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MOTIVATION Expansion of short tandem repeats (STRs) in the human genome underlies over 50 genetic
disorders, some of which involve RNA gain-of-function pathophysiological mechanisms. Compared with
physiological RNAs, RNAs containing repeat expansion sequences exhibit many distinct properties such
as a high propensity to form aggregates in cells, although the causes of these distinct properties remain
largely unclear. We set out to develop an unbiased approach to determine the sequence features of repeat
RNAs that promote their aggregation in cells, with potentially broad applications in understanding the path-
ological basis of repeat expansions.
SUMMARY
A common pathological feature of RNAs containing expanded repeat sequences is their propensity to aggre-
gate in cells. While some repeat RNA aggregates have been shown to cause toxicity by sequestering RNA-
binding proteins, the molecular mechanism of aggregation remains unclear. Here, we devised an efficient
method to generate long tandem repeat DNAs de novo and applied it to systematically determine the
sequence features underlying RNA aggregation. Live-cell imaging of repeat RNAs indicated that aggregation
was promoted by multivalent RNA-RNA interactions via either canonical or noncanonical base pairs. While
multiple runs of two consecutive base pairs were sufficient, longer runs of base pairs such as those formed
by GGGGCC hexanucleotide repeats further enhanced aggregation. In summary, our study provides a unify-
ing model for the molecular basis of repeat RNA aggregation and a generalizable approach for identifying the
sequence and structural determinants underlying the distinct properties of repeat DNAs and RNAs.
INTRODUCTION

An increasing number of human diseases, especially neurolog-

ical disorders, have been shown to arise from STR expansion

mutations. While some of them are recessive mutations (e.g.,

fragile X syndrome), many repeat expansion mutations are in-

herited in a dominant manner, suggesting possible involvement

of gain-of-function mechanisms (Rodriguez and Todd, 2019;

Schwartz et al., 2021). One such mechanism that has been

well established in myotonic dystrophy type 1 and 2 (DM1/2) is

mediated by RNA transcripts containing the expanded repeat

sequences, which form aggregates also known as repeat RNA

foci (Ranum and Cooper, 2006; Wojciechowska and Krzyzosiak,

2011). The aggregated CUG andCCUG repeat RNAs in DM1 and

DM2, respectively, sequester several RNA-binding proteins

(RBPs) including the muscleblind-like (MBNL) family of splicing
Cell Report
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regulators, thereby causing widespread dysregulation in pre-

mRNA splicing (Scotti and Swanson, 2016; Wang et al., 2012).

In addition to DM1/2, repeat RNA foci have been widely

observed in other repeat expansion disorders such as Hunting-

ton disease (CAG repeats) (Didiot et al., 2018) and C9orf72-

associated amyotrophic lateral sclerosis (ALS) and frontotempo-

ral dementia (FTD) (GGGGCC repeats) (DeJesus-Hernandez

et al., 2011; Zu et al., 2013). However, the pathophysiological

significance of repeat RNA foci in these diseases is less well

understood.

By imaging CAG/CUG and GGGGCC repeat RNA foci assem-

bly and disassembly in cells, a previous study has shown that

these RNA foci are liquid-like, dynamic structures that share sim-

ilarities with phase-separated protein condensates formed by

multivalent interactions (Jain and Vale, 2017). The same study

has further proposed that repeat RNAsmay assemble by directly
s Methods 2, 100334, November 21, 2022 ª 2022 The Author(s). 1
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Figure 1. Generation of long tandem repeats by RepEx-PCR

(A) Schematic illustration of RepEx-PCR.

(B) Length distribution of RepEx-PCR products.

(C) Sanger sequencing results of a�100x CAGconstruct, showing the junction

between 5ʹ flanking region and repeat insert (top) and amagnified view of CAG

repeats (bottom).

(D) Schematic illustration of a dual-luciferase reporter for detecting frame-

shifted CAG repeats.

(E) Relative RLuc/FLuc activities of out-of-frame 0x or 100x CAG constructs.

