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Improving existing analysis pipeline 
to identify and analyze cancer 
driver genes using multi‑omics data
Quang‑Huy Nguyen1,2 & Duc‑Hau Le1,3*

The cumulative of genes carrying mutations is vital for the establishment and development of cancer. 
However, this driver gene exploring research line has selected and used types of tools and models 
of analysis unsystematically and discretely. Also, the previous studies may have neglected low‑
frequency drivers and seldom predicted subgroup specificities of identified driver genes. In this study, 
we presented an improved driver gene identification and analysis pipeline that comprises the four 
most widely focused analyses for driver genes: enrichment analysis, clinical feature association with 
expression profiles of identified driver genes as well as with their functional modules, and patient 
stratification by existing advanced computational tools integrating multi‑omics data. The improved 
pipeline’s general usability was demonstrated straightforwardly for breast cancer, validated by some 
independent databases. Accordingly, 31 validated driver genes, including four novel ones, were 
discovered. Subsequently, we detected cancer‑related significantly enriched gene ontology terms 
and pathways, probable drug targets, two co‑expressed modules associated significantly with several 
clinical features, such as number of positive lymph nodes, Nottingham prognostic index, and tumor 
stage, and two biologically distinct groups of BRCA patients. Data and source code of the case study 
can be downloaded at https ://githu b.com/hauld hut/drive rgene .

Cancer is one of the most dangerous diseases that poses as a threat to public health, second only to behind 
cardiovascular  disease1. In recent years, we have gradually realized that genes carrying mutations are critical for 
the establishment and development of  cancer2–6. It has rung the warning bell for cancer researchers to rapidly 
identify and characterize driver genes in each cancer type that will make enormous contributions to precision 
medicine in cancer treatment in the future.

Over the past five years, however, researchers tend to disagree on a unifying pipeline for  analysis7–15. This 
was likely because they were used to solve specific problems regarding the cancer of interest; thus, there was 
no common direction that has been proposed to apply for most types of cancers. For example,  iCAGES16 was 
used to identify driver genes and personalized treatments for clear cell renal cell  carcinoma10, and then the 
identified driver genes were enriched with gene ontology terms and biological pathways using Gene  Ontology17 
and  STRING18, respectively. Besides, a co-expression network was constructed with the WGCNA  package19 to 
analyze the association between co-expressed modules and clinical features. For prostate  cancer11, a set of driver 
identification tools such as  OncodriveCLUST20,  OncodriveFM21,  iCAGES16 and  DrGaP22 were used. Then, Gene 
 Ontology17 and  STRING18 were employed to annotate the identified driver genes. In addition,  WGCNA19 was 
used to identify the co-expressed module-clinical feature association. For kidney  cancer7, driver genes and their 
cancer pathways were predicted with  OncodriveFM21 and  OncodriveCLUST20, and then assessed for the asso-
ciation between high-scoring noncoding variants and their regulatory features using three computational tools 
such as  CADD23,  FunSeq224 and GWAWA 25. For hepatocellular  carcinoma8, the identification of driver genes and 
their pathways was performed with  OncodriveFM21,  Dendrix26, and the enrichment analysis was additionally 
performed with Gene  Ontology17 and  STRING18 data. Finally, Kaplan–Meier survival analyses were done using 
 OncoLnc27 to observe an association between survival rates and each driver gene.

In addition, previous studies have paid close attention to recurrently mutated genes and coding driver genes 
in cancer patients by using high-frequency-specific tools such as  MutSigCV28 and  MuSiC29. However, plenty of 
cancer drivers was mutated at less than 1% of cancer  patients14,30. Therefore, previous results may have neglected 
rare cancer drivers. Since cancer is heterogeneous, stratifying cancer patients with the identified driver genes is 
a core element in the development of precision medicine for tackling this heterogeneity. However, the previous 
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studies have been almost rarely touched on the taxonomy of cancer patients using somatically mutated genes. This 
raises a tough challenge to suggest specifically clinical guidance for each cancer patient, except for some recent 
case studies like prostate  cancer11, breast cancer (BRCA)13,14. Even ref.11 and ref.14 used a hierarchical clustering 
method at a basic level that can totally be improved. In addition, ref.11 also did not clarify how they identified 
the number of classes of patients and whether the number is optimal.

Our study was collectively developed based on previous studies to overcome the above challenges, using a 
case study of breast cancer from the popular database  METABRIC13. The goal of this work is to help improve 
the available analysis pipeline, in a more systematic and efficient way, in the identification and analysis of driver 
genes in future studies. Moreover, in recent years, developments on multi-omics data integration related to BRCA 
have been useful and efficient in various  aspects31–35. This is the basis for us to propose the pipeline relying on 
integrative multi-omics implementation. For this purpose, in the real data analysis, a total of 35 driver genes 
was predicted using somatic mutation data, and then 31 driver genes closely related to BRCA were validated 
and used for subsequent analyses. They were first significantly enriched with gene ontology terms and pathways. 
The associations between the identified driver genes and their two co-expressed modules with several clinical 
features such as survival rate, number of positive lymph nodes, Nottingham prognostic index, and cancer stage 
were also analyzed using gene expression data. Finally, BRCA patients were stratified into two distinct subgroups 
using copy number data of the identified driver genes with significant differences concerning the clinical features.

Material and methods
Overview of an improved pipeline. Figure  1 illustrates the improved analysis pipeline to identify 
and analyze cancer driver genes. The scheme is conceptually straightforward with two stages: identification 
and analysis. For the identification stage, somatic mutation data is inputted to identify driver genes using the 
 OncodriveCLUSTL36 and  OncodriveFML37 tools (Step 1). For the analysis stage, we provide the four most widely 
focused analyses in the cancer driver exploring  studies7–15. Firstly, the identified driver genes will be annotated 
by the tool g:Profiler38 (Step 2). Secondly, they are further investigated for the association between expression 
levels of genes and clinical features of interest by statistical tools (Step 3). Thirdly, the association of their func-
tional modules (e.g., co-expressed modules, which are identified with a hierarchical agglomerative clustering 
 method39) with the clinical features is also performed by the tool  WGCNA19 (Step 4). Fourthly, patients can be 
stratified into subgroups on the basis of the copy number profiles of the identified driver genes using a hierarchi-
cal agglomerative clustering  method39 (Step 5).

