919619) or nivolumab (NCT01822509). In this last combination,
only a modest antitumour activity was observed, mainly in lymphoid patients. However,
substantial toxicities were also observed due to graft-vs.-host disease (GVHD) [171]. In a
second trial evaluating the combination of lenalidomide and ipilimumab in 13 post-Allo-
SCT patients with DLBCL, FL or MCL, a 46% CR and only one GVHD were reported,
although one patient died after developing a T-cell lymph proliferative disorder after
treatment [146]. The combination of ipilimumab and nivolumab is currently under study
in a phase-1/2 trial in patients at high risk of recurrence after Allo-SCT (NCT02681302).
Out of 31 patients, 14 have DLBCL, both primary refractory (n = 7) and relapsed (n = 7). As
of 2018, 65% of patients had developed immune-related AEs of grade 2 or higher, which
required treatment with systemic steroids, but no GVHD (Table 2).
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Table 2. Adverse events of immune-checkpoint-based therapy blockade for the treatment of B-cell lymphomas.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

PD-L1
CD20

Atezolizumab
+ Obinutuzumab
+ Bendamustine/

Atezolizumab
+ Obinutuzumab

+ CHOP

NCT02596971 1/2 40 FL, DLBCL

100%
Neutropenia (52%)
Constipation (43%)

Fatigue (40.5%)

67% 36% DAEs
1 TRD [121]

PD-L1
CD20

Atezolizumab
+ Obinutuzumab
+ Lenalidomide

NCT02631577 1/2 20 FL 100% 73.6% 29% SAEs
23.7% DAEs [122]

PD-L1
CD20
EZH2

Atezolizumab
+ Obinutuzumab/

Atezolizumab
+ Tazemetostat

NCT02220842 1 43 FL, DLBCL
95%

Anaemia (26%)
Fatigue (23%)

47% 35% SAEs
14% DAEs [123]

PD-L1
CD20
BCL2

Atezolizumab
+ Obinutuzumab

+ Venetoclax
NCT03276468 2 58 DLBCL

84%
Lymphopenia (35%)

Neutropenia (33%)
TP (17.5%)

10.5% DAEs [124]

PD-L1
Mosunetuzumab/

Atezolizumab
+ Mosunetuzumab

NCT02500407 1 218 FL, DLBCL,
tFL, iNHL

CRS (28.4%)
Neurologic AE (44%)

CRS (1.4%)
Neurologic AE (3.2%) 5.5% DAEs [125]

PD-L1
CD20

Atezolizumab
+ CD20-TCB (RG6026) NCT03533283 1 36 FL, DLBCL, MCL,

PMBL, LPL

CRS (42%)
Pyrexia (37%)

Anaemia (29%)

Neutropenia (18%)
Anaemia (13%)
No G ≥ 3 CRS

[126]

PD-L1
Atezolizumab

+ KTE-C19
(Axi-cel)

NCT02926833 1/2 28 DLBCL 100%
86%

Neurologic AE (29%)
CRS (4%)

[127]

PD-L1
BTK

Durvalumab
+ Ibrutinib NCT02401048 1/2 61 FL, DLBCL

Diarrhoea (52%)
Fatigue (46%)
Nausea (34%)

56%
Neutropenia 13%
Dyspnea (10%)

51% SAEs
32% DAEs [120]
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Table 2. Cont.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

PD-L1 Durvalumab
+ JCAR014 NCT02706405 1 13 DLBCL, HG-BCL,

PMBL
CRS (38%)

Neurotoxicity (8%) [129]

PD-1 Pembrolizumab NCT01953692 1b 31 DLBCL, FL, PMBL,
cHL, MM

61%
Hypothyroidism

(11%)
Diarrhoea (11%)

Nausea (11%)

11%
Neutropenia
Liver disease

No DAEs
No TRD [130]

PD-1 Pembrolizumab NCT02576990 2 53 PBML
57%

Neutropenia (19%)
Hypothyroidism (8%)

23%
Neutropenia (13%)

2% DAEs
No TRD [108]

PD-1 Nivolumab NCT02038933 2 121 DLBCL, B-NHL

98%
Nausea (17%)
Fatigue (17%)

Diarrhoea (12%)

62%
Neutropenia (4%)

TP (3%)

12% SAEs
3% DAEs
No TRD

[7]

PD-1 Pembrolizumab
+ ASCT NCT02362997 2 31 DLBCL, PMBL,

iNHL
79%

Neutropenia (26%)
19% DAEs
No TRD [102]

PD-1
CD20

Nivolumab
+ Rituximab NCT03245021 1 19 FL, B-NHL

Fatigue (74%)
Infection (59%)
Nausea (36%)

Lipase increased
(11%)

Hyperglycemia (11%)
Infection (11%)

No DAEs [132]

PD-1 Pembrolizumab
+ R-CHOP NCT02541565 1 33 DLBCL, FL

43%
Neutropenia (23%)

Infection (10%)
Syncope (10%)

13% SAEs [133]

PD-1
TLR4
CD20

Pembrolizumab
+ G100

+ Rituximab

NCT02501473
(Discontinued) 1/2 18 FL, MZL 100%

Abdominal pain
(16%)

Diarrhoea (16%)
Anaemia (10%)

10% SAEs
6% DAEs N/A
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Table 2. Cont.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

PD-1
BTK

Nivolumab
+ Ibrutinib NCT02329847 1/2 144 DLBCL, FL, CLL-RT,

SLL

Diarrhoea (33%)
Neutropenia (31%)

Fatigue (26%)

82%
Neutropenia (28%)

Anaemia (23%)

77% SAEs
28% DAEs
No TRD

[135]

PD-1
BTK

Pembrolizumab
+ Acalabrutinib NCT02362035 1/2 61 DLBCL, cHL, CLL,

MM, WM
Neutropenia (15%)

Anaemia (11%) 41% DAEs [136]

PD-1
CDK

Pembrolizumab
+ Dinaciclib NCT02684617 1 128 DLBCL, FL, CLL,

MM

63%
TP (21%)

Lymphopenia (16%)
Anaemia (13%)

32%
Lymphopenia (13%)
Neutropenia (11%)

TP (8%)

3% DAEs
No TRD [137]

PD-1
HDAC

Pembrolizumab
+ Entinostat NCT03179930 2 22 FL, cHL

62%
Neutropenia (48%)

TP (19%)
Anaemia (10%)

18% SAEs
15% DAE [139]

PD-1
CD30

Nivolumab
+ Brentuximab Vedotin NCT02581631 1/2 30

DLBCL,
PMBL, PTCL,
CTCL, MF, SS

83%
Neutropenia (30%)

Peripheral
neuropathy (27%)

53%
Neutropenia (30%)

TP (10%)
Peripheral

neuropathy (10%)