Data are shown as mean ± SD, #p > 0.1; *p < 0.05, two-tailed Student’s t test.

(F) Percentage of clones with CAG or GGGGCC repeats inserted in the sense

and antisense direction.

(G) Restriction enzyme digestion of clones containing antisense (GGCCCC)

repeats inserted in the original or ori-inverted vector.
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base-pairing with one another, a model reminiscent of cyto-

plasmic stress granule assembly (Van Treeck et al., 2018). While

this model is plausible and further supported by in silico simula-

tion (Nguyen et al., 2022), direct evidence of a critical role of

RNA-RNA base-pairing is currently lacking. Alternative mecha-

nisms of repeat RNA aggregation may involve, for example,

RBPs that contain low-complexity domains that are prone to

multimerize via either homotypic or heterotypic interactions

(Kato et al., 2012). Once recruited by repeat RNAs, such RBPs

may facilitate condensate formation, which may in turn recruit

additional repeat RNAs in an indirect manner.
2 Cell Reports Methods 2, 100334, November 21, 2022
For understanding the mechanism of repeat RNA aggrega-

tion, it is important to identify the sequence features that

promote this process. However, previous studies of repeat

RNA foci have been largely restricted to disease-associated

expanded repeats, which represent only a small fraction

of all possible repeat sequences. In addition, most dominantly

pathogenic repeats have been shown to form RNA foci

to some extent, with few counterexamples available. Further-

more, each endogenous repeat region is expressed

in a distinct genomic context and cellular environment,

thereby prohibiting a direct comparison between repeat

sequences.

To circumvent these confounding factors, we developed a

generalizable approach to efficiently generate long tandem repeat

DNA fragments of any desired sequence and length, which canbe

subsequently cloned in expression constructs for functional as-

says. By using this approach, we monitored the formation of

RNA foci for a variety of repeats,most ofwhich have not been pre-

viously studied. Results from this unbiased analysis strongly sup-

ported RNA-RNA base-pairing as a general cause and further re-

vealed the characteristics of RNA base pairs that promote repeat

RNA aggregate formation.

RESULTS

Generation of long tandem repeats by RepEx-PCR
To investigate the sequence determinants of repeat RNA ag-

gregation, we needed an efficient and generalizable method

to synthesize long tandem repeats of any desired sequence.

While a previously reported method based on type IIS restric-

tion endonucleases allows sequential elongation of any repeat

(Scior et al., 2011) (hereafter referred to as the sequential

method), it requires multiple rounds of cloning to create long re-

peats in the pathological range. We took inspiration from the

seminal work by Khorana and colleagues on generating di-

and trinucleotide repeat DNA polymers by using E. coli DNA

polymerase I (Khorana et al., 1965), and improved upon a pre-

viously described (Ordway and Detloff, 1996) PCR-based

method to generate long DNA repeats from short DNA oligos,

which we termed repeat-extension PCR (RepEx-PCR) (Fig-

ure 1A). RepEx-PCR is initiated by annealing two complimen-

tary single-stranded DNA oligos (typically 16–20 nt and 5ʹ phos-
phorylated) containing two or more repeats of the desired

sequence. While most oligos would form perfect duplexes,

some would anneal in an offset manner, yielding either 5ʹ or
3ʹ overhangs. Next, Taq DNA polymerases fill in the 5ʹ over-
hangs with additional repeat units before all duplexes are dena-

tured for the next cycle of annealing and extension. In addition

to filling 5ʹ overhangs, Taq polymerases with 3ʹ-to-5ʹ proof-
reading exonuclease activity remove 3ʹ overhangs, thereby

blunting both ends of the double-stranded repeat DNA prod-

ucts (Figure 1A).

As expected, increasing numbers of RepEx-PCR cycles

generated longer repeat DNAs spanning a wide range in length.