List of improvements proposed in the work. Selection of driver gene prediction tools. This work rec-
ommends the use of OncodriveFML and OncodriveCLUSTL packages for predicting driver genes. In fact, ac-

Figure 1.  Improved analysis pipeline for identification and analysis of driver genes. The scheme comprises 
two stages: identification and analysis, in which the former uses the OncodriveFML and OncodriveCLUSTL to 
identify driver genes with somatic mutation data as input, and the latter performs the four most widely focused 
analyses to deal with those driver genes. Abbreviation: CNV, Copy number variations.
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cording to the previous studies, OncodriveFM and OncodriveCLUST tools were employed many  times7,8,11. 
However, a potential weakness of the OncodriveFM compared to the OncodriveFML is only the detection of cod-
ing driver genes, whereas the OncodriveCLUST also has several weaknesses solved by the OncodriveCLUSTL, 
like disregarding drivers whose mutations are distributed across the sequence, or requiring a large quantity of 
observed mutations to ensure a good outcome. From that, the OncodriveFML and OncodriveCLUSTL packages 
are proven as state-of-the-art methods, even confirmedly outperforming the above  two36,37. Moreover, they can 
not only help researchers find low-frequency and non-coding mutated genes but also were designed as friendly 
web-based applications.

Selection of enrichment tools. To understand in-depth the underlying biological phenomenon, the enrichment 
analysis is performed to discover involved biological processes and pathways of identified driver genes. This 
study recommends the use of g:Profiler  package38 for enrichment analysis since it is one of the rich-annotated, 
friendly web-based, and up-to-date gene enrichment tools. Also, it was recommended to use for enrichment 
analysis step in a protocol proposed  in40. Otherwise, as most previous cancer-driver-exploring  studies7–11, Gene 
Ontology and STRING are both popular annotation resources and tools; thus, users may consider selecting them 
as alternative tools. Besides, users can also select other alternative options, such as  GSEA41,  DAVID42,43,  IPA44, 
etc. Although they are advanced, but have their own weaknesses. For instance, the biggest weakness of the GSEA 
and IPA tools is that they are bulky software which require the user to run as a desktop application. Moreover, 
the IPA software is a commercial one. In contrast, DAVID is a web-based, but rarely updated tool.

Association analysis of individual genes with clinical features. There are several available correction methods 
for multiple testing (e.g., Hochberg’s  method45, Bonferroni  correction46, Holm’s  method47, etc.) and correlation 
methods (i.e., Pearson, Spearman’s rank, Kendall, etc.); consequently, the previous studies selected and com-
puted adjusted P-values (i.e., Q-values) and correlation coefficients unclearly, resulting in making the results 
ambiguous and running into difficulty in reproducing them. For example, ref.11 did not indicate specifically 
which P-value adjustment method was chosen. To produce consistent results and be convenient for users, we 
now built the R package ‘computeC’ (https ://githu b.com/huyng uyen2 50896 /compu teC), which computes cor-
relation coefficients between each detected driver versus each clinical feature of interest. Then, the obtained 
P-values are automatically adjusted by the Benjamini–Hochberg  procedure48. The problem with Bonferroni, 
Hochberg and Holm is that they are correction methods for a small number of tests (n). If the sample size n is 
large, they will reject too many null hypotheses. From that, Benjamini and Hochberg’s false discovery rate (FDR) 
may be a better choice. Likewise, many previous  works49–53 related the expression levels of each identified driver 
gene to prognostic value (e.g., the overall survival of patients), and the genes when P-value ≤ 0.05 (Log-rank 
test) were considered to define significant association. Again, FDR control is crucial, so we developed the tool 
‘geneSA’ (https ://githu b.com/huyng uyen2 50896 /geneS A) to automatically do the above task and only preserve 
the genes if Q-value ≤ 0.05 (Benjamini–Hochberg FDR).

Selection of tools for unsupervised identification of co‑expressed gene modules and patient groups. Most co-
expression network construction tools are based on unsupervised methods. Besides, as mentioned above, pre-
vious studies have not paid enough focus on driver gene-based patient stratification, which may make critical 
contributions to the design of therapeutic  strategies13. Indeed, there is lots of evidence reporting that individual 
driver genes are mutated predominantly in the samples within one single subtype than in the others, suggest-
ing that those driver genes are recognized as subtype-specific driver  genes54. Those driver genes then serve 
as the important clues to monitor the difference among the explored  subtypes54,55 as well as help to develop 
personalized  treatments56. To this end, this study recommends the use of a hierarchical agglomerative cluster-
ing method for co-expressed module identification (Fig. 1, Stage 2—Step 4) and patient stratification (Fig. 1, 
Stage 2—Step 5), which is a common selection from previous  studies10,11,14,49,51,52. Furthermore, these previous 
works performed the hierarchical clustering method using complete linkage and Euclidean distance for the 
clustering task in co-expression network construction and patient stratification. The work recommends adding 
a sub-step in this process: selecting the best agglomeration method, which designates how a hierarchical cluster-
ing method clusters objects (see the ‘Supplementary File 1′ section for the implementation). When it comes to 
the agglomerative coefficient, it measures the number of clustering structures found (values closer to 1 suggest 
strong clustering structure) and specifies the agglomeration method to be used (i.e., one of ‘complete’, ‘average’, 
‘single’, or ‘ward’). More specifically, the agglomeration methods Complete/Average/Single-linkage first compute 
pairwise dissimilarities of the objects in group 1 and group 2. Then, those methods treat the maximum/mean/
minimum value of the calculated dissimilarities as the distance between the involved groups, respectively. In 
contrast, Ward’s minimum variance method first minimizes the total within-cluster error sum of squares, and 
then, at each stage, iteratively identifies pairs of groups with minimum between-group distance and do the 
fusion of those two.

Selection of cluster validation. This process aims to assess the quality of the clustering  results57 and determine 
the success or failure of the clustering  works58. This work recommends the user to select the Dunn’s  index46,59. 
This is an efficient cluster validation method, and Curtis et al.60 used it to validate the detected subgroups of 
patients with BRCA from METABRIC. Furthermore, to increase the reliability and robustness of results, the user 
should combine two or three methods at once. This study additionally recommends the user to select the average 
Silhouette  index61 for two main reasons. First, it is among the best clustering  indices62. Second, it was suggested 
to use in the clustering task of biomedical  data63. For instance, it was selected as the index for comparing the 
quality of clustering results between clustering methods for breast  cancer64.

https://github.com/huynguyen250896/computeC
https://github.com/huynguyen250896/geneSA
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Case study: breast cancer. Datasets and data preprocessing. The BRCA data were downloaded from 
the cBioPortal for Cancer Genomics (https ://www.cbiop ortal .org)65. It contained the METABRIC BRCA cohort 
assembled from 2509 primary breast cancer patients with 548 matched normals in the United Kingdom and 
 Canada13. The gene expression microarray data were generated using the Illumina Human v3 microarray for 
1904 samples, while the CNVs data were measured on the Affymetrix SNP 6.0 platform for 2173 samples. In 
addition, 17,272 somatic mutations of 173 genes for 2369 samples were detected on the Illumina HiSeq 2000 
platform. R scripts responsible for the work’s implementation are provided in the Github repositories (https ://
githu b.com/hauld hut/drive rgene ) (See more detail in Supplementary File 1).

All omics data we pre-processed in the same way as in the reference  paper13. Specifically, we only matched the 
sample labels shared between the gene expression data and clinical data, and the CNVs data and clinical data, 
and obtained 1904 and 2173 matched patients, respectively.

Identification of driver genes using OncodriveFML and OncodriveCLUSTL. In the first stage, we used two driver 
identification tools: OncodriveFML and OncodriveCLUSTL (Fig. 1, stage 1; Step 1) to detect potential cancer-
related genes of BRCA. OncodriveCLUSTL 1.136 is a sequence-based clustering algorithm to identify significant 
clustering signals of mutations across genomic regions; meanwhile, OncodriveFML 1.037 is a method designed 
to analyze somatic mutations across cancer samples to positively select driver genes (i.e., Detection of positive 
selection in cancer genomes is to identifying genes essential for cancer  growth66). Both of them are able to detect 
cancer driver genes in both coding regions and non-coding regions as well as non-human data. The param-
eters were set to default values with the exception of the sequencing parameter (targeted sequencing) and the 
scoring system CADD v1.323 (the latest version at the time of this writing) in the OncodriveFML tool and the 
selection of ‘concatenate’ option in the OncodriveCLUSTL. A gene is considered a potential driver gene identi-
fied by the OncodriveFML and OncodriveCLUSTL when Q-value < 0.25 (Figure S2, Supplementary File 1) and 
Q-value < 0.01 (Figure S3 Supplementary File 1) (Benjamini–Hochberg FDR), respectively. Then, according to 
the Cancer Gene Census database (CGC; https ://cance r.sange r.ac.uk/censu s)67, Pereira et al. reference  paper13 
and Nik Zainal et al.  paper14, we verified those identified driver genes. The CGC database provides a list of genes, 
which have been common in cancer development. Finally, driver genes were said to be bona fide ones if they met 
the validation process and were served for downstream analysis.

Enrichment analysis using g:Profiler. To deepen our understanding of the potential biological functions of our 
BRCA-associated genes, the enrichment analysis was performed using g:Profiler to discover involved biological 
processes and pathways. More specifically, among provided annotation resources, biological process (BP) terms, 
under the sub-tab ‘Gene Ontology’ (GO), and KEGG pathways, under the sub-tab ‘biological pathways’, were 
chosen to characterize the identified driver genes functionally. GO terms and pathways were considered to be 
significantly enriched if a cut-off of Q-value ≤ 0.05 (g:SCS multiple testing correction method).

Individual gene‑clinical feature association analysis. In this section, we analyzed associations between clinical 
features of interest and the identified driver genes. More specifically, gene expression data were used to examine 
the associations between individual drivers and several familiar clinical features, including survival  rates11,13,15,49, 
numbers of positive lymph  nodes11,13, Nottingham prognostic index, and pathologic  stages11,15 of 1,904 patients.

For survival rate, we performed a survival analysis for the expression profiles of each driver gene, like in 
refs.49–53. In brief, given a driver gene, the median expression of that gene was calculated across the patients, then 
the patients were classified into two groups based on the expression of the gene. The first group ‘up-regulation’ 
includes patients having the expression of the genes was greater than the median; meanwhile, the second group 
‘down-regulation’ includes patients having the expression of the genes was less than the median. Then, a log-
rank test in univariate Cox regression analysis with a proportional hazards  model68 (i.e., implemented by the 
‘geneSA’ function) was used to compare the survival rates between the two groups. Next, hazard ratios (HR) 
with their 95% confidence intervals (CI), P-values, and Q-values were reported. Driver genes were considered 
to be significantly associated with survival rate if Q-value ≤ 0.05. Finally, we validated those prognostic driver 
genes by using KMplot website (https ://kmplo t.com/analy sis/index .php?p=servi ce&start =1)69 with the ‘Survival’ 
option of ‘OS (n = 1402)’ and the ‘Split patients by’ option of ‘median’, the remaining options were left at default.

Additionally, for the three clinical features (i.e., the number of positive lymph nodes, the Nottingham prog-
nostic index and the pathologic stages), we correlated them with the expression of each driver gene using 
Spearman’s rank correlation method (i.e., implemented by the ‘computeC’ function in R). Driver genes were 
considered to be significantly associated with positive lymph nodes, Nottingham prognostic index, or pathologic 
stages if Q-value ≤ 0.05.

Co‑expressed module‑clinical feature association analysis using WGCNA. We first found the optimal soft thresh-
old β to make the co-expression matrix of the identified driver genes fit a scale-free topology model, then the 
Topological Overlap Matrix (TOM)-based dissimilarity matrix of the identified driver genes was computed using 
Pearson’s correlation (see Supplementary File 1: User manual). Next, the co-expressed modules were detected by 
two steps: (1) an agglomerative clustering algorithm, i.e., Ward’s  method70, implemented by R function ‘hclust’ 
in the package ‘flashClust’71 was used to hierarchically cluster the TOM-based dissimilarity matrix into a gene 
dendrogram; (2) Then, those genes were distributed to each resulting module with the minimum number of 
genes was set as ten by the function ‘cutreeDynamic’ implemented in the package ‘dynamicTreeCut’72. Notably, 
to make the gene network consistent, according to prior  studies10,11,53, we suggest that users should choose the 
ten number of genes existing in each module minimally. Genes with high intra-modular connectivity were con-

https://www.cbioportal.org
https://github.com/hauldhut/drivergene
https://github.com/hauldhut/drivergene
https://cancer.sanger.ac.uk/census
https://kmplot.com/analysis/index.php?p=service&start=1
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sidered as hub genes. The association between resulting co-expressed modules and the clinical features was then 
analyzed using the correlation between the modular eigengene and the clinical features.

Patient stratification. Similar to step 4 (Fig. 1, stage 2), hierarchical agglomerative clustering of all the patients 
using Ward’s method and Euclidean distance creates a patient dendrogram. Then, the function ‘clValid’73 reports 
how many patient groups were optimal by connectivity, Dunn’s index, and Average Silhouette algorithm, and 
the BRCA patients were distributed to each group using the ‘cutree’ with ‘agnes’ functions. To observe the differ-
ences, we further performed the analyses between groups in terms of the clinical features. For survival rate, the 
log-rank test in univariate Cox regression analysis with a proportional hazards model was employed to compare 
the survival rates of the patients between the involved groups, and Kaplan–Meier curves were then plotted 
by the R package ‘survminer’74. In addition, the number of positive lymph nodes, the Nottingham prognostic 
index, and the tumor stages were also compared between the discovered groups. Subsequently, we tested the 
significance between the given results in terms of these clinical features using the function ‘compareGroups’75. 
P-value ≤ 0.05 was predefined as statistically significant.

Results
Identification of driver genes using OncodriveFML and OncodriveCLUSTL. Pathological clini-
cal features (e.g., survival time, tumor stage, number of lymph nodes, and Nottingham prognostic index) were 
collected (Table 1). All of the 17,272 somatic mutations were used as input to both of the tools. These mutations 
include 10,165 missense (non-synonymous mutations), 4,063 silent, 402 splice-site, 836 nonsense, 124 splice-
region, 5 translation start site, 4 nonstop mutations, and 1,613 insertions or deletions (indels) (Fig. 2a). Of the 
1,613 indels, 1,302 is frameshift, 311 is in-frame. A total of 35 unique driver genes were detected by the two 
tools, in which 30 and 10 driver genes were predicted by OncodriveFML and OncodriveCLUSTL, respectively 
(Supplementary File 2, Table S1). Both of the tools detected five of them simultaneously, including AKT1, CDH1, 
ERBB2, ERBB3, and TP53. Among the 35 driver genes, PIK3CA, TP53, KMT2C, MAP3K1, GATA3, CDH1, 
ARID1A, TBX3, CBFB and AKT1 were the 10 most frequently mutated genes in BRCA, with mutation rates of 
28.78%, 23.01%, 9.96%, 9.54%, 7.72%, 6.52%, 4.39%, 4.13%, 2.98% and 2.95%, respectively (Fig. 2b). Interest-
ingly, some of the involved genes were lowly mutated ones in BRCA, including CDKN2A, 0.6% and KRAS, 0.6% 
(we checked mutation frequencies through cBioPortal  website65).

By comparing the predicted driver genes to TSGene (i.e., a database of tumor suppressor genes; Supplemen-
tary File 2, Table S2)76 and ONGene (i.e., a database of oncogenes; Supplementary File 2, Table S3)77, this study 
detected 13 tumor suppressor genes including MAP2K4, ARID1A, TP53, PTEN, CDH1, NF1, RB1, CDKN2A, 

Table 1.  Description of the clinical features of the patients included in the study. *Missing information is 
excluded.

Clinical features

Overall study cohort 
(n = 2509)

Data typen %

Tumor stage

Nominal variable

 0 24 1.0

 1 630 25.1

 2 979 39.0

3 144 5.8

 4 11 0.4

 Unknown 721 28.7

Number of positive lymph nodes

Continuous variable

 0—≤ 3 695 27.7

  > 3—≤ 9 233 9.3

  > 10 119 4.7

 Unknown 1462 58.3

Nottingham prognostic index

 1—≤ 2.4 219 8.7

  > 1—≤ 3.4 555 22.1

  > 3.4—≤ 5.4 1256 50.1

  > 5.4 252 10.0

 Unknown 227 9.1

 Follow-up months, median* 116.47 ± 76.11

Survival

Survival status

 Alive (= 0) 837 33.4

 Death (= 1) 1144 45.6

 Unknown 528 21.0
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FOXO3, SMAD4, BRCA2, BAP1, and MEN1 as well as 11 known oncogenes including PIK3CA, TBX3, CBFB, 
AKT1, RUNX1 CDH1, PIK3R1, CDKN1B, ERBB2, ERBB3, and KRAS. According to the CGC database and two 
in vitro  experiments13,14, we realized that 31 out of 35 driver genes were genuine (Supplementary File 2, Table S1). 
On top of that, to the best of our knowledge, several genes, including AHNAK, DNAH2, PDE4DIP, and SYNE1 
were detected as driver genes in BRCA for the first time (Supplementary File 2, Table S1).

Enrichment analysis using g:Profiler. As a result, 483 biological processes (Supplementary File 2, 
Table S4), and 71 pathways (Supplementary File 2, Table S5) were significantly overrepresented for the gene set. 
Tables 2 and 3 show ten most enriched biological processes and ten most enriched KEGG pathways, respectively. 
The majority of biological process terms and pathways were widely known as cancer-related, such as “negative 

Figure 2.  Characterization of somatic mutations and driver genes in BRCA. (a) Summarization of mutation 
classes in BRCA. (b) Number and rate of the ten most frequently mutated driver genes.

Table 2.  Ten most enriched gene ontology terms. Q-value is computed by using g:SCS multiple testing 
correction method. Abbreviation: Num, Number of genes involving in the term.

GO ID Term name Num Q-value

GO:0010604 Positive regulation of macromolecule metabolic process 29 3.44 × 10–15

GO:0009893 Positive regulation of metabolic process 29 3.14 × 10–14

GO:0051173 Positive regulation of nitrogen compound metabolic process 27 2.38 × 10–13

GO:0051093 Negative regulation of developmental process 19 7.33 × 10–13

GO:0010628 Positive regulation of gene expression 24 8.55 × 10–13

GO:0031325 Positive regulation of cellular metabolic process 27 9.02 × 10–13

GO:0045596 Negative regulation of cell differentiation 17 1.22 × 10–12

GO:0048513 Animal organ development 27 5.77 × 10–12

GO:0048518 Positive regulation of biological process 31 1.97 × 10–11

GO:0010468 Regulation of gene expression 29 4.16 × 10–11

Table 3.  Ten most enriched KEGG pathways. Q-value is computed by using g:SCS multiple testing correction 
method. Abbreviation: Num, Number of genes involving in the pathway.

Pathway ID Pathway name Num Q-value

KEGG:05213 Chronic myeloid leukemia 10 5.02 × 10–12

KEGG:01522 Endometrial cancer 9 2.24 × 10–11

KEGG:05223 Endocrine resistance 10 5.67 × 10–11

KEGG:05218 Non-small cell lung cancer 9 1.01 × 10–10

KEGG:05166 Melanoma 9 1.73 × 10–10

KEGG:01521 Human T-cell leukemia virus 1 infection 12 3.62 × 10–10

KEGG:05215 EGFR tyrosine kinase inhibitor resistance 9 4.12 × 10–10

KEGG:05226 Prostate cancer 9 2.74 × 10–09

KEGG:04218 Gastric cancer 10 4.55 × 10–09

KEGG:05213 Cellular senescence 10 7.69 × 10–09
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regulation of developmental process”34,78, “positive regulation of gene expression”, “regulation of gene expres-
sion”34,… for biological processes, whereas for KEGG pathways, cancer-specific ones were ‘Chronic myeloid 
leukemia’, “Endometrial cancer”, “Non-small cell lung cancer”, … These results further confirmed that cancer 
driving-genes detected by the two tools OncodriveFML and OncodriveCLUSTL have key functions in cancer in 
general and breast cancer in particular.

Individual gene‑clinical feature association analysis. As a result, we found nine genes, including 
AKT1, KMT2C, KRAS, PIK3R1, PTEN, SMAD4, MAP3K1, MAP2K4 and TBX3, significantly correlated with 
the survival rate (Supplementary File 2, Table S6). Through the validation process using the KMplot database 
(Supplementary File 1, Figure S4), we realized that five out of nine driver genes were prognostic ones that we 
may be interested in best (Table 4). Among them, KRAS with up-regulation levels, and four other genes, includ-
ing MAP2K4, MAP3K1, PIK3R1, and TBX3 with down-regulation levels significantly associated with shortened 
lifespan (down-regulation is the reference) (Table 4). This suggested that those driver genes were related to the 
pathophysiology of breast cancer in varying degrees. They could also help observe the rigor of breast cancer or 
anticipate the survival rate of patients.

For the three clinical features (i.e., the number of positive lymph nodes, the Nottingham prognostic index, 
and the pathologic stages), there are a large number of driver genes negatively correlated with the number of 
positive lymph nodes (12 genes; A, Supplementary File 2, Table S7), Nottingham prognostic index (16 genes; 
Supplementary File 2, Table S8), and the pathologic stages (10 genes, Supplementary File 2, Table S9). Similarly, 
several genes are positively correlated with the number of positive lymph nodes (four genes; Supplementary 
File 2, Table S10), the Nottingham prognostic index (seven genes; Supplementary File 2, Table S11), and the 
pathologic stages (three genes; Supplementary File 2, Table S12). A total of 10 genes, including ARID1A, RUNX1, 
GATA3, TBX3, NF1, MAP2K4, PTEN, SMAD4, MAP3K1, and SF3B1 showed significant associations with all of 
the three clinical features (Table 5).

Co‑expressed module‑clinical feature association analysis using WGCNA. Accordingly, Fig. 3A 
illustrates the dendrogram of the identified driver genes on their TOM-based dissimilarity (On top of Fig. 3a and 
Supplementary File 1, Figure S6). The height of the dendrogram indicates dissimilarity of two driver genes, in 
which low dissimilarities indicate that two driver genes are close (similar), whereas the high dissimilarities imply 
two driver genes are far apart (dissimilar). In addition, a total of two distinct gene co-expressed modules were 
found and represented in different colors, and they were arranged from large to small by the number of genes 
they included (i.e., 15 and 16 genes in the blue and turquoise modules, respectively).

Results of the module-clinical feature association analysis (Fig. 3b) indicated that the blue module was sig-
nificantly negatively correlated (i.e., r < 0 and corresponding P-values ≤ 0.05) with all three clinical features (i.e., 
numbers of positive lymph nodes, the Nottingham prognostic index, and the tumor stages), whereas the turquoise 
module showed a significant negative correlation with the Nottingham prognostic index (i.e., r = 0.064 and cor-
responding P-value = 0.005). In addition, Fig. 3c shows that module membership and gene significance in the 
blue module for tumor stages are moderately correlated (i.e., r = 0.53 with P-value = 0.04). Also, GATA3, ERRB3, 
RUNX1, BAP1, and TBX3 were the top five hub genes in the blue module, whereas in the turquoise module was 
RB1, ZFP36L1, SMAD4, SF3B1, and CDKN1B. RUNX1, GATA3, and TBX3 were the top three significant and 
module memberships for tumor stages in the blue module. However, we realized that Table 5 and Fig. 3b show 
extremely modest effects with correlation coefficients close to zero. These results demonstrated that our identi-
fied driver genes are weakly correlated with selected clinical features.

Patient stratification. Similar to identifying the above co-expressed modules, here we classified BRCA 
patients into different groups based on the CNV data of the identified driver genes. Firstly, the agglomera-
tive clustering algorithm (i.e., the Ward algorithm) was used to cluster into patient dendrogram hierarchically. 
Then, an optimal number of groups was determined by the connectivity (Fig. 4a), the Dunn’s index (Fig. 4b) 

Table 4.  Validated association between the expression of driver genes and the overall survival of BRCA 
patients. One gene, including KRAS with above-median expression levels and four genes, including MAP2K4, 
MAP3K1, PIK3R1, and TBX3 with below-median expression levels significantly associated with a shortened 
lifespan. HR is a measure that helps determine whether either of two expression levels of each driver gene will 
result in an increased (i.e., HR > 1) or decreased (i.e., HR < 1) probability of experiencing the defined event 
(i.e., death), at any time (below-median expression level is the reference). P-value is computed by the Cox 
proportional hazard method to test the statistical difference of the given results. Q-value is computed following 
the Benjamini–Hochberg procedure. HR: hazard ratio. 95% CI: 95% confidence interval.

Gene HR (95% CI) P-value Q-value

KRAS 1.20 (1.07–1.35) 2.30 × 10–03 1.19 × 10–02

MAP2K4 0.76 (0.67–0.85) 4.57 × 10–06 1.42 × 10–05

MAP3K1 0.82 (0.73–0.93) 1.23 × 10–03 7.61 × 10–03

PIK3R1 0.84 (0.75–0.95) 4.37 × 10–03 1.93 × 10–02

TBX3 0.84 (0.75–0.95) 4.91 × 10–03 1.90 × 10–02
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and the average Silhouette width (Fig. 4c) and the BRCA patients were distributed to each group. Collectively, 
Fig. 4A–C show that two optimal number of groups for the 2,173 BRCA patients were identified, which implied 
that clustering the patients into two subgroups was the best solution. Finally, we visualized the given result using 
a heatmap plot implemented in the function ‘Heatmap’ of the R package,  ComplexHeatmap79. The heatmap 
reports the differences in CNV events between the two patient groups (group 1: 993 patients and group 2: 1180 
patients; Fig. 4d).

Particularly, the tumors in the second group exhibit significantly worse outcomes (HR is 1.29 with 95% 
CI (1.15–1.45), P-value < 0.01; group 1 is the reference) (Fig. 5a), higher numbers of positive lymph nodes 
(P-value = 0.02, Wilcoxon rank-sum test) (Fig. 5b; Supplementary File 2, Table S13), higher Nottingham prog-
nostic index (P-value < 0.01, Wilcoxon rank-sum test) (Fig. 5c; Supplementary File 2, Table S13) and more 
advanced tumor stages than those in the first group (P-value < 0.01, Pearson’s χ2 test) (Fig. 5d; Supplementary 
File 2, Table S13).

Discussions and conclusion
In this study, the two driver gene identification tools were used to detect the 35 driver genes in 2,369 BRCA 
samples, in which it showed that the 31 genes overlap with previously published common BRCA driver genes, 
whereas, to the best of our knowledge, the four leftover genes are yet-to-be-discovered BRCA drivers. The two 
OncodriveFML and OncodriveCLUSTL tools detected BRCA-related driver genes that are well established in 
other cancer types, such as KRAS, ARID1A, CDKN2A, MEN1, BAP1, SMAD4. This implies that therapies used 
in other clinical settings could be appropriate for BRCA with mutations in these  genes13. Then, collectively, the 
five genes show a significant association with survival rate, whereas the ten genes are significantly but weakly 
correlated with all the three remaining clinical features through analyses between the expression levels of indi-
vidual driver genes and clinical features. Nevertheless, this result is understandable since it is believed that 
genes do not function separately but work in concert to affect human health jointly. Indeed, recent studies have 
shown that individual genes averagely interact with at least four other  genes80 and are relevant to 10 biological 
 functions81. Cancer is a complex human disease caused by multiple molecular mechanisms, so gene co-expression 
networks are a potential approach to detecting a set of cancer-related genes that may be targeted for therapeutic 
 interventions82,83 as well as the identification of hub genes that serve as fundamental roles in cancer. From such, 
we continue to implement the WGCNA tool to construct weighted driver gene co-expression networks. As a 
result, two co-expressed modules are detected; among them, one module is significantly negatively associated 
with the numbers of positive lymph nodes, the Nottingham prognostic index, and the tumor stage, whereas the 
other is significantly negatively associated with the Nottingham prognostic index. The top five hub genes are cor-
respondingly identified in the two modules, indicating possession of a vast range of interactions with other genes 
and playing crucial roles in the co-expression network of those genes. Finally, hierarchical clustering analysis of 
all of the identified driver genes reveals two subgroups of BRCA patients. Further mining the heatmap, we realize 
that the mutation frequencies of all the driver genes are disparate across the groups: minimal frequencies in the 
first group and substantial frequencies in the second group. In addition, the second group is significantly poorer 
than the first group with regard to the three clinical features and patient survival. Therefore, more intensive treat-
ment and frequent follow-up may be necessary for those patients assigned to the second group.

For our work, Fig. 1 describes an improved pipeline to perform the four most widely used analyses developed 
collectively based on prior  works7–15, each of which could be highly adjustable. We envision this pipeline as a 
general but unlimited solution for cancer researchers wishing to deal with driver genes integrating multi-omics 
data for which parts of the proposed protocol can permit users to explore any other implementation suitable for 

Table 5.  Association between the expression of driver genes and the other clinical features. ARID1A, RUNX1, 
GATA3, TBX3, NF1, MAP2K4, PTEN, SMAD4, MAP3K1 and SF3B1 significantly associated with all of the 
three clinical features. The column ‘CC’ (i.e., correlation coefficient denoted by r) measures the degree of 
association between the two variables: each driver gene versus each clinical feature. It takes on values ranging 
between − 1 and + 1. When r = 0, there is no relationship between the two variables. When r closer to 1, 
there is an increasingly strong positive (uphill) relationship between the two variables; otherwise, there is an 
increasingly strong negative (downhill) relationship between the two variables. CC: correlation coefficient.

Gene

Number of lymph nodes Nottingham prognostic index Cancer Stage

CC P-value Q-value CC P-value Q-value CC P-value Q-value

ARID1A − 0.06 0.01 0.02 − 0.13 1.31 × 10–8 3.69 × 10–8 − 0.10 1.13 × 10–4 5.82 × 10–4

RUNX1 − 0.14 1.65 × 10–9 5.12 × 10–8 − 0.25 6.20 × 10–29 9.61 × 10–28 − 0.11 2.97 × 10–5 4.61 × 10–4

GATA3 − 0.01 1.27 × 10–5 1.31 × 10–4 − 0.28 1.28 × 10–35 3.98 × 10–34 − 0.12 3.83 × 10–5 3.95 × 10–4

TBX3 − 0.10 9.10 × 10–6 1.41 × 10–4 − 0.18 1.44 × 10–15 7.41 × 10–15 − 0.12 6.12 × 10–5 4.74 × 10–4

NF1 − 0.09 5.77 × 10–5 4.47 × 10–4 − 0.08 2.23 × 10–4 3.64 × 10–4 − 0.07 6.36 × 10–3 0.02

MAP2K4 − 0.08 4.61 × 10–4 1.79 × 10–3 − 0.22 2.04 × 10–21 1.58 × 10–20 − 0.07 6.99 × 10–3 0.02

PTEN − 0.08 6.02 × 10–4 2.07 × 10–3 − 0.23 1.22 × 10–23 1.26 × 10–22 − 0.11 2.93 × 10–5 9.08 × 10–4

SMAD4 − 0.06 0.01 0.03 − 0.10 1.79 × 10–5 3.47 × 10–5 − 0.08 1.48 × 10–3 5.11 × 10–3

MAP3K1 − 0.06 0.01 0.03 − 0.16 6.35 × 10–13 2.46 × 10–12 − 0.09 7.16 × 10–4 2.77 × 10–3

SF3B1 0.09 7.83 × 10–5 4.84 × 10–4 0.07 1.78 × 10–3 3.76 × 10–3 0.10 8.48 × 10–5 5.26 × 10–4



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20521  | https://doi.org/10.1038/s41598-020-77318-1

www.nature.com/scientificreports/

their research. At Steps 2 and 4, the workflow implements the g:Profiler and WGCNA tools with basic settings, 
consistent with the implementation of previous studies. Users totally may refer to ref.40 and ref.84 to perform 
intensive analyses with them, respectively; however, it may lead to a considerable increase in computation time. 
For WGCNA, users must face a question: should one choose a ‘signed’ or ‘unsigned’ network? This selection 
affects how WGCNA treats the correlation of driver genes, in which ‘signed’ considers negative correlation coef-
ficients of pairs of nodes (i.e., pairs of driver genes) to be unconnected, whereas ‘unsigned’ treats positive and 
negative correlations equally. There is no right answer existing, and previous works could make an inconsistent 
decision with one another. To avoid any confusion and follow the suggestion of  WGCNA19, this study currently 
recommends a ‘signed’ network. At Step 3, for survival analysis, there are five survival types: overall survival, 
disease-specific survival, disease-free survival, recurrence-free survival, and distant metastasis-free survival that 
users can perform with single (i.e., univariate analysis) or combined (i.e., multivariate analysis) clinical features 
of  interest10–13,85 to assess the association between individual driver genes and survival rates. At Steps 3 and 4, the 
work issues the main focus on the associations between clinical features and changed expression levels of identi-
fied driver genes. Based on the belief that gene expression is considered the first level of phenotype affected by 
the mutation/change on the gene, it is reasonable to investigate how the mutation affects its  phenotype7,8,10,12,15,49. 
For example, a large number of non-coding drivers can regulate the expression of genes and driver  genes86,87. 
However, it is optional, and you can use other omics data types for this step. At Step 5, in the patient stratifica-
tion process, to limit computational burden, one prior study only selects 20 driver genes with the most frequent 
changes as input, including the ten most frequently amplified and the ten most frequently deleted driver  genes11. 

Figure 3.  Co-expression network analysis for module-clinical feature associations. (a) Dendrogram of the 
identified driver genes on Topology Overlap Matrix-based dissimilarity. The dendrogram height corresponds 
to the coefficient of dissimilarity matrix that is for every pair of 31 driver genes, in which the low dissimilarities 
indicate two driver genes are close, whereas the high dissimilarities imply two driver genes are distant apart. 
Two co-expressed modules were detected and are shown in different colors. (b) Module–feature associations. 
Each row corresponds to a module eigengene (ME), column to a feature. Each cell contains the corresponding 
correlation coefficient and P-value. (c) A correlation between gene significance for tumor stage and module 
membership in the blue module. There is a significantly strong positive correlation between Gene significance 
and Module membership in this module (r = 0.58, P-value = 0.04). Significant genes (i.e., high Gene significance 
and high Module membership) in a single module are the ones having a significant association with a clinical 
feature considered. Abbreviation: lymph: number of positive lymph nodes, and npi: the Nottingham prognostic 
index, respectively.
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Nevertheless, for methylation data, there is alternative to choose driver genes for this  step9,12. In this study, we 
even use all the detected driver genes as input as already mentioned in the reference  paper13. Finally, at Steps 3 
and 5, in most cases, the distribution of omics data is skewed, so it is recommended that users should priorly 
select non-parametric methods for testing, such as preferring the Spearman’s rank correlation to the Pearson’s 
correlation. However, there may be applications in which parametric statistical methods are preferable.

Notably, our pipeline is considered as an improved and refined solution to those mentioned in previous stud-
ies. We attempt to make the analysis pipeline for the identification and characterization of driver genes more 
consistent and reproducible than old investigations. Also, most current driver identification tools are developed 
to detect genes with coding mutation, whereas the number of non-coding driver identification methods is 
considerably limited. However, an enormous number of mutations exist in non-coding regions (due to only 
around 2% of the human genome comprising of protein-coding regions); meanwhile, many previous  studies7,8,11 
selected coding-driver-specific tools such as  OncodriveFM21. In this improved pipeline, we priorly select the 
two tools OncodriveFML and OncodriveCLUSTL that are two minor cases can identify both non-coding driver 
genes and infrequently mutated genes in the hope of encouraging researchers interested in this field to take this 
challenge into account when building a new tool or conducting a driver-gene-related study. For future work, 
the only way to validate non-coding cancer drivers is to do the literature review  manually86,88 and most of the 

Figure 4.  Optimal group number detection and difference in CNVs events between the identified groups. 
(a) Two optimal groups were determined by the connectivity. The connectivity computes the degree of 
connectedness of a given group partitioning. The connectivity shows the connectedness of a given cluster 
partitioning and has a value between 0 and infinity. The user should choose a point reaching the most 
minimized value (y-axis). (b) Two optimal groups were also determined by the Dunn’s index. The Dunn’s index 
(y-axis) has a value between zero (poorly clustered observations) and infinity (well clustered observations), and 
the place where the black line of Dunn’s index plot peaks at, which implies that that group number is optimal. 
(c) Three optimal groups were determined by the Silhouette width. The average Silhouette has a value between 
-1 (poorly clustered observations) and 1 (well clustered observations), and the place where the black line of 
the Silhouette plot peaks at, which implies that that group number is optimal. (d) The heatmap indicates the 
differences in CNV event distribution of two subgroups. The dark red, red, grey, blue and dark blue represent 
high-level amplification, amplification, copy‐neutral, deletion and high-level deletion, respectively.
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available databases used to validate only coding drivers; therefore, new resources for non-coding drivers should 
be built as rapidly as possible.

Last, the following limitations are essential to consider before performing the pipeline. Besides, we also 
make them feasible with the solutions attached. Firstly, cancer is a common disease, and most driver genes are 
now known, such as breast  cancer14. Therefore, we suggest that when applying the proposed scheme for any 
cancer, we may skip Stage 1 (Fig. 1) and go directly to Stage 2 (Fig. 1) with well-established genes in that cancer 
type. In contrast, users should maintain Stage 1 to predict new drivers. A hint for the latter case is a combining 
approach using many driver identification tools simultaneously, for example, as seen in ref.11. Secondly, users 
can encounter several other limitations with Step 2 (Fig. 1, Stage 2) using g:Profiler that can see ref.40. Thirdly, 
the work proposes the computeC tool at Step 3 (Fig. 1, Stage 2) to perform correlation analysis using simple 
methods, but not more sophisticated methods for gene expression data like the R package ‘limma’89, etc. In the 
future, we will take this issue into account to improve the tool. Finally, a potential restriction when performing 
survival analysis at Steps 3 and 5 is that the pipeline deals with the censored data in a simple way. More specifi-
cally, for missing information, the function ‘coxph’ ignores it automatically, whereas, for end-of-study and loss-
to-follow-up censoring, we select the approach of analyzing dichotomized data (see detailed implementations at 
Supplementary File 1). Consequently, these processes may pose problems to the analysis. Our solution is making 
assumptions about censoring to selecting the most appropriate statistical methods. For example, if the clinical 
data whose missing information is limited, the user can remove it; conversely, imputation methods should be 
taken into consideration.

In summary, we proposed an improved pipeline integrating state-of-the-art computational tools to identify 
and characterize the driver genes more efficiently and refinedly. Through the successful use of the proposed 
pipeline, many exciting results were identified, from revealing the four new driver genes, then discovering 
potential druggable targets as well as the two co-expressed modules, to detecting the two prognostic groups 
of BRCA patients. Obviously, it is valuable to develop individualized treatments for patients with BRCA in the 
future. Furthermore, we believe that this success, plus accompanying public codes, demonstrate the efficacy of 
the work as well as persuade other researchers to use the pipeline.

Figure 5.  Differences between groups of BRCA patients in terms of clinical features. (a) survival rates, (b) 
the number of positive lymph nodes, (c) the Nottingham prognostic index and (d) cancer stage. Abbreviation: 
Chisq, Pearson’s χ2 test.
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Data availability
The raw data used in the study are available in the cBioportal website: (https ://www.cbiop ortal .org/study /summa 
ry?id=brca_tcga_pub). Approval by a local ethics committee was not required, and all the data can be immediately 
downloaded from the cBioportal website. R packages of computeC and geneSA are available on GitHub (https 
://githu b.com/huyng uyen2 50896 /compu teC and https ://githu b.com/huyng uyen2 50896 /geneS A), respectively.
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