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Abstract

Identification of the structure-function relationship of heparin, particularly between 2-O-, 6-

O-, and N-sulfation and its anticoagulant or anti-inflammatory activities, is critical in order to

evaluate the biological effects of heparin, especially in conjunction with modifications for oral

formulation. In this study, we demonstrated that removal of 2-O, 6-O, or N-desulfation and

their hydrophobic modifications have differential effects on the blocking of interactions

between sLeX and P-and L-selectins, with highest inhibition by 6-O desulfation, which was

consistent with their in vivo therapeutic efficacies on CIA mice. The 6-O desulfation of lower

molecular weight heparin (LMWH) retained the ability of LMWH to interfere with T cell adhe-

sion via selectin-sLeX interactions. Furthermore, 6DSHbD coated on the apical surface of

inflamed endothelium directly blocked the adhesive interactions of circulating T cells, which

was confirmed in vivo by suppressing T cell adhesion at post-capillary venular endothelium.

Thus, in series with our previous study demonstrating inhibition of transendothelial migra-

tion, oral delivery of low anticoagulant LMWH to venular endothelium of inflamed joint tis-

sues ameliorated arthritis by the stepwise inhibition of T cell recruitment and provides a

rationale for the development of modified oral heparins as innovative agents for the treat-

ment of chronic inflammatory arthritis.

Introduction

T cells play a critical role in the pathogenesis of rheumatoid arthritis (RA) evidenced by the

genetic association with major histocompatibility complex class II alleles and the T cell infil-

trates within arthritic tissues [1, 2]. Recruitment of effector/memory T cells to specific sites of

inflammation is an essential part of the immune response in chronic inflammatory disorders.

As T cells contact activated endothelial cells at inflamed tissues, process of rolling, firm
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adhesion, and transendothelial migration occur through interaction between adhesion mole-

cules, including selectins, intercellular adhesion molecules (ICAMs) and vascular cell adhesion

molecules (VCAMs). Guidance cues, such as adhesion molecules and chemokines play a criti-

cal role in regulating T cell extravasation and infiltration in tissues during inflammatory

response [3]. Thus, therapeutics that alter cell migration represent a particularly promising

class of the new anti-inflammatory drug, such as anti-α4 integrin monoclonal antibody [4]

and mimetics of sialyl-LewisX (sLeX) [5, 6].

Heparin is a highly sulfated, linear polysaccharide composed of alternating units of hexuro-

nic acid and glucosamine [7]. In addition to its well-established anticoagulant activity, medi-

ated by high-affinity binding to antithrombin via a unique pentasaccharide sequence, heparin

has been proposed to play a regulatory role in limiting inflammation [8]. Indeed, therapeutic

efficacy in clinical trials of patients with inflammatory disorders [9, 10] may support the poten-

tial anti-inflammatory effects of heparin.

Several mechanisms have been proposed to explain the anti-inflammatory activity of hepa-

rin [11]. The therapeutic effects of heparin have been mainly attributed to its ability to inhibit

the interaction between leukocytes and activated endothelial cells (ECs) and to neutralize

inflammatory mediators, such as chemokines and growth factors at the site of inflammation

[12–14]. We have shown that 6-O desulfation of lower molecular weight heparin (LMWH)

conjugated with deoxycholic acid inhibits transmigration of T cells through activated ECs and

inhibits recruitment of T cells into inflamed arthritis tissues [15]. However, the efficacy of

desulfation of other sites of LMWH on the anti-inflammatory functions has not been reported

yet. Furthermore, regulatory mechanism of modified heparins on the direct interaction

between ECs at post-capillary venules and T cells has not been fully elucidated.

The size and charge of heparin, however, are generally accepted to preclude absorption

from the gastrointestinal tract, and make parenteral administration a necessity (NRI 2002). A

variety of formulation and enhancing strategies to increase oral bioavailability of heparin have

been investigated [16–19]. A lipidation strategy which involves conjugation of deoxycholic

acid (DOCA) to facilitate its transport through the intestinal epithelium has been successfully

applied to desulfated LMWH in our previous reports [15, 20]. Thus, identification of modified

LMWHs that exert higher anti-inflammatory efficacy as well as lower anti-coagulant activity

offers not only an insight into the mechanisms of heparin action, but also significant potential

for development of oral agents. In this study, we investigated whether desulfated LMWHs at

different sites of the disaccharide unit accompanied by conjugation with DOCA modulate the

T cell adhesion on ECs during stepwise recruitment of T cells and whether they are differen-

tially effective in suppressing disease activity in inflammatory arthritis.