For example, RepEx-PCR starting from two oligos containing

six units (6x) of CAG and CTG repeats, respectively, generated

CAG:CTG repeat DNA products ranging from tens to thou-

sands of copies (Figure 1B), well into the pathological range
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B Figure 2. Sequence determinants of CAG

repeat RNA aggregation

(A) Schematic illustration of the 12x MS2-tagged

doxycycline-inducible repeat RNA imaging

construct.

(B) Representative images of cells expressing 20x

(left) and �200x (right) CAG repeat RNAs. Scale

bar, 10 mm.

(C) Potential base-pairing patterns (top) and

representative images (bottom) of CAG sequence

variants. Substituted nucleotides are highlighted

in orange. See Figure 3C for quantification. Scale

bar, 10 mm.
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associated with Huntington disease and DM1. Size-selected, 5ʹ
phosphorylated repeat DNA products were ligated to linearized

vectors (typically non-phosphorylated PCR products), cloned

and amplified in E. coli, and verified by sequencing (Figure 1C).

In principle, RepEx-PCR products should consist only of full re-

peats. To test whether incomplete repeats caused by small in-

dels may arise during either RepEx-PCR or subsequent clon-

ing, we generated a series of dual-luciferase reporter

constructs containing CAG repeats (Figure 1D). In these re-

porters, �100x CAG repeats were in-frame with the upstream

firefly luciferase (FLuc) coding sequencing, while a downstream

Renilla luciferase (RLuc) coding sequencing was in either 0- (in-

frame), +1-, or +2-frame (out-of-frame) relative to FLuc. If

RepEx-PCR or subsequent cloning generated incomplete re-

peats, we would observe decreased RLuc activity from the

in-frame reporter and increased RLuc activity from +1 or +2-

frame reporters. After transfection in HEK293T cells, all four

tested clones of out-of-frame reporters yielded background

levels of RLuc activity, similar to the negative control reporters

with no repeats inserted (Figure 1E), suggesting that most if not

all RepEx-PCR products are pure tandem repeats with no

incomplete repeat units.

Blunt-end ligation of RepEx-PCR products should in principle

result in repeats being inserted in either the sense or antisense

orientation. Indeed, we obtained similar numbers of clones con-

taining either CAG or CTG repeats (Figure 1E). When we applied

RepEx-PCR to generate other repeats, however, some repeats

showed strong orientation bias. For example, RepEx-PCR for

the hexanucleotide GGGGCC repeats only yielded clones in

sense orientation but not in the antisense (GGCCCC) orientation

(Figure 1F). Attempts to reverse the G-rich repeats by using re-

striction enzymes resulted in the contraction of repeats (Fig-

ure 1G), indicating that the observed orientation bias was largely

due to repeat instability instead of ligation bias. Similar strand-

specific repeat instability has been previously attributed to the

position of repeats relative to the origin of replication (ori)

(Kang et al., 1995). Indeed, inverting the ori prior to repeat inser-

tion substantially stabilized the repeats in the antisense orienta-

tion (Figure 1G).
Cell Reports
Sequence determinants of triplet
repeat RNA aggregation
An MS2 stem-loop/MS2 coat protein

(MCP)-based RNA imaging system has

previously been used to monitor repeat
RNA aggregation in living cells (Jain and Vale, 2017) (Figure 2A).

After transfecting 12x MS2 stem-loop-tagged repeat RNA

expression constructs in U2OS cells that stably express MCP-

YFP and reverse tetracycline-controlled trans-activator (rtTA),

we induced repeat RNA expression by adding doxycycline and

imaged the formation of RNA foci. By comparing 20x and

�200x CAG repeats, we first confirmed the previous observation

that repeat RNA aggregation was strongly dependent on repeat

length (Jain and Vale, 2017) (Figure 2B). To determine the

sequence features that promote CAG repeat RNA foci formation,

we applied RepEx-PCR to generate variants of CAG repeats with

similar length (�200x) (Figure S1), each containing substitutions

of one of the three nucleotides. Substituting C1 with G (GAG re-

peats) or G3 with C (CAC repeats) abolished the formation

of RNA foci, whereas A2U substitution (CUG repeats) had

little effect (Figure 2C). Similar to a previous study on endoge-

nous CUG repeat RNA foci in DM1 myoblasts (Dansithong

et al., 2005), knocking down MBNL1 and, to a lesser extent,

MBNL2, reduced CUG repeat foci in U2OS cells (Figure S2).