13% SAEs
7% DAEs
No TRD

[106]

PD-1
CD19
CD22

Pembrolizumab
+ AUTO3 NCT03287817 1/2 24 DLBCL, tFL, PMBL

Neutropenia (89%)
TP (58%)

Anaemia (47%)
[140]

PD-1
CD19

Pembrolizumab
+ Tisagenlecleucel NCT03630159 1 8 DLBCL

100%
CRS (25%)

Tachycardia (25%)

50%
Anaemia (25%)

Pancreatitis (25%)
No DAEs [141]

PD-1
CTLA-4

Nivolumab
+ Ipilimumab NCT01592370 1/2 65 cHL, B-NHL,

T-NHL, MM

Fatigue (26%)
Pyrexia (23%)

Diarrhoea (18%)
29%

48% SAEs
8% DAEs
No TRD

[142]

CTLA-4 Ipilimumab NCT00089076 1/2 18 DLBCL, FL, MCL

100%
Diarrhoea (56%)

Fatigue (56%)
TP (28%)

44.4%
Diarrhoea (28%)

Fatigue (6%)
Neutropenia (6%)

[143]
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Table 2. Cont.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

CTLA-4
CD20

Ipilimumab
+ Rituximab NCT01729806 1 33 DLBCL, FL, MCL

Fatigue (33%)
Anaemia (30%)
Diarrhoea (15%)

Lymphopenia (18%)
Diarrhea (12%)
Anaemia (12%)

[144]

CTLA-4 Ipilimumab NCT01822509 1 28 B-NHL

TP (27%)
Chronic GVHD of

liver (10%)
Anaemia (7%)

18% DAEs [145]

CTLA-4 Ipilimumab
+ Lenalidomide NCT01919619 2 11 DLBCL, FL, MCL,

others
Neutropenia (44%)

GVHD (9%) [146]

CD47
CD20

Hu5F9-G4
+ Rituximab NCT02953509 1b/2 115 DLBCL, iNHL

Infusion reaction
(38%)

Headache (34%)
Fatigue (30%)

Anaemia (15%) 7% DAEs [147]

CD47
CD20

TTI-621
+ Rituximab NCT02663518 1 32 DLBCL Infusion reaction

Transient TP [148]

CD47
CD38

TTI-622
+ Daratumumab NCT03530683 1 19 DLBCL, MCL, FL

Abdominal pain
(10.5%)

Fatigue (10.5%)
Nausea (10.5%)

Neutropenia (10.5%)
No G ≥ 3 anaemia or

TP
[149]

CD47
CD20

ALX148
+ Rituximab NCT03013218 1 33 DLCBL, MCL, FL,

MZL

79%
Rash (18%)

Fatigue (9%)
Neutropenia (6%) [150,151]

CD40 Dacetuzumab NCT00103779 1 50 DLBCL, MCL, FL,
MZL

98%
Fatigue (28%)

Headache (20%)
Pyrexia (18%)

30% 26% SAEs
No TRD [152]

CD40 Dacetuzumab NCT00435916 2 46 FL, DLBCL, MZL

98%
Fatigue (41%)

Headache (35%)
Chills (33%)

46% 39% SAEs [153]



Cancers 2021, 13, 214 18 of 43

Table 2. Cont.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

CD40 Lucatumumab NCT00670592 1/2 111
(74)

FL, MZL, MCL,
DLBCL

100%
Chills (39%)

Pyrexia (34%)
Fatigue (25%)

65%
Lipase elevation

(25%)
28% SAEs [154]

CD40
CD20

Dacetuzumab
+ Rituximab

+ chemotherapy
NCT00655837 1 30 DLBCL

100%
CRS (61%)

Nausea (36%)
TP (36%)

21%
TP (6%)

AST/ALT elevation
(3%)

45% SAEs
1 TRD [155]

CD40
CD20

Dacetuzumab
Rituximab

+ chemotherapy
NCT00529503 2 154

(101) DLBCL, FL 80% 44% SAEs
8% DAEs [156]

CD27 Varlilumab NCT01460134 1 90
(18)

MCL, MZL, DLBCL,
CLL, cHL, TCL

59%
Fatigue (24%)

Anaemia (12%)
3% ALP elevation [157]

CD80
CD20

Galiximab
+ Rituximab NCT00363636 3 337 FL Pyrexia (18%)

Anaemia (12%) No TRD [158]

CD80 Galiximab NCT00575068 1/2 38 FL

60%
Fatigue (32%)
Nausea (14%)

Headache (11%)

3%
Axillary pain (3%)
Venous thrombosis

(3%)

No SAEs
No DAEs [159]

CD80
CD20

Galiximab
+ Rituximab NCT00048555 1/2 73 FL

96%
Lymphopenia (48%)
Leukopenia (36%)

Fatigue (36%)

26%
Lymphopenia (14%)

Leukopenia (3%)
Anaemia (3%)

13% SAEs
1 possible TRD [159]

CD80
CD20

Galiximab
+ Rituximab NCT00117975 2 61 FL

13%
Lymphopenia
Leukopenia
Neutropenia

13% of events
Lymphopenia [160]
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Table 2. Cont.

Targets Drug/Regimen Trial ID Phase N Disease All-Grade AEs Grade ≥3 AEs SAEs and
Discontinuation Ref

4-1BB Urelumab NCT01471210 1 60 DLBCL, FL, B-NHL
52%

Fatigue (15%)
Neutropenia (12%)

15% 3.3% DAEs [161]

4-1BB
CD20

Urelumab
+ Rituximab NCT01775631 1 46 DLBCL,

FL

72%
Fatigue (20%)

AST/ALT elevation
(15/13%)

28% 2% TRD (CRS) [161]

4-1BB
PD-1 Urelumab + Nivolumab NCT02253992 1/2 22 DLBCL

63%
Fatigue (26%)

ALT/AST elevation
(13/9%)

ALT/AST elevation
(3/3%) 7% DAEs [172]

4-1BB
CD20

Utomilumab
+ Rituximab NCT01307267 1 67 FL, MCL, DLBCL 95.5%

Fatigue (16%)

3%
Neutropenia

Diarrhoea
ALT elevation

4.5% DAEs
No TRD [162]

CD70 SGN-CD70A NCT02216890
Terminated 1 38 DLBCL, FL, MCL

100%
TP 75%

Anaemia 50%

90%
TP 65% 55% SAEs [163]