Materials and methods

Reagents and antibodies

The sources of reagents are as follows: protease-free bovine serum albumin (BSA, Miles Inc.,

Kankakee, IL), polyacrylamide-sialyl LewisX (PAA-sLeX; Glycotech, Rockville, MD), carboxy-

fluorescein diacetate succinimidyl ester (CFSE; Molecular Probes, Eugene, OR), bovine type II

collagen (CII), complete and incomplete Freund’s adjuvants (CFA and IFA, Chondrex, Red-

mond, WA), Bradford protein assay kit (Bio-Rad Laboratories, Hercules, CA), phytohemag-

glutinin (PHA; GibcoBRL, Rockville, MD), recombinant human IL-2 (Chiron, Amsterdam,

NL), or mouse IL-2 (eBioscience, San Diego, CA). Recombinant human P-selectin-Fc chimera,

TNF-α, and SDF-1α were purchased from R&D Systems (Minneapolis, MN). EDTA, Triton

X-100, p-nitrophenyl N-acetyl-β-D-glucosaminide, Mayer’s H&E, protein A, and type IV
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collagenase were purchased from Sigma-Aldrich (Saint Luis, MO). Antibodies against human

CD3ε (clone 14-2C11; eBioscience) and P-selectin (clone 9E1) were used.

Heparin synthesis

LMWH-bisDOCA (HbD), 2-O desulfated-HbD (2DSHbD), 6DSHbD and N-desulfated N-

acetylated-HbD (NDSHbD) were synthesized as previously described [15, 20]. Briefly, N-deox-

ycholylethylamine (DOCA-NH2) or N-bisdeoxycholylethylamine (bisDOCA-NH2) was

chemically conjugated to the carboxylic groups of LMWH, 2DS-LMWH, 6DS-LMWH and

NDSHbD. To activate carboxylic groups, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride was added to dissolved LMWH, 2DS-LMWH, 6DS-LMWH, or NDSH-LMWH

in formamide, DOCA-NH2 or bisDOCA-NH2 in formamide and/or dimethylformamide was

added dropwise. The mixture was washed in cold ethanol after a 12 hours reaction. A Coatest

anti-factor Xa (FXa) chromogenic assay (Chromogenix, Milano, Italy) was used to determine

the anticoagulant activity. Sulfuric acid assay was used to determine the conjugation ratios of

DOCA-NH2 or bisDOCA-NH2 to LMWH, 2DS-LMWH, 6DS-LMWH, or NDS-LMWH,

respectively [21]. Structures of modified heparins were shown in Fig 1.

ELISA inhibition assay

ELISA inhibition assays were performed as previously described [13]. Briefly, PAA-sLeX was

coated (200 ng/well) onto ELISA plates (Costar, Cambridge, MA) by overnight incubation and

then blocked with 1% protease-free BSA for 1 hour at 4˚C. Heparin, buffer (positive control),

or 10 mM NaEDTA (negative control) were preincubated with selectin-IgG-Fc chimera. Per-

oxidase-conjugated goat anti-human IgG (Jackson ImmunoResearch Laboratories) and the

mixtures were added to coated wells. After incubation at 4˚C for 4 hours, the plate was devel-

oped with O-phenylenediamine dihydrochloride. The absorbance was measured at 405 nm

with a microplate reader (Molecular Device). The data were converted into percentages by

using the formula: [(mean of duplicates)-(mean of negative control)]/[(mean of positive con-

trol)-(mean of negative control)] × 100.

Cell culture

Human T cells were prepared by negative selection using magnetic bead separation (Miltenyi

Biotec, Auburn, CA) following Ficoll-density gradient separation of peripheral blood mono-

nuclear cells. This study was approved by the institutional review board of Kyungpook

National University Hospital and written informed consent was obtained. Human umbilical

vein endothelial cell (HUVECs, CRL-1730 ATCC) were cultured in EGM-2 medium and stim-

ulated with TNF-α (10 ng/mL) for 16 hours before static and dynamic studies. Murine T cells

were prepared by negative selection with magnetic separation kit (Miltenyi Biotec) from sple-

nocytes followed by stimulation with PHA and murine IL-2 (20 ng/mL).