To further assess the role of base-pairing, we generated the

compensatory double mutant C1G/G3C (GAC repeats), in which

consecutive C:G pairs were restored. Indeed, GAC repeat RNAs

readily formed foci in U2OS cells (Figure 2C). Together, our re-

sults were consistent with the previously proposed model (Jain

and Vale, 2017), in which repeat RNAs form multivalent interac-

tions via base-pairing.

To more systematically determine the sequence characteris-

tics that promote repeat RNA aggregation, we sought to

generate all possible triplet repeat sequences. Except for the

four homopolymers (polyA, polyC, polyG, and polyT), we gener-

ated all of the remaining 20 non-redundant triplet repeats (Fig-

ure 3A). Consistent with the analysis on CAG variants, we

restricted the length at �600 base pairs or �200x. Because

the percentage of foci-positive cells was highly correlated with

the average RNA foci area per cell (Figure S3), we used the

former as our primary measurement.

Similar to CAG variants, the 20 tested triplet repeat RNAs ex-

hibited awide range of aggregation propensity (Figure 3B), which

was not explained by the differences between their expression
Methods 2, 100334, November 21, 2022 3
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Figure 3. Expanded analysis of trinucleo-

tide repeat RNA aggregation

(A) List of all of 20 non-redundant triplet repeats.

Homopolymers are indicated in gray.

(B) Representative images of cells expressing

each of 15 triplet repeats not included in Figure 2.

Scale bar, 10 mm.

(C) Relationship between predicted base pairs

and foci forming ability. p value, two-tailed Mann-

Whitney U test.
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levels (Figure S4). To further rule out the potential effect of differ-

ential expression levels between repeats, we measured repeat

RNA expression levels and foci formation at each of a series of

doxycycline concentrations, and then interpolated the percent-

age of foci-positive cells at a fixed expression level (50% of

GADPH expression level measured by RT-qPCR), which yielded

highly consistent results with those from experiments using a

constant doxycycline concentration (Figure S5).

The 20 triplet repeat sequences allowed us to assess more

broadly the role of base-pairing in repeat RNA aggregation.

Consistent with our CAG variant analysis, binary categoriza-

tion of triplet repeats based on their potential to form

Watson�Crick or G:U wobble base pairs was highly predictive

of foci formation (Figure 3C), accounting for more than half of

the variance (r2 = 0.59). These results strongly supported a

general role of RNA-RNA base-pairing in mediating repeat

RNA aggregation.

Base-pairing properties in repeat RNA aggregation
We next sought to further characterize the type and strength of

base-pairing required for repeat RNA aggregation. For triplet re-

peats, base pairs were invariably in runs of two (Figure 2C). To

test whether multiple runs of two consecutive base pairs were

the minimal interactions, we generated �150x ACAG repeats

by RepEx-PCR, which could potentially form non-consecutive

C:G pairs (Figure 4A). In contrast to 200x CAG repeats, 150x

ACAG repeat RNA did not form foci (Figure 4B), suggesting
4 Cell Reports Methods 2, 100334, November 21, 2022
that runs of as few as two consecutive

base pairs were the minimal requirement

for RNA aggregation.