Abbreviations: FL, follicular lymphoma; tFL, transformed follicular lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; B-NHL, B-cell non-Hodgkin
lymphoma; iNHL, indolent B-cell non-Hodgkin lymphoma; aNHL, aggressive B-cell non-Hodgkin lymphoma; LBCL, large B-cell lymphoma; HG-BCL, high-grade B-cell lymphoma; cHL, classical Hodgkin
lymphoma; CLL-RT, chronic lymphocytic leukaemia Richter transformation; PMBL, primary mediastinal B-cell lymphoma; PTCL, peripheral T-cell lymphoma; CTCL, cutaneous T-cell lymphoma; MF,
myelofibrosis; SS, Sezary syndrome; MM, multiple myeloma; AE, adverse event; SAE, serious adverse event; TP, thrombocytopenia; AST, alanine aminotransferase; ALT, alanine aminotransferase; ALP, alkaline
phosphatase; CRS, cytokine release syndrome; GVHD, graft-versus-host disease; TRD, treatment-related death; DAE, discontinuation due to adverse event; NA, not available.
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2.3. CD47 Signalling and Inhibition
2.3.1. Overview of the Pathway

CD47 (cluster of differentiation 47) is an integrin-associated molecule belonging to the
Ig superfamily [173] that interacts with SIRPα (signal regulatory protein-alpha), spreading
the “don’t eat me” signal to macrophages, a strategy employed as an immune-mediated
clearance evasion mechanism in several types of cancers [174] (Figure 1). Mechanistically,
the CD47-SIRPα binding leads to tyrosine phosphorylation of SIRPα immunotyrosine in-
hibitory motifs and activates SHP (tyrosine phosphatases Src homology 2 (SH2)-containing
protein tyrosine phosphatase)-1 and -2. The interaction of the phosphatase SH2 domains to
phosphorylated SIRPα disrupts their autoinhibitory activity, triggering enzymatic activity
and, ultimately, leading to the blockade of macrophage phagocytic function [175,176].

Although CD47 is widely expressed on the surface of a broad range of cell types, high
levels of CD47 have also been observed in haematological cancers such as acute myeloid
leukaemia (AML), ALL, CLL, multiple myeloma (MM), myelodysplastic syndrome (MDS),
DLBCL, MCL, and MZL [174,177–182]. High levels of CD47 are considered to be an adverse
prognostic indicator of survival [174].

2.3.2. CD47-SIRPα Axis Inhibition

One of the first attempts to target CD47 was carried out therapeutically in AML pri-
mary human xenograft models [174]. The CD47 antibody B6H12 induced phagocytosis
and eliminated AML stem cells. Subsequently, it was demonstrated that this antibody
synergised with anti-CD20 (which can also bind Fc-receptors), promoting a more potent
prophagocytic signal in B-NHL xenograft models [179,180,183]. Based on these results, the
humanised anti-CD47 antibody Hu5F9-G4 was developed [184]. Preclinical studies showed
that this antibody could bind specifically to CD47, blocking CD47–SIRPα interaction and
enabling macrophage-mediated phagocytosis in primary AML cells. This antibody was
further shown to potently synergise with rituximab in B-NHL xenografts, supporting its
evaluation in a phase-1 clinical trial (NCT02216409) that revealed its safety, pharmacokinet-
ics, and pharmacodynamics [185]. Subsequently, a larger phase-1b/2 study was launched
to evaluate the combination of Hu5F9-G4 with rituximab in 115 B-NHL patients (70 DLBCL
and 45 iNHL (41 FL and 4 MZL); NCT02953509). In this trial, a Hu5F9-G4 and rituximab
combination was well tolerated, with rapid and durable responses [147,186] (Table 1).

Recently, the fully human anti-CD47 IgG4 antibody TJC4 (TJ011133) was shown to
specifically block the CD47-SIRPα axis, enhancing phagocytosis in a set of tumour cell lines
and AML primary cells. In BL and DLBCL xenograft models, TJC4 inhibited tumour growth
and extended mice OS as monotherapy. When combined with rituximab, the antibody
showed superior efficacy in a DLBCL model over the single agent. In addition, single-
dose or repeat-dose treatment of TJC4 minimally affected red blood cells in cynomolgus
monkeys, with no impact on platelets [187].

TTI-621 is a fully human recombinant fusion protein based on the structure of SIRPα
linked to the Fc region of human IgG1; it was conceived and designed as a decoy re-
ceptor. First, in vitro data showed that TTI-621 could bind CD47 and induce a potent
macrophage-mediated antibody-dependent cell phagocytosis (ADCP) and apoptosis in an
extensive range of hematologic and solid tumour cells [188–190]. In vivo data indicated
that the fusion protein was able to block CD47 and impair the tumour growth in several
haematological xenograft models, including AML, BL and DLBCL. Preclinical data also
suggested that TTI-621 was less likely to evoke anaemia when compared to other anti-
CD47, thanks to its low erythrocyte–binding profile [188]. TTI-621 was also suggested to
enhance the adaptive immune response [188,191]. A phase-1, open-label, multicentre study
is currently ongoing to evaluate the activity of TTI-621 as a single agent or in combination
with rituximab in R/R cohorts of haematologic malignancies (NCT02663518; Table 1) [148].
Another set of preclinical data show TTI-622, a new human SIRPα linked to human IgG4,
induces ADCP in a panel of haematological and solid tumour cells, with a superior affinity
for tumour cells than for platelets. In vivo DLBCL xenograft models indicated that TTI-622
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treatment leads to a decrease in tumour growth and improves survival [192]. Based on
these data, a phase-1 dose-escalation study was initiated (NCT03530683). As of April 2020,
19 R/R lymphoma patients have been enrolled (n = 10 DLBCL, n = 5 HL, n = 1 FL, n = 1
MCL, n = 2 peripheral T-cell lymphoma (PTCL)) and objective response has been reported
in 2 DLBCL patients (1 PR and 1 CR) [149].

A newly engineered high-affinity SIRPα-Fc fusion protein, ALX148, was able to trigger
both innate and adaptive antitumor immune responses, characterised by an enhancement
on phagocytosis. In an MCL xenograft mice model, although ALX148 was able to inhibit tu-
mour growth, superior activity was observed by combining this agent with obinutuzumab.
Similarly, in a BL xenograft mice model, the combination of ALX148 with rituximab en-
hanced tumour growth inhibition (TGI) and improved mice survival when compared
to the control group [193]. Currently, ALX148 is being investigated in a phase-1 dose-
escalation/expansion in patients with R/R B-NHL patients (NCT03013218). Preliminary
data showed that ALX148 is well tolerated, with ORR ranging from 41% (9% CR) to 62.5%
(11% CR) [150,151].

Assuming that CD47 is upregulated in both tumour cells and erythrocytes and
platelets, it is understandable that targeting CD47 leads to side effects, including anaemia.
To get through such unwanted effects, a fully human bispecific antibody, TG-1801 (NI-1701),
comprising a high-affinity CD19-targeting arm combined with CD47-blocking arms, with a
range of affinities on a human IgG1 Fc backbone, was developed [194]. In vitro TG-1801
specifically and strongly binds to human B-cells, avoiding hemagglutination. The specific
blockade of the CD47-SIRPα axis on CD19-expressing cells mediates effective killing of
primary and immortalised B-NHL cells via ADCP and antibody-dependent cell cytotoxicity
(ADCC) [195,196]. Moreover, the bispecific antibody prevented the recruitment of CD19 to
the BCR signalling complex, and the coligation of CD19 and CD47 by TG-1801 limited CD19
mobility at the B-cell surface by the cytoskeleton-anchored glycoprotein CD47, inhibiting
B-cell proliferation and BCR-mediated gene expression [197]. While TG-1801 has demon-
strated to be superior to rituximab in killing B-cells from primary leukaemia and lymphoma
cells [196], its combination with the novel glycoengineered anti-CD20 mAb ublituximab
or U2-regimen-associating ublituximab, with the dual PI3Kσ/CK1ε inhibitor umbralisib,
allowed a synergistic effect in both ADCC and ADCP [198,199]. In vivo xenograft BL and
B-ALL models showed that TG-1801 reduced tumour growth and also increased survival
time [196]. Complementarily in DLBCL patient-derived xenografts (PDX), the antibody
reduced tumour burden, with significantly higher efficacy than ibrutinib [200]. Lastly, the
TG-1801–U2 combination has shown synergistic activity in-vivo in a BL xenograft model,
associated with infiltration of effector cells (NK and macrophages) [198,199]. Based on the
preclinical data, TG-1801 is currently in a phase-1 trial (NCT03804996) for histologically
confirmed B-cell lymphoma, relapsed or refractory to prior standard therapy.

2.4. CD40 Signalling and Inhibition

CD40, a member of the TNF receptor family expressed by APCs (DCs, macrophages,
NK cells, and mature B-cells), interacts with its ligand CD40L (CD154), which is expressed
by activated T-cells, stimulating cytokine secretion by B-cells and allowing T-cell activa-
tion [201,202]. CD40 activation promotes the conversion of DCs to APCs, the phagocytic
ability of macrophages, and proliferation and antigen presentation on B-cells [203]. CD40
is expressed in a wide range of B-NHL, CLL and MM [204].

CDX-1140 is a novel agonist antibody against CD40, binding outside of the CD40L lig-
ation site. Preclinical data showed enhanced DC and B-cell activation by CDX-1140, which
synergises with recombinant CD40L to enhance agonist activity [205]. While xenograft mod-
els using CD40+ lymphoma cell lines have shown antitumour activity by CDX-1140, with
attenuated tumour growth and increased survival, safety studies in cynomolgus macaques
support the use of the antibody in humans [203,205,206]. A phase-1 trial (NCT03329950)
is currently recruiting and will evaluate the safety and efficacy of CDX-1140 alone or
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in combination with the soluble recombinant Flt3 ligand CDX-301, pembrozilumab or
chemotherapy (gemcitabine and nab-paclitaxel) [207].

Selicrelumab is an agonist antibody that activates both memory and naïve B-cells
and triggers T-cell activation [208]. Preclinical studies, both in vivo and in vitro, resulted
in antitumour activity via an immune activation; a synergy was observed in vivo when
combined with chemotherapy agents or in a triple-combination with PD-L1 inhibition and
the FAP-IL2v immunocytokine [209]. A phase-1 clinical trial is ongoing (NCT03892525),
with an estimated enrolment of 44 patients, to assess selicrelumab’s safety profile in
combination with atezolizumab in patients with R/R lymphoma.

Ad-ISF35 is a replication-defective adenovirus vector that encodes for the chimeric
protein CD154. Its induction results in an antitumour response associated with macrophage
infiltration and an increased proinflammatory cytokine release that will lead to a break
in tumour immune tolerance and tumour regression [210,211]. Both in vitro and in vivo
assays have shown safer administration and significant antitumoral activity as a single
agent. In parallel, combinations of this agent with anti-PD1 or a triple-combination with an
anti-PD1 and an anti-CTLA-4 have shown synergistic effects in melanoma [212].

Dacetuzumab, also known as SGN-40, provides inhibitory proliferation and apoptosis
signals in high-grade B-NHL. Its signalling contributed to cell death by the degradation of
BCL-6 and an increased expression of proapoptotic proteins [213–215]. A phase-1 clinical
trial (NCT00103779) [152] was completed with 50 patients of refractory or recurrent B-
cell lymphomas, and a phase-2 clinical trial (NCT00435916) [153] was completed with 46
relapsed DLBCL patients; however, due to its modest effect as a single agent, clinical trials
were continued as a combination with other immune checkpoint inhibitors. A phase-1
clinical trial (NCT00655837) was completed, with 30 patients receiving dacetuzumab in
combination with rituximab and chemotherapy (gemcitabine) [155]. A phase-2 clinical trial
(NCT00529503) was completed with 154 DLBCL and FL patients with improved OR when
combined with rituximab and chemotherapy (etoposide, carboplatin, and ifosfamide) [156].

SEA-CD40 is an agonist antibody with improved properties in vitro and in vivo when
compared to dacetuzumab, as it induces more robust cytokine production and results in
the activation of CD4+ and CD8+ T-cells [216,217]. A phase-1 clinical trial (NCT02376699)
with an estimated enrolment of 135 patients is currently open to assess SEA-CD40’s safety
profile as a single agent [218].

Lucatumumab, also known as CHIR-12.12, is an antagonist antibody that blocks
CD40/CD40L interaction, thereby blocking a survival signal in B-cell lymphomas [219].
In xenograft models, the antibody reduced tumour growth and increased CD40 expres-
sion on tumour tissue [220,221]. Lucatumumab was tested in a phase-1/2 clinical trial
(NCT00670592) with 74 NHL patients; nevertheless, it was discontinued in 2013 due to
minimal clinical activity [154].

2.5. CD27 Signalling and Inhibition

CD27 is a transmembrane homodimeric phosphoglycoprotein and a member of the
TNF superfamily; its ligand is CD70. It is constitutively expressed by most CD4+ and CD8+
T-cells, memory B-cells, and a portion of NK cells [222,223]. The CD27-CD70 activation
on T-cells causes the activation, proliferation, survival, and maturation of the effector and
memory capacity of those cells as in-vivo stimulation of CD27 with its ligand promotes
strong cytotoxic T-cells responses. Naïve T-cells express CD27, and TCR signalling further
upregulates its expression, suggesting a role during T-cell priming. Its stimulation on the B-
cell subpopulation activates and promotes the generation of plasma cells, its proliferation,
and the production of immunoglobulin [222–224]. Finally, it is also expressed in NK
cells, where its activation induces cytolytic activity. Its expression is also detected in T-
cell populations of different cancer subtypes, including B-cell malignancies, suggesting
potential therapeutic targeting of CD27 immunomodulation [225].

Varlilumab (CDX-1127), is a monoclonal antibody that acts as an agonist of CD27-
CD70 interaction. This anti-CD27 mAb provided costimulatory signals to human T-cells
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in a TCR-dependent manner and enhanced the number and activity of TILs [226,227].
Both in vitro assays and in vivo models have shown direct antitumor activity against
CD27-positive lymphomas [228]. In-vivo assays, in combination with other immune-
checkpoint-blocking antibodies such as anti-PD-L1 or anti-CD20 Abs, have demonstrated
a synergistic antitumour activity [228,229]. A phase-1 clinical trial (NCT01460134) was
completed with 25 DLBCL and FL patients to assess the safety and pharmacokinetic profiles
of varlilumab [157]. Doses up to 10 mg/kg weekly were well tolerated, and the results
obtained in this clinical trial support the hypothesis that combination therapy can enhance
and improve the overall outcome. Nowadays, two clinical trials are active: a phase-1/2
(NCT03307746) study and a phase-2 (NCT03038672) study, with an estimated enrolment of
40 and 106 patients, aimed at evaluating varlilumab–rituximab and varlilumab–nivolumab
combinations in R/R B-cell lymphoma patients, respectively [230,231].

2.6. CD80 Signalling and Inhibition

Cluster of differentiation 80 (CD80, B7-1) is a type I membrane protein member of the
Ig superfamily that is expressed by various immune cells, from monocytes to APCs [232].
It binds to CD28 on the T-cell surface to activate the autoregulation of several functions,
including CTLA-4 signalling (Figure 1). The interaction between this protein and the CD28
antigen is a costimulatory signal for the activation and proliferation of T-cells, inducing
cytokine production [233]. Due to its intricate role in immune regulation, targeting CD80 for
diverse B-cell lymphomas and autoimmune diseases has been attractive to both researchers
and clinicians [234].

To date, only one antibody targeting CD80 has been developed; it is being evaluated in
several clinical trials in B-NHL patients, specifically in FL. Galiximab (IDEC-114) is an IgG1
lambda mAb, with a high affinity to CD80. Galiximab effectively blocks CD80–CD28 inter-
actions on T-lymphocytes but has no significant effect on CD80–CTLA-4 interactions [235].
This interaction usually leads to downregulation of T-cell activity, and it should, therefore,
remain intact during galiximab therapy. Galiximab acts primarily via cross-linking of CD80
molecules and induction of ADCC, but it also inhibits cellular proliferation and upregulates
apoptotic proteins [159]. In 2002, the first phase-1/2 clinical trial was launched, with the
enrolment of 38 R/R FL patients (NCT00575068) [159]. In the same year, the combination
of galiximab with rituximab was also evaluated in 73 patients with progressive FL that
had failed at least one prior standard therapy, excluding rituximab (NCT00048555). This
combination has also been evaluated as a first therapy for stages 3 and 4 or bulky FL in a
2005 clinical trial with 61 patients enrolled (NCT00117975) [160]. In 2006, a randomised
phase 3 trial was initiated to evaluate if the galiximab–rituximab combination extended PFS
compared to rituximab + placebo in 337 patients with grade 1–3a FL that had progressed
or relapsed after at least one prior treatment (NCT00363636). One hundred seventy-five
patients were given the combination and the remaining 162 were given rituximab + placebo,
with 3% more incidence of side effects in the combination group [158].

2.7. 4-1BB Signalling and Inhibition

4-1BB (CD137, TNFRSF9) is another surface glycoprotein member of the TNF recep-
tor superfamily that is expressed in a variety of immune cells, including T-lymphocytes
and NK cells. A-1BB ligation by its natural ligand 4-1BBL (CD137L), expressed by DCs,
macrophages and B-cells, among others, induces the activation of NF-kB and MAPK
pathways [236], increasing survival, proliferation and effector function [236,237]. 4-1BB
is considered a promising target for immunotherapy in B-NHL patients since microarray
analyses have shown the overexpression of 4-1BB in DLBCL and FL biopsies [238]. Accord-
ingly, treatment with agonistic anti-4-1BB antibodies in a mouse model of B-cell lymphoma
eliminated the tumour in 60% of the animals, which became immune to a rechallenge
after 100 days [238]. Stimulation of NK cell proliferation and function [239] and inhibition
of Treg cell suppressive activity [240] could be contributing to the antitumoral effect of
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anti-4-1BB therapy as well; however, the role of 4-1BB signalling in these cell types is still
controversial [241,242].

Urelumab (BMS-662513), the first anti-4-1BB agent to enter clinical trials, is an agonistic
antibody that has shown costimulatory activities both in vitro and in primates [243,244]. In
a phase-1 clinical trial (NCT01471210) with R/R B-NHL patients dosed with urelumab as a
single agent, ORRs were modest in both DLBCL and FL patients (Table 1). Furthermore,
half of the responses occurred in patients treated with urelumab 0.3 mg/kg, above the later-
determined maximum tolerated dose (MTD) of 0.1 mg/kg, and toxicity was prominent
(Table 2) [161].

The combination of urelumab plus rituximab was evaluated in a phase-1 clinical trial
(NCT01775631) in relapsed B-NHL patients. The toxicity profile was similar to that of
monotherapy, and ORRs were similar or lower than those previously reported for rituximab
monotherapy (37% in DLBCL and 36–48% in FL), indicating no synergistic effect of the two
drugs [161]. On the other hand, the combination of urelumab with nivolumab was well
tolerated in a phase-1/2 clinical trial (NCT02253992) for refractory DLBCL patients. Again,
no significant clinical benefit was found, as none of the patients achieved a response [172]
despite the promising additive effect observed in animal models of solid cancers [245].
After these overall discouraging results in the clinical setting, there are currently no trials
evaluating urelumab in B-NHL patients.

Utomilumab (PF-05082566) is an anti-4-1BB antibody with promising costimula-
tory activity in vitro and in vivo and antitumor efficacy in several solid cancer mod-
els [237,244,246]. Utomilumab monotherapy displayed manageable toxicity in a phase-
1 clinical trial (NCT01307267) with 55 patients, including 2 relapsed B-NHL; however,
these were not included in the efficacy analyses [247]. In the same trial, utomilumab
in combination with rituximab achieved an ORR of 21% (n = 67 B-NHL) and presented
an improved safety profile [162] that is likely due to the ability of utomilumab to block
ligand binding, in contrast with urelumab [244]. Several clinical trials (NCT02951156,
NCT03440567, NCT03704298) are currently evaluating this antibody in combination with
other immunotherapeutic agents like avelumab, ibrutinib, CD19-CAR T-cells, or chemother-
apeutic agents, but no results are available at the moment.

Two novel anti-4-1BB antibodies are being evaluated in clinical trials that include
refractory B-NHL patients. The ligand-blocking agonistic antibody ADG106 has shown
promising results in animal models of several cancers [248,249] and is being tested as a
monotherapy in two clinical trials (NCT03707093; NCT03802955). The 4-1BB x PD-L1
bispecific antibody MCLA-145 has been developed with the specific aim of activating
4-1BB signalling in the tumour, where PD-L1 is expressed, as well as blocking immune-
inhibitory signalling from the PD-1/PD-L1 axis. Antitumor efficacy has been reported in
mouse models of several solid cancers [250,251], and, consequently, a phase-1 clinical trial
(NCT03922204) is testing MCLA-145 as a single agent.

2.8. CD70 Signalling and Inhibition

CD70 is another transmembrane glycoprotein of the TNF superfamily that acts as
a ligand for CD27. CD70 is transiently found on T-cells, B-cells, DCs, and also NK
cells [222,223,252]. CD70 is controlled and induced by antigen receptor stimulation and its
expression is under cytokine regulation; its expression is enhanced due to proinflammatory
cytokines, such as IL-1a or IL12, or decreased due to anti-inflammatory cytokines like
IL-4 or IL-10 [253]. The protein is also expressed in highly activated lymphocytes, and its
expression was confirmed across different subtypes of T- and B-cell lymphomas but found
absent in their normal counterparts [254,255].

SGN-CD70A is a potent antibody–drug conjugate (ADC) that consists of three func-
tional subunits composed of an anti-CD70 antibody, a protease-cleavable linker, and a
DNA-crosslinking pyrrolobenzodiazepine (PBD) dimer drug. Upon binding with its target,
CD70, the complex is internalised and traffics to the lysosomes, where the drug is released
and will initiate cellular events when it crosslinks DNA. The drug works by activating
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the DNA damage pathways, in both in-vitro and in-vivo studies, causing a G2 cell cycle
arrest and high levels of DNA damage in treated cells [256]. Preclinical in-vitro assays
have demonstrated that the formation of double-strand breaks (DSB) is an early event
that will be followed by an inhibition of proliferation and induction of apoptosis in NHL
cell lines [254,257]. SGN-70A inhibited cell growth and induced higher caspase activity in
CD70-positive cell lines of cutaneous T-cell lymphoma (CTCL) and patient-derived T-cell
lymphoma primary cells. A phase-1 clinical trial (NCT02216890) with 38 patients of R/R
MCL and DLBCL was terminated to assess the safety profile of SGN-CD70A [163]. The
treatment showed antitumor activity, but no further clinical trials were conducted due to
the frequency and severity of the AEs (Table 2).

2.9. LAG-3 Signalling and Inhibition

LAG-3 (lymphocyte activation gene-3), a CD4 homolog, is a member of the Ig super-
family expressed by TILs, activated CD4+ and CD8+ T-cells, regulatory T-cells, and NK, DC
and B-cells [258–260]. LAG-3 has a high affinity for MHC class II molecules and exerts an
inhibitory role on T-cell-mediated immune responses [261] and CD4+ and CD8+ memory
T-cell activation [262]. Previous data has shown that LAG-3 is coexpressed with PD-1 in the
development of T-cell exhaustion in viral infections [263]. In FL patients, LAG-3 expression
was observed within PD-1+ functionally exhausted T-cells. Interestingly, the dual treatment
with anti-PD-1 and anti-LAG-3 antibodies restored the T-cell function more efficiently. In
a small cohort of 28 patients with FL, LAG-3 expression by T-cells was clinically relevant
and related to patient outcome [264]. Recently, LAG-3 overexpression has been shown in
a cohort of 163 DLBCL patients, mostly at the surface of CD4+ Tregs and CD8+ TILs. In
this cohort, a high expression of LAG-3 and PD-1 was associated with inferior PFS and
OS. In addition, the authors were able to identify a population of regulatory LAG3high

B-cells that polarise tissue-resident macrophages to promote a tolerogenic TME, which
could influence the response to therapy [265]. Recently, a very innovative approach was
used to unravel TME architecture in cHL by spatial-resolution–based single-cell analy-
sis. The authors were able to identify and characterised novel cellular subpopulations,
including immunosuppressive LAG3+ T-cells. Interestingly, it was observed that of LAG3+
CD4+ T-cells did not coexpress PD-1. Mechanistically, an in-vitro HL coculture system
revealed crosstalk between the cytokines and chemokines released by Hodgkin and HRS
cells and LAG3+ T-cells, favouring the immunosuppressive activity in the cHL TME. Fur-
thermore, the removal of the LAG3- population in primary samples of cH could restore
T-cell activity [266].

IMP321 was the first LAG-3 Ig fusion protein investigated in clinical trials [267].
Relatlimab (BMS-986016), the first anti-LAG-3 antibody, is being evaluated as a single agent
or in combination with nivolumab in a phase-1/2a clinical trial (NCT02061761) with 132
patients with R/R B-NHL, CLL, cHL and MM. The results of this study are expected by
January 2021. In parallel, a phase-2 open-label study (NCT03365791) of the humanised
IgG4 mAbs spartalizumab and ieramilimab (LAG525) was conducted in patients with
solid tumours and haematological cancers (n = 7 DLBCL). The results were assessed as
a clinical benefit rate after 24 weeks, and the combination therapy showed promising
activity in DLBCL patients who reach the expansion criteria [268]. Recently, a high-affinity
anti-LAG-3 IgG1κ antibody, INCAGN02385, was engineered. Preclinical data showed that
the antibody, alone or in combination with an anti-PD1, enhanced T-cell responsiveness
to TCR stimulation. These data supported the evaluation of INCAGN02385 in early
phase-1 (NCT03538028) testing in patients with advanced or metastatic cancers, including
DLBCL [269]. Lastly, fianlimab (previously known as REGN3767), a human-engineered
IgG4 antibody, was able to rescue T-cell activation in vitro and synergise with cemiplimab.
This combination was able to surpass the inhibitory effects of MHC II/LAG-3 and PD-L1
signalling. Indeed, in a PD–1xLAG-3 knock-in mice model, REGN3767 treatment was
able to reduce tumour growth and enhance the antitumor efficacy of cemiplimab [270].
Accordingly, simultaneous PD-1 and LAG-3 blockades are currently being investigated



Cancers 2021, 13, 214 26 of 43

as a phase-1 study in multiple tumour subtypes (NCT03005782). Finally, a radionuclide-
conjugated antibody, 89Zr-REGN3767, designed for immuno-PET analysis, was useful to
identify the LAG-3-expressing intratumoral T-cells in a BL xenograft model and human
PBMCs [271]. Following these results, an early phase-1 study is evaluating the 89Zr-DFO-
REGN3767 anti-LAG-3 antibody for PET in R/R DLBCL patients (NCT04566978).

2.10. TIM-3 Signalling and Inhibition

TIM-3 (T-cell immunoglobulin and mucin-domain containing-3) is an Ig superfamily
member that is preferentially expressed in fully differentiated Th1 lymphocytes [272]. TIM-
3 has recently emerged as an immune checkpoint receptor in cancer due to its selective
expression in tumour tissue and the key role it plays in immunosuppression [273]. In
DLBCL patients, an increased level of TIM-3 was observed in both CD4+ and CD8+ T-cells,
which was positively correlated with tumour stages [274]. In addition, it was described
that TIM-3 is coexpressed with PD-1 in the CD3+ T-cells of patients with DLBCL, and
high levels were related to tumour stage and response to conventional chemotherapy [275].
More recently, in a set of DLBCL patients, it was shown that high levels of TIM-3 in tumour
cells and TILs were associated with worse OS. The authors also suggested that the TME
could be directly affected by TIM-3, which leads to decreased immune surveillance and
tumour clearance [276]. Preclinical data pointed out the relevance of blocking TIM-3
together with PD-1, in particular, in several cancer models [277]. These data led to the
clinical development of TIM-3 antibodies, which are being tested in combination with
anti-PD-1/L1 mAbs. However, so far, no clinical trial is evaluating the effect of anti-TIM-3
alone or in combination therapy in patients with B-NHL.

2.11. OX40 Signalling and Inhibition

OX40 (CD134, TNFRSF4) is another member of the TNFR superfamily, mostly ex-
pressed in CD4+ and CD8+ T-cells. Its natural ligand, OX40L (CD252), is expressed in DCs,
B-cells and macrophages, among others, and activates the NF-kB, MAPK and BCL-2/XL-
dependent antiapoptotic pathways [278,279]. OX40 signalling on T-cells promotes survival
and proliferation, as well as CD4+ T-cell production of IL-2, IL-5 and IFN-γ [280,281].
OX40 signalling has been shown to reduce the ability of Treg to suppress T-cell prolifer-
ation [282], setting the basis for the antitumor activity of the anti-OX40 antibody [283].
The first anti-OX40 antibody evaluated in NHL patients, MEDI-6469, is a murine antibody
with demonstrated agonistic T-cell activity in animal models [284]. The combination of
MEDI6469 plus rituximab was tested in a phase-1/2 clinical trial, which included 4 DLBCL
cases. No responses were detected, as two patients presented stable disease and the other
two patients died during the trial (NCT02205333). After early termination of this trial in
2016, MEDI-6469 has not been further evaluated in lymphoma patients.

The human OX40-agonist PF-04518600 has been reported to promote human T-cell
proliferation, to increase cytokine production, to mediate Treg cell depletion ex vivo and
to inhibit tumour growth in a mouse model of lymphoma [285,286]. Currently, a phase-1
clinical trial (NCT03636503) is evaluating PF-04518600 in combination with rituximab,
utomilumab and avelumab in FL patients.

BMS-986178 is another human OX40-agonist with costimulatory effects observed
in ex vivo human CD4+ T-cells as it enhances their T-cell effector functions and inhibits
T-cell suppression by Treg cells [287,288]. After demonstrating a favourable safety pro-
file in mice [287], BMS-986178 is currently being evaluated in a phase-1 clinical trial
(NCT03410901) in combination with the TLR9 agonist SD-101 and radiotherapy in B-NHL
patients, including FL, MCL and MZL, among others.

2.12. TIGIT Signalling and Inhibition

TIGIT (T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibitory
motif) domain) is an inhibitory receptor that is expressed in CD4+ and CD8+ T-cells, Tregs,
and NK cells, among others. Its main ligand, CD155 (poliovirus receptor, PVR), is expressed
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on DCs, B-cells and macrophages [289,290]. Studies with mouse and human cells have
revealed a variety of immunomodulatory functions of the TIGIT/CD155 axis, including
polarization towards tolerogenic phenotypes of DCs and M2 macrophages, inhibition
of NK cell functions, inhibition of proliferation and cytokine production by T-cells, and
stimulation of Treg cells. Moreover, TIGIT blocks the costimulatory activity of DNAM1
(DNAX accessory molecule-1, CD226), which binds to CD155 with lower affinity than
TIGIT [290].

Tumoral samples from B-NHL patients, including FL, DLBCL, MCL, MZL and CLL,
present overexpression of TIGIT in CD4+ and CD8+ T-cells, which produce lower levels
of proinflammatory cytokines as well as expression of the ligand CD155 in the TME [291].
In FL patients, high numbers of TIGIT+ T-cells have been associated with lower EFS and
OS [292].

Two monoclonal antibodies targeting TIGIT are currently being evaluated in clinical
trials with NHL patients. SEA-TGT (SGN-TGT) is a human anti-TIGIT antibody that blocks
ligand binding and allows DNAM1 costimulatory signalling. This led to Treg depletion
and CD8+ T-cell activation in in-vitro and in-vivo models, in which the drug induced a
long-term antitumor response and made animals immune to a tumour rechallenge [293]. A
phase-1 clinical trial (NCT04254107) recently tested SEA-TGT as a monotherapy in patients
with cHL, DLBCL and PTCL, among others. The other anti-TIGIT antibody, tiragolumab
(MTIG7192A, RG6058), is also being tested in a phase-1 clinical trial (NCT04045028), alone
or in combination with rituximab, in B-NHL patients.

Following the observation that TIGIT and PD-1 are coexpressed in the intratumoral T-
cells of NHL patients [291] and the favourable results of the combination of anti-TIGIT and
anti-PD-1/PD-L1 in preclinical models and some clinical trials for solid cancers [289,294],
the combination will, most likely, be evaluated in NHL patients in future clinical trials.

3. Mechanisms Underlying B-Cell Lymphoma Refractoriness to Immune
Checkpoint Blockade

Resistance to immune checkpoint blockade therapy in human cancers was extensively
reviewed by Bellone M and Elia A [295]; however, the mechanisms underlying B-cell
lymphoma refractoriness to immune checkpoint blockade are still poorly understood.

Although major advances have been made in the last 20 years to overcome the re-
fractoriness of B-NHL patients to standard therapies through the introduction of immune
checkpoint blockades in the clinical setting, either as single agents or in combination
therapies (Table 1 and Figure 2), several parameters can impair the efficacy of these new
approaches. Patient-intrinsic factors such as age, sex, HLA heterozygosity or loss of β2-
microglobulin (B2M), amplification of oncogenic signalling pathways, immunosuppressive
cells and molecules present in the TME may impair antigen recognition and contribute to
the failure of immune checkpoint blockades [296,297] (Figure 3).

The frequent PD-L1 aberrant expression that is found among lymphoma patients
results in the most responsive cancer type to anti-PD1 therapy. However, the PD-1/PD-
L1 blockade can be strongly influenced by disease-specific factors, and its predictive
value in clinical trials is still controversial. The inconsistent data could be attributable
mainly to the variable PD-L1 resources (tumour cells, tumour microenvironment cells,
peripheral blood), the differences in staining (including detecting antibodies) procedures,
and positive/negative PD-L1 cut-offs. Additionally, it has been shown that PD-L1 can
interact in cis with CD80 on APCs and then disrupt the binding between PD-1 and PD-
L1 [298]. The functional effects of alternative binding partners also highlight the differences
seen in the efficacy of PD-1/PD-L1 immunotherapy in different biological settings.
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Figure 3. Mechanisms of resistance to immune checkpoint blockade. The deregulation of MHC class I components
such as the loss of β2 microglobulin (B2M) and the loss of human leukocyte antigen (HLA) heterozygosity as well as
defects in IFN signalling pathways may impair antigen recognition by antitumor CD8+ T-cells. Amplification of oncogenic
signalling pathways such as PI3K/AKT/mTOR, Wnt/β-catenin, and MAPK increases the production of immunosuppressive
cytokines, trigger T-cell exclusion from TME and may also result in resistance to immune checkpoint blockade. Epigenetic
(histone acetylation or DNA methylation) and genetic (deleterious mutations) alterations are crucial triggers of gene
expression disorders related to sustained T-cell exhaustion that could eventually cause the failure of immune checkpoint
therapy. Moreover, myeloid-derived suppressor cells (MDSCs), Tregs, tumour-associated macrophages (TAMs), and cancer-
associated fibroblasts (CAFs) are major immunosuppressive cell types within the TME that may contribute to resistance to
immune checkpoint blockade. Immunosuppressive molecules such as TGF-β and IFN-γ, secreted by tumour cells, myeloid
cells and macrophages in the TME, may also suppress the functions of effector T-cells, rendering immune checkpoint
blockade ineffective.

There are several mechanisms determining if a patient will respond or not to a PD-
1/PD-L1 blockade. Weakly immunogenic tumours may have an insufficiently active T-cell
population to respond to PD-1/PD-L1 blockade; additionally, potentially immunogenic
tumours will also be resistant to PD-1/PD-L1 blockade if they develop mechanisms to
suppress the activation and infiltration of T-cells after the treatment. Moreover, patients
may become resistant to PD-1/PD-L1 therapy if they have insufficient reinvigoration of
exhausted tumour-specific CD8+ T-cells or if they have lost target antigens or the ability to
present them. Finally, some patients might initially respond to PD-1/PD-L1 blockade but
become resistant if the antitumour T-cells are short-lived [299].

There are also epigenetic mechanisms of B-lymphoma cells driving the resistance
to immune checkpoint blockades. The in vitro and in vivo data from Zheng et al. [300]
showed that miR-155 overexpression enhances PD-L1 expression, reduces peripheral blood
immune cells, induces CD8+ T-cell apoptosis and dysfunction via AKT/ERK dephospho-
rylation, and decreases the survival of DLBCL patients. It has also been shown that histone
deacetylase 3 (HDAC3) is another important epigenetic regulator of PD-L1 in B-cell lym-
phoma as its inhibition increases PD-L1 transcription, resulting in a better clinical response
to PD-L1 blockade [301].
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The molecular mechanisms of the immune environment in regulating the efficacy of
immune checkpoint blockades in B-cell lymphoma is poorly understood. It has been shown
that T-cell-inflamed tumours are enriched for sensitivity to PD-1 blockade therapy [302].
Conversely, T-cell noninflamed tumours present low-infiltrating immune cells and are
typically resistant to immune checkpoint blockade therapy [303]. Inflamed lymphomas
are characterised by the presence of prominent T-cell infiltration [304], genetic alterations
that facilitate escape from immune surveillance [78,82,305,306], and frequent mutations,
resulting in hyperactivity of the NF-kB signalling pathway [78,307].

Hyperprogressive disease has been found in 9% of patients who received anti-PD-
1/PD-L1 therapy [308,309]. The hyperprogression is associated with the elderly age of
patients but not tumour burden or cancer type [308]. MDM2/MDM4 amplification and
EGFR aberration are correlated with a higher risk of hyperprogression in solid cancers [309],
although it was little known in lymphoma. Recent data showed that patients experiencing
an hyperprogression have a higher prevalence of PD-L1− disease [308]. It is predicted to be
because the engagement of PD-1 with anti-PD-1 mAb inhibits but does not augment T-cell
activations. Therefore, anti-PD-1 mAbs might be PD-1 agonists rather than antagonists
in PD-L1− status. The disease might also rapidly progress through interaction between
PD-L1 and CD80 instead of PD-1 for the blocking duration by anti-PD-1 mAbs in PD-L1+
status [310]. Some polymorphisms of PD-1 could also affect the action of anti-PD-1 mAbs,
and, thus, hyperprogression could be possible after PD-1 blockade [311].

4. Conclusions and Future Perspectives

Despite the remarkable implementation of immune checkpoint therapies in the last 5 to
6 years in determined subtypes of lymphoma, including cHL and PMBL, the applicability of
these approaches in the management of R/R B-NHL has, so far, been mixed and predicting
which lymphoma will respond to immune checkpoint blockade is currently not accurate. To
date, pembrolizumab is the only FDA-approved agent for use with R/R B-NHL (i.e., PMBL)
patients, illustrating the fact that, conceptually, PD-1 blockade in B-NHL appears to be
promising and rarely related to severe immune-related AEs [7,97,103]. However, the
efficacy of this approach is low, with no long-term durable responses except in PMBL,
PCNSL, and PTL, which are due to alterations of chromosome 9p24.1 and the expression of
PD-L1/PD-L2. To improve the efficacy of these agents, there have been great efforts made
on combination immunotherapy with PD-1/PD-L1 and CTLA-4 checkpoint inhibitors. The
superior outcomes of combined immunotherapy over single-agent regimens in preclinical
studies, together with the approval of nivolumab plus ipilimumab, give hope to the
therapeutic potential of CTLA-4 blockade and its possible combination with PD1/PD-
L1 blockers.

Finally, understanding the complex interplay between malignant cells, lymphoid TME
and immune-accompanying cells is mandatory in order to identify the specific lymphoma
types that are vulnerable to a determined checkpoint and still requires improvement in
the detection methods. To this aim, patient preselection based on accurate genomic and
phenotypic examination of the TME will be necessary to identify the best target(s) of
interest, either in monotherapy or in combination therapy, and facilitate the design of
biomarker-driven trials.
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