T cell adhesion assay under static conditions

The T cell adhesion assay was performed as previously described with some minor modifica-

tions [22]. Briefly, recombinant human P-selectin-IgG-Fc chimera (0.1 μg/mL) or PAA-sLeX

(0.1 μg/mL) was coated onto ELISA plates overnight at 4˚C. After blocking with 1% endo-

toxin-free BSA, T cells (2 × 105/well) were incubated in coated wells containing heparin deriva-

tives or EDTA (5 mM) for 2 hours. Adherent T cells were lysed using 1% Triton X-100 and p-

nitrophenyl-N-acetyl-β-D-glucosaminide (3.75 mM) in citrate buffer. The absorbance was

measured at 405 nm using a microplate reader.
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Analysis of lymphocyte motion under shear flow

Laminar flow adhesion assays were performed as described previously [23]. Immobilized P-

selectin (1 μg/ml) bound to protein A (8 μg/ml) and TNF-α-stimulated confluent HUVECs

were incubated on a 35-mm polystyrene dish. Effector T cells (1 × 106/ml) preincubated with

6DSHbD or EDTA (5 mM) were perfused at 1.8 dynes/cm2 and recorded in high-power fields

by videomicroscopy. Data were processed using MTrackJ (an ImageJ plug-in software created

by Erik Meijering, Erasmus MC, Rotterdam, NL). Adherent cells were defined as cells that did

not move during a 10 seconds interval, and interacting cells were defined as cells that inter-

acted with the P-selectin or HUVEC monolayer for at least 1 second. Rolling flux and velocity

were determined by counting the number of rolling cells and dividing the distance by the time

within a field of view.

Animal experiments

All animal care and experimental procedures were approved by the Kyungpook National Uni-

versity Institutional Animal Care and Use Committee (Approval Number: KNU 2012–35) and

conducted in accordance with the institutional protocol for animal welfare. All studies involv-

ing animals are reported in accordance with the ARRIVE guidelines for reporting experiments

Fig 1. Structures of hydrophobically modified desulfated lower molecular weight heparins.

https://doi.org/10.1371/journal.pone.0176110.g001
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involving animals [24, 25]. Male DBA/1J mice were obtained from SLC (Hamamatsu, Japan)

and maintained under specific pathogen free conditions and a temperature-controlled envi-

ronment with a 12/12 h light-dark cycle at the animal facility of Kyungpook National Univer-

sity School of Medicine. Standard lab chow and water were available ad libitum. All efforts

were made for minimizing animal suffering. After completion of the study, mice were sacri-

ficed with isoflurane and CO2 inhalation. Samples of the joints were collected for further anal-

ysis. Collagen-induced arthritis (CIA) was induced and scored according to a previously

reported with minor modifications [26]. Briefly, DBA/1J mice between the ages of 6 and 8

weeks were immunized intradermally with 100μg of bovine CII in CFA or with IFA on day 0

and day 21. Mice were randomly assigned to the treatment groups upon the establishment of

arthritis (n = 8 for each group). Clinical symptoms of arthritis were monitored three times per

week from day 22 by two independent observers. Clinical arthritis index (CAI) was quantified

by using a graded scale from 0 to 4 at the percipheral joints, as previously described [26]. In
vivo anticoagulant activity was measured using prothrombin time (PT) and activated partial

thromboplastin time (aPTT) after oral treatment with heparin derivatives (Chemon, Suwon,

Korea) in CIA mice (control, n = 4; NDSHbD, n = 3; 2DSHbD, n = 3; 6DSHbD, n = 3).

Semi-quantitative RT-PCR

The hind paws of randomly chosen CIA mice from each treatment group were homogenized

in lysis reagent (Easy-spin; Intron Biotech, Sungnam, Korea). Total RNA was extracted using

an RNeasy extraction kit (Intron Biotech) from the joint tissues after removing the skin of the

hind paws. We employed 1 μg of total RNA for reverse transcription using oligo-dT and the

PrimeScript 1st strand cDNA synthesis kit (Takara Bio, Shiga, Japan). Relative transcript levels

for inflammatory mediators were quantified by real-time semiquantitative PCR, which was

performed using primers, Taqman probes, and a LightCycler 480 system (Roche Diagnostics,

Mannheim, Germany). The expression of inflammatory mediators was normalized to that of a

target reference gene (18s ribosome RNA). The Taqman probes and oligonucleotides used are

listed as follows: IL-1β: forward (F) (50-TGTAATGAAAGACGGCACACC-30), reverse (R) (50-
TCTTCTTTGGGTATTGCTTGG-30), and probe (50-CTGCTTCC-30); IL-6: F (50- GAGAAAAG
AGTTGTGCAATGGC-30), R (50-CCAGTTTGGTAGCATCCATCA-30), and probe (50-TTCCC
TCTG-30); TNF-α: F (50-CTGTAGCCCACGTCGTAGC-30), R (50-TTGAGATCCATGCCGTTG-
30), and probe (50-ACGTCGTAG-30); MMP-1: F (50-TGTGTTTCACAACGGAGACC-30), R

(50-GCCCAAGTTGTAGTAGTTTTCCA-30), and probe (50-CATCCAGG-30); MMP-3: F (50-
TGTTCTTTGATGCAGTCAGC-30), R (50-GATTTGCGCCAAAAGTGC-30), and probe (50-
GGGAGAAG-30); VCAM-1: F (50-TGGTGAAATGGAATCTGAACC-30), R (50-CCCAGATGGTG
GTTTCCTT-30), and probe (50-AGGCAGAG-30); RANKL: F (50-TGAAGACACACTACCTG
ACTCCTG-30), R (50-CCACAATGTGTTGCAGTTCC-30), and probe (50-GGAGGATG-30);
MCP-1: F (50-CATCCACGTGTTGGCTCA-30), R (50-GATCATCTTGCTGGTGAATGAGT-30),
and probe (50-ACCTGCTG-30); 18s ribosome RNA: F (50-AAATCAGTTATGGTTCCTTTG
GTC-30), R (50- GCTCTAGAATTACCACAGTTATCCAA-30), and probe (50-TCCTCTCC-30).

In vivo intra-vital microscopic analysis

Dorsal skin fold chambers (DSFC) were implanted on the back skin of CIA mice by surgical

intervention according to previously described method with a minor modification [27, 28].

After chamber implantation, mice were kept in separate cages providing adequate amount of

food and water. A recovery period of 7 days between implantation of DSFC and quantitative

image analysis was allowed. CFSE labeled effector T cells (1 x 107 cells) were suspended in PBS

and 200 μl of suspension was injected in the tail vein of mice. Number of adherent T cells at
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the post-capillary venules was recorded with epifluorescence microscopy (OV-100, Olympus

Co, Tokyo, Japan).

Statistics

Statistical analysis was performed using SPSS version 12 (SPSS Inc., Chicago, IL). The differ-

ence between groups was analyzed by Student’s t-test. For the comparison of the difference

between treatment groups during multiple time points, repeated measures ANOVA with

Tukey’s post hoc test was performed. P value less than 0.05 was considered significant. Data

are presented as the mean ± SEM unless otherwise indicated.

Results

Desulfations of LMWH conjugated with deoxycholic acid on the inhibition

of selectin-sLeX interaction

To examine the antiadhesive role of modified LMWHs, we prepared regioselectively desulfated

LMWHs and their conjugates with bisDOCA. The anti-FXa activity of 6DSHbD and NDSHbD

was nearly completely abolished compared to that of LMWH, while 2DSHbD retained anti-

FXa activity partially (7.1% relative to that of fraxiparine). We then tested their inhibitory effi-

cacy on P-selectin-sialyl LewisX (sLeX) interaction (Fig 2A). Binding of P-selectin-IgG chimera

to immobilized polyacrylamide-sLeX was most efficiently inhibited by 6-O desulfated heparin

compared with N-desulfated, 2-O desulfated, and non-desulfated LMWHs. IC50 value for

inhibition of P-selectin-sLEX interaction by 6DSHbD was 20.68 ± 6.75 μg/ml, while those

of 2DSHbD, NDSHbD, and LMWH were 507.31 ± 29.50 μg/ml, 68.71 ± 5.20 μg/ml, and

101.67 ± 44.50 μg/ml. L-selectin-sLeX binding, however, was inhibited to a similar extent by all

Fig 2. Inhibition of selectin-sLeX interaction by desulfated heparins. Inhibition curves were produced by blocking with different

concentrations of lower molecular weight heparin (LMWH, open circle), LMWH conjugated with bisDOCA (LHbD, open diamond), 2DSHbD

(shaded triangle), 6DSHbD (closed circle), and NDSHbD (shaded square). Each point represents the mean ± SD of at least triplicate

independent experiments.

https://doi.org/10.1371/journal.pone.0176110.g002
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these modified heparins (Fig 2B, IC50: 3.06 ± 0.29, 8.20 ± 0.70, 8.56 ± 0.85, and 8.76 ± 0.30 μg/

ml for LMWH, 2DSHbD, 6DSHbD, and NDSHbD, respectively). These data showed that

removal of 6-O, 2-O, and N-sulfations and their hydrophobic modifications with deoxycholic

acid had differential effects on the inhibition of interactions between sLeX and P- and L-selec-

tins, thereby necessitating the comparison of in vivo anti-inflammatory effects of these materi-

als in inflammatory arthritis models.

Therapeutic efficacy of oral desulfated heparins in collagen-induced

arthritis

We next determined whether bisDOCA conjugated LMWHs with distinct desulfations have

differential efficacy on the inflammation using murine CIA model which has T cell-mediated

pathophysiology [29, 30]. In this murine model, joint symptoms became apparent between

days 21 and 23 and peak between days 40 and 45 after the first immunization. We treated mice

with CII to induced CIA and then administered modified heparins via gavage beginning from

day 23 after the first immunization for the following days until day 45 (Fig 3). Anticoagulant

Fig 3. Therapeutic efficacy of oral desulfated heparins in murine collagen-induced arthritis. (A-B), CIA mice were treated with daily

oral administration of 2DSHbD, 6DSHbD, and NDSHbD (1 mg/kg/day) or treated with a negative control (PBS, oral daily) and a positive

control (Methotrexate 1mg/kg, two times/week, intraperitoneal). Efficacy of treatment was analyzed by CAI (A) and incidence of arthritic

paws (B). Data represent the mean ± SEM (n = 8 for each group). *p < 0.05. (C), Transcript level of inflammatory mediators in the joint

tissues from control and desulfated heparin-treated CIA mice. Semiquantitative real-time PCR was performed using Taqman probes and

analyzed using a LightCycler480 system. Data represent the mean ± SEM. *p < 0.05 versus control.

https://doi.org/10.1371/journal.pone.0176110.g003
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activities measured by PT and aPTT revealed no significant different between the control

group and modified heparin treated groups (Table 1).

Upon measurement of CAI and incidence of arthritis on the paws, mice treated with all

three modified heparins (1mg/kg/day, p.o.) showed significantly reduced severity of arthritis

compared with methotrexate (1 mg/kg, two times a week, i.p.) and control (PBS, daily, p.o.).

Among these modified heparins, 6DSHbD ameliorated the arthritis more effectively compared

to 2DSHbD and NDSHbD (Fig 3A and 3B, p< 0.05).

To characterize effects of modified heparins on the inflammatory response within joint tis-

sues, we quantified transcripts of inflammatory mediators from the whole extracts of arthritic

tissues. Suppression of inflammation, as evidenced by reduced inflammatory transcripts

within joints, was found in CIA mice treated with all three modified heparins compared to

controls (Fig 3C). These data showed that 6DSHbD was most effective in ameliorating severity

of CIA after oral administration as well as it retained the least anticoagulant activity among dif-

ferent desulfated LMWHs. Thus, we chose 6DSHbD for subsequent experiments in this study.

Inhibition of selectin-mediated T cell adhesion by 6DSHbD in static and

dynamic conditions

P-selectin glycoprotein ligand-1 (PSGL-1) plays a central role in the trafficking of lymphocytes

to areas of inflammation by direct interaction with P- and L-selectins via sLeX and a sulfate

group [31, 32]. To determine whether 6DSHbD modulates the selectin-mediated adhesive pro-

cesses, we tested the adhesion of T cells to either P-selectin-IgG chimera or PAA-sLeX immobi-

lized on plastic plates. In contrast to the results on the selectin-sLeX interaction, the adhesion

of T cells to P-selectin was inhibited by 6DSHbD to a similar extent compared with LMWH

(Fig 4A). Furthermore, the inhibition of sLeX-mediated T cell adhesion, which indicates sLeX-

L-selectin interaction, was greater by 6DSHbD than by LMWH (IC50: 6.26 ± 3.05 μg/mL vs.

47.93 ± 20.79 μg/mL for 6DSHbD vs. LMWH, respectively, p< 0.05) (Fig 4B).

To more closely approach the physiological situation, we used phase-contrast videomicro-

scopy to study the effect of modified heparins on the adherence of T cells to immobilized P-

selectin under physiological laminar shear flow. Approximately 47.8 ± 13.5 cells/mm2 contact-

ing P-selectin bound to protein A adhered to the plate surface. In comparison, 29.1 ± 2.8 cells/

mm2 treated with 6DSHbD adhered to P selectin-coated surface (Fig 4C, p< 0.05). The num-

ber of interacting T cells also was significantly reduced by treatment with 6DSHbD compared

to control (Fig 4D). However, rolling flux and velocity were not influenced by 6DSHbD when

compared to control (Fig 4E and 4F). These findings showed that 6-O-desulfation of LMWH

Table 1. Anticoagulant activities after oral treatment with heparin derivatives in collagen-induced

arthritis mice.

Heparin derivatives Anticoagulation activities

PT (sec) aPTT (sec)

Control (n = 4) 7.18 ± 0.41 20.30 ± 1.36

NDSHbD (n = 3) 7.47 ± 0.12 20.23 ± 0.76

2DSHbD (n = 3) 7.53 ± 0.15 19.97 ± 0.49

6DSHbD (n = 3) 7.30 ± 0.20 19.03 ± 1.29

NDSHbD, N desulfated LMWH conjugated with bis-DOCA; 2DSHbD, 2-O desulfated LMWH conjugated with

bis-DOCA; 6DSHbD, 6-O desulfated LMWH conjugated with bis-DOCA. LMWH, Low molecular weight

heparin; DOCA, deoxycholic acid; PT, Prothrombin time; aPTT, Activated partial thromboplastin time.

https://doi.org/10.1371/journal.pone.0176110.t001
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retained the ability of LMWH to interfere with the adhesion between T cells and endothelial

cells via selectin–sLeX interactions in both static and dynamic conditions.

Inhibition of T cell adhesion on activated endothelial cells by 6DSHbD in

static and dynamic conditions

The early steps that promote recruitment of effector/memory T cells to non-lymphoid tissues

and sites of inflammation include selectin-mediated rolling, chemokine-triggered activation,

and integrin-dependent arrest on the endothelial surface [32]. We have shown that 6DSHbD

displayed greater binding to TNF-α stimulated HUVECs compared to unstimulated cells,

followed by internalization into ECs [15]. We examined whether surface-bound modified

Fig 4. Inhibition of selectin-mediated T cell adhesion by 6-O desulfation of LMWH (6DSHbD) in static and dynamic conditions.

(A-B), Inhibition of adhesion of T cells on the (A) P-selectin-IgG-Fc chimera- and (B) PAA-sLeX-coated plates under a static condition. Data

represent the mean ± SEM from 3 independent experiments. *p < 0.05 versus no treatment. (C-F), Interaction of T cells with P-selectin

under flow. P-selectin bound to protein A on a 35-mm polystyrene dish was pre-incubated with or without 6DSHbD. T cells (1 × 106/ml) were

pre-incubated with 5 mM EDTA buffer or 6DSHbD(100 μg/ml) and placed under flow at a wall shear stress of 1.8 dynes/cm2 over the P-

selectin-coated dish. The number of adherent (C), interacting (C), or rolling (D) T cells was counted in 5 random high-power fields for each

condition at 10 seconds intervals and expressed as cells/mm2. (E) The rolling velocity of T cells was measured and expressed as μm/s. Data

represent the mean ± SEM from 3 independent experiments. *p < 0.0.5

https://doi.org/10.1371/journal.pone.0176110.g004
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heparin can directly block the adhesion of T cells to HUVEC monolayers under both static

and dynamic conditions.

Under static conditions, 6DSHbD-Cy5.5 (red) bound on the surface of TNF-α-stimulated

HUVECs in a dose-dependent manner. The adhesion of T cells labeled with CFSE (green) on

the HUVECs was excluded from the surface of endothelial cells where 6DSHbD-Cy5.5 was

accumulated (Fig 5A). The number of T cells adherent to the surface of HUVECs decreased

significantly following treatment with a higher concentration (30 μg/ml) of 6DSHbD (Fig 5B).

The efficiency of T cell recruitment, as determined by the conversion from rolling to arrest

in post-capillary venules, was recapitulated on TNF-α-stimulated HUVECs in the parallel-

plate flow chamber [23]. Rolling and adhesive interactions of T cells with HUVEC monolayers

were examined under defined laminar flow. The average rolling velocity of T cells on activated

HUVECs under a flow of 1.8 dynes/cm2 was significantly lower compared with that on unsti-

mulated HUVECs. After treatment with 6DSHbD, both the average rolling velocity and cumu-

lative frequency over the rolling velocity of T cells were slightly elevated compared to those of

untreated cells, although the differences were not statistically significant (Fig 5C and 5D). The

number of stably arrested T cells on stimulated endothelial cells was significantly decreased by

6DSHbD treatment (426 ± 82 vs. 291 ± 44 cells/mm2, p< 0.05) (Fig 5E). These findings show

that 6DSHbD coated on the apical surface of inflamed endothelium directly interferes with the

adhesive interactions of circulating T cells with endothelial cells.

Reduced T cell adhesion on the activated venular endothelium under the

intra-vital microscopy

To evaluate the efficacy of oral 6DSHbD on the diapedesis of T cells through the post-capillary

venules in vivo, we prepared a modified DSFC using small round chamber covered with a

removable glass and implanted this chamber on the back skin of DBA1/J mice. Mice were

treated orally with 6DSHbD (10 mg/kg) for 3 days, followed by intravenous injection of CFSE-

labeled effector T cells (2 x 106 cells). Prior to T cell transfer, cover glass was removed and the

exposed vessels were stimulated with TNF-α (10 ng/ml) and a chemokine (SDF-1α, 10 μg/ml)

for 4 hours (Fig 6A). Venules with diameter between 40 and 80 μm were selected and the

adherent and transmigrating T cells (green) were recorded using fluorescent videomicroscopy

(Fig 6B). The number of adherent T cells on the venular surface was significantly reduced in

6DSHbD treated mice (Fig 6C). These findings confirmed that 6DSHbD, accumulated on the

activated endothelium, directly inhibited the adhesion of effector T cells on the endothelial cell

surface at the post-capillary venules in vivo.

Discussion

Identification of the structure-function relationship of heparin, particularly between 2-O-,

6-O-, and N-sulfation and its anticoagulant or anti-inflammatory activities, is critical in order

to evaluate the biological effects of heparin, especially in conjunction with modifications for

oral formulation [8, 13]. In the present study, we demonstrated that removal of 2-O, 6-O, and

N-desulfations and their hydrophobic modifications have differential effects on the blocking

of interactions between sLeX and P-and L-selectins, with highest inhibition by 6-O desulfation,

which was consistent with in vivo therapeutic efficacy on CIA mice. The 6-O desulfation of

LMWH retained the ability of LMWH to interfere with T cell adhesion via selectin-sLeX inter-

actions. Furthermore, 6DSHbD coated on the apical surface of inflamed endothelium directly

blocked the adhesive interactions of circulating T cells with activated endothelial cells, which

was confirmed in vivo by suppressing T cell adhesion at post-capillary venules.
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Fig 5. Inhibition of T cell adhesion on activated ECs by 6DSHbD in static and dynamic conditions. (A–

B), Unstimulated or TNF-α-stimulated HUVEC monolayers were incubated with 6DSHbD-Cy5.5 (μg/ml, red)

for 30 minutes and co-cultured with CFSE-labeled T cells (green) in a static condition. Fluorescence

microscopy of the adherent T cells with HUVECs (A) and the number of adherent T cells was counted in 5

random high-power fields (B). Scale bars, 100 μm. (C-E), Unstimulated or TNF-α-stimulated HUVEC

monolayers were treated with 6DSHbD and placed in a parallel plate-flow chamber device. T cells were

allowed to interact with HUVEC monolayers at a shear stress of 1.8 dynes/cm2. The rolling velocity of T cells

(C), cumulative frequency of the rolling velocities of T cells (D), and the number of adherent T cells on

HUVECs (E) were analyzed.

https://doi.org/10.1371/journal.pone.0176110.g005
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The 2-O- and 3-O-sulfation provide favorable contacts between heparin and antithrombin,

and 6-O-sulfate group appears to grant increased catalytic efficacy to anti-thrombin [33]. We

observed that 6-O-desulfation and N-desulfation of LMWH abrogated anticoagulant activity,

whereas 2-O-desulfation produced only a partial reduction in anticoagulant activity, which is

consistent with studies on the anticoagulant efficacy of regioselectively desulfated natural hep-

arins [13, 34]. Removal of the anticoagulant function of LMWH, however, did not affect its

ability to block T cell-endothelial cell adhesion via selectin-sLeX interactions. Whereas the

6-O-sulfate of glucosamine is important for binding to selectin [13] and FGF2 [35], 2-O- and/

or 3-O-desulfation of unfractionated heparin inhibits the adhesion of monocytes to selectins

[13] or the receptor for advanced glycation endproducts (RAGE) [36], as well as the adhesion

of neutrophils to endothelial cells [34]. Partial 6-O-desulfation may retain enough anionic

charge to mediate electrostatic interactions with sufficient affinity to preserve the biologic

properties of heparin [37].

In murine CIA model, all three desulfated heparins were more effective for the treatment of

arthritis compared to methotrexate, which is a standard disease modifying anti-rheumatic

drug. Among desulfated heparins, 6DSHbD showed highest therapeutic efficacy. These data

suggest an effect of 6-O desulfation on anti-inflammatory effects which could be direct and/or

indirect. Data in Fig 2 argue for a direct effect by more effective blocking of P-selectin-sLeX

binding. Previous studies revealed higher bioavailability of 6DSHbD compared to 2DSHbD.

Furthermore, intracellular accumulation of hydrophobically modified desulfated heparins may

result in the differential regulation on signaling pathways that require further investigation [15].

Fig 6. Reduced T cell adhesion to the post-capillary venular endothelium on intravital microscopy. (A)

Image of implanted dorsal skinfold chamber on back of DBA/1J mouse. (B) Representative images of

intravital microscopy of CFSE-labeled T cell adhesion on endothelium at post-capillary venules in vivo. (C)

Quantification of adherent T cells on the endothelial surface in control (n = 3) and 6DSHbD treated mice

(n = 3). Data are mean ± SEM from 3 independent experiments. *p < 0.05.

https://doi.org/10.1371/journal.pone.0176110.g006
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Unfractionated heparin binds to and is internalized by endothelial and vascular smooth

muscle cells and is involved in the regulation of signaling pathways [38, 39]. Heparin is cleared

by both rapid saturable and slower, first-order mechanisms. The rapid saturable clearance

phase following intravenous injection may be due to the binding of heparin to endothelial cells

and its subsequent uptake [40]. In contrast, LMWH displays reduced binding to HUVECs,

which may result in its clearance by primarily nonsaturable or renal mechanisms [40]. We

have previously shown that 6DSHbD internalized into endothelial cells after binding to

P-Selectin and VCAM-1 which leads to the inhibition of transcellular migration of T cells by

blocking RhoA GTPase activation [15]. In the present study, we further demonstrated that

6DSHbD bound on the surface of activated ECs directly hampered the adhesion of T cells on

the ECs, thus reducing the chance to be recruited into inflamed joint tissues prior to internali-

zation of 6DSHbD.

An essential step in this process is the adhesion of effector T cells to the endothelium of

post-capillary venules—a complex multistep cascade of events mediated by adhesion recep-

tors [41], such as P-selectin and VCAM-1, which varies depending on the target tissue and

the inflammatory context. Inhibition of T cell homing to synovial tissue (ST) represents a

potential strategy for the treatment of chronic inflammatory arthritis. Another critical step,

we have shown, was that the oral administration of 6DSHbD resulted in its preferential accu-

mulation within inflamed ST, particularly around post-capillary venules [15]. Moreover,

reduced homing of effector T cells to inflamed ST that occurred in response to the oral

6DSHbD was dependent on P-selectin-mediated cellular accumulation of 6DSHbD [15].

However, there has been mechanistic gap between the accumulation of 6DSHbD and

reduced homing of effector T cells, which may be explained either by the direct inhibition of

T cell adhesion on ECs or by sequestration of chemokines [42, 43]. Actually, neutralization

of multiple CC chemokines, which may also achieved by heparin especially via inhibition of

oligomerization [44], resulted in a reduction of disease activity in an arthritis model through

the retention of effector T cells [43, 45]. The results of the present study may fill this gap by

clearly demonstrating that 6DSHbD directly inhibited adhesion of T cells on the endothe-

lium of post-capillary venules by blocking the tethering and adhesion of T cells on 6DSHbD-

coated surface of endothelium.

To our knowledge, this is the first report to show that oral delivery of low anticoagulant

LMWH to venular endothelium of inflamed joint tissues protects from arthritis. This effect is

mediated by the stepwise inhibition of T cell recruitment and provides a rationale for the

development of modified oral heparins as innovative agents for the prevention and/or treat-

ment of chronic inflammatory arthritis.
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