Previous studies have proposed that

repeat RNAs containing multiple

consecutive G nucleotides may aggre-

gate via the formation of G-quadruplex

(Fay et al., 2017; Jain and Vale, 2017),

a four-stranded RNA structure involving

noncanonical G:G base pairs. Of the

three tested triplet repeats containing

GG dinucleotides, we observed RNA

foci formation for CGG and UGG, but

not AGG (Figures 3B and 3C). However,

CGG and UGG foci could also be due to

C:G and G:U base pairs, respectively,

whereas the scarcity of AGG foci might

be due to RBPs and helicases that nor-

mally prevented RNA G-quadruplex
formation in cells (Guo and Bartel, 2016). To test whether

repeat RNA aggregation could be mediated by stronger

G-quadruplex interactions, we generated 120x repeats of

AAGGG, a well-established G-quadruplex motif with no poten-

tial to form canonical base pairs (Guo and Bartel, 2016) (Fig-

ure 4C). Not only 120x AAGGG repeat RNAs strongly aggre-

gated (Figure 4D), treating cells with pyridostatin (PDS), a

G-quadruplex stabilizer (Biffi et al., 2014), further increased

AAGGG but not CAG foci (Figure 4D). These results suggested

that aside from runs of two (or more) consecutive canonical

base pairs, multiple runs of three (or more) consecutive G nu-

cleotides could also mediate repeat RNA aggregation through

noncanonical base pairs and G-quadruplex assembly.

Aggregation of ALS/FTD-associated GGGGCC repeat
RNAs
Expansion of hexanucleotide GGGGCC repeats within the first

intron of C9orf72 gene is the most common genetic cause of

ALS and FTD (DeJesus-Hernandez et al., 2011; Renton et al.,

2011). Similar to other pathogenic repeats, GGGGCC repeat

as well as its antisense GGCCCC repeat RNAs are both known

to form foci in patient tissues (DeJesus-Hernandez et al., 2011;

McEachin et al., 2020; Zu et al., 2013). In keeping with the

notion that runs of consecutive base pairs mediate RNA aggre-

gation, GGGGCC repeats could form runs of four consecutive

base pairs in multiple configurations (Figure 5A), two of which

involving canonical C:G pairs between C5/C6 and either
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Figure 4. Base-pairing properties in repeat RNA aggregation

(A) Potential base-pairing pattern of ACAG repeats. The added A nucleotides

are highlighted in orange.

(B) Representative image (left) and quantification (right) of cells expressing

150x ACAG repeat RNA. Scale bar, 10 mm. Quantification data are shown as

mean ± SD, *p < 0.05, two-tailed Student’s t test.

(C) Predicted G-quadruplex structure of GGGAA repeats.

(D) Representative image (left) and quantification (right) of cells expressing

120x GGGAA or 200x CAG repeat RNAs, treated with DMSO or PDS. Scale

bar, 10 mm. Quantification data are shown as mean ± SD, #p > 0.1; *p < 0.05,

two-tailed Student’s t test.
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G3/G4 (a) or G1/G2 (b). GGGGCC repeats could also form four-

layer G-quadruplexes (c), as have been previously shown

in vitro (Fay et al., 2017; Fratta et al., 2012; Jain and Vale,

2017; Reddy et al., 2013), as well as a variety of configurations

with shorter runs of base pairs (e.g., G2/G3 pairing to C5/C6

(Wang et al., 2019a; Wang et al., 2019b)). Consistent with pre-

vious studies, we observed strong aggregation propensity of

GGGGCC repeat RNAs in a repeat length-dependent manner

(Figure 5B), with 60% to 80% transfected cells showing clear

RNA foci upon induction. To test whether the strong base-pair-

ing potential of GGGGCC repeat RNA may promote foci forma-

tion, we generated three mutant sequences, each containing

substitutions that disrupted two of the three possible ‘‘run-of-

four’’ configurations (Figure 5C). Specifically, AGGGCC (G1A)

repeats could still form configuration a, as well as a three-layer

G-quadruplex (not shown), whereas GGAGCC (G3A) and

GGGGAC (C5A) repeats could form configurations b and c,

respectively. Indeed, with the remaining ability to form runs of

four consecutive base pairs, each of the three mutants still

strongly aggregated (Figures 5C and 5D). In contrast, foci for-

mation of a G1A/G3A double mutant, which could only form

runs of two consecutive C:G pairs (Figure 5C), was significantly

decreased to a level comparable to other GC-rich triplet re-

peats (Figure 5D). These results suggested that longer runs of

consecutive base pairs enhanced GGGGCC repeat RNA ag-

gregation, further supporting the role of base-pairing in promot-

ing repeat RNA foci formation.

DISCUSSION

Our PCR-based repeat extension provides an efficient and

generalizable approach to generate tandem repeats of any

desired sequence spanning a wide range of lengths. Compared

with a previous type IIS restriction endonuclease-based method

(the sequential method) (Scior et al., 2011), RepEx-PCR has two
clear advantages: First, the sequential method relies on a pair

of type IIS restriction sites flanking the repeats, which may inter-

fere with certain applications. In contrast, blunt-end ligation of

RepEx-PCR products does not require any specific flanking

sequence. Second, the sequential method starts with a relatively

short synthetic repeat and doubles the repeat length after each

round of cloning. Therefore, multiple rounds of cloning are

required to obtain more than a few dozen repeats. On the con-

trary, RepEx-PCR can generate long repeats in a single round

of cloning, with the minor trade-off being that multiple bacterial

colonies need to be screened in order to identify those with the

desired length and orientation. Nonetheless, the sequential

method, due to its PCR-free nature, provides a complementary

strategy that may be more suited for assembling multiple repeat

sequences in the same construct.

RepEx-PCR enabled us to generate a large variety of repeat

RNAs and delineate the sequence features that promote RNA

foci formation. First, mutation analysis of CAG repeats showed

that disrupting the predicted C1:G3 base pairs abolished RNA

aggregation (Figure 2), whereas the compensatory double

mutations that restored base-pairing also restored RNA aggre-

gation. These observations were corroborated by our expanded

analysis that surveyed all 20 non-redundant, non-homopolymer-

ic triplet repeats (Figure 3), in which binary categorization of

base-pairing potential could effectively predict foci formation,

accounting for more than half of the variance. Finally, to test

whether runs of consecutive base pairs were required for RNA

aggregation, we interrupted the GC and GGCC/CCGG motifs

in CAG (Figure 4) and GGGGCC repeats (Figure 5), respectively,

both causing significant reductions in RNA foci. Collectively,

these results supported and expanded the previously proposed

model in which RNA-RNA base pairs mediate repeat RNA aggre-

gation (Jain and Vale, 2017; Nguyen et al., 2022).

Our analysis revealed important contributions of noncanon-

ical RNA-RNA interactions in repeat RNA aggregation. G-rich

RNAs have long been known to form highly stable

G-quadruplex structure, in which each of four adjacent runs

of consecutive G nucleotides (G-runs) pair to two other

G-runs on both Watson-Crick and Hoogsteen faces. While

many endogenous RNAs contain regions that can form

G-quadruplexes in vitro, these regions are predominantly

unfolded in eukaryotic cells by RNA helicases and RBPs

(Guo and Bartel, 2016), presumably to prevent their potential

negative impact on mRNA translation and degradation. In

contrast to physiological mRNAs, some repeat RNAs such

as those in C9orf72-associated ALS/FTD and SCA36

(UGGGCC repeats) contain hundreds or thousands of adja-

cent G-runs and therefore have extraordinarily high propensity

to form intra- or intermolecular G-quadruplexes (Conlon et al.,

2016; Fratta et al., 2012; Reddy et al., 2013). Indeed, our an-

alyses of GGGAA and GGGGCC repeats provided evidence

that expanded repeat RNAs with runs of three or more G

nucleotides could readily aggregate via G-quadruplexes,

suggesting that unlike those in physiological RNAs,

G-quadruplexes within repeat RNA aggregates might become

less accessible to the cellular remodeling machinery. These

results also raised the intriguing possibility that G-rich repeat

RNA foci might further sequester G-quadruplex-remodeling
Cell Reports Methods 2, 100334, November 21, 2022 5
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Figure 5. Aggregation of ALS/FTD-associated GGGGCC repeat RNAs

(A) Potential base-pairing patterns of GGGGCC repeats.

(B) Representative images of cells expressing 10x (left) or 90x (right) GGGGCC repeat RNAs. Scale bar, 10 mm.

(C) Potential base-pairing patterns (top) and representative images (bottom) of cells expressing each GGGGCC variant. Substituted nucleotides are highlighted in

orange. Scale bar, 10 mm.

(D) Quantification of foci + cells expressing each GGGGCC variant. Quantification data are shown as mean ± SD, #p > 0.1; *p < 0.05, two-tailed Student’s t test.
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factors and thereby stabilize otherwise transient

G-quadruplexes formed within physiological RNAs (Yang

et al., 2018).

On one hand, our model that multiple runs of two or more

consecutive base pairs were sufficient to promote RNA aggrega-

tion explains why RNAs containing expanded repeats, with their

high density of base-pairing motifs, were particularly prone to

aggregation. On the other hand, this model also suggests that

RNA aggregates may not consist purely of RNAs containing

expanded repeats but also of other endogenous RNAs with the

potential to base-pair extensively to repeat RNAs, such as pre-

mRNAs with similar albeit non-expanded repeat sequences,

potentially causing the misprocessing or retention of these

secondarily recruited RNAs. Considering that previous studies

have largely focused on the RBPs sequestered within repeat

RNA foci, we suggest that investigating their secondary RNA

components may shed new light on the pathophysiological sig-

nificance of repeat RNA aggregates.

While the base-pairing potential explained more than half of

the variance in RNA foci formation between repeat sequences,

some sequence features associated with foci formation were

not readily explained by base-pairing. For example, while G:U

wobble pairs are in general weaker than C:G pairs, GGU and

GUU repeats were more prone to aggregation than GGC and

GCC repeats, respectively (Figure 3C), suggesting that G/U-

rich sequences may promote RNA aggregation in ways addi-

tional to base-pairing, possibly due to their interactions with

certain RBPs. Consistent with a previous study in DM1 myo-

blasts (Dansithong et al., 2005), MBNL1/2 knock down also

reduced but did not completely abolish CUG repeat RNA foci

in our system, suggesting that RNA-RNA and RNA-RBP interac-

tions may co-exist and both contribute to aggregate formation.

At high RNA abundance (e.g., ectopically expressed repeats),
6 Cell Reports Methods 2, 100334, November 21, 2022
intermolecular RNA-RNA interactions may be favored, whereas

at low RNA abundance (e.g., endogenous C9orf72 intronic

repeats), interactions with abundant RBPs may initiate

aggregation and promote subsequent RBP-RNA and RNA-

RNA interactions (Van Treeck and Parker, 2018). While RBP-

RNA interactions may interfere with base-pairing locally, by

bridging multiple RNAs they may cause more base pairs to

form elsewhere. Determining the phase diagrams of RNA

foci formation, in which RNA and RBP abundance can be

independently titrated, will be useful to assess the relative

roles of RNA-RNA versus RNA-RBP interactions at different

concentrations.

Our systematic approach of identifying sequence and struc-

tural features in repeat RNAs is not limited to the studies of

RNA foci, but generalizable for studying other properties of

repeat sequences, such as their impact on pre-mRNA process-

ing (Sznajder et al., 2018), non-AUG translation (Zu et al., 2011),

antisense RNA expression (Zu et al., 2013), cytoplasmic stress

granules (Fay et al., 2017), and cell viability (Sun et al., 2020).

Therefore, RepEx-PCR represents a valuable addition to the

repertoire of methods enabling deeper investigations into the

physiology and pathophysiology of tandem repeats and repeat

expansion disorders.
Limitations of the study
While RepEx-PCR can generate tandem repeat DNAs tens of ki-

lobases in length, blunt-end ligation is much less efficient for

these longer inserts. Furthermore, longer repeats are substan-

tially less stable during E. coli culture and more likely to undergo

partial or complete contraction. Future modifications of the clon-

ing procedure including using alternative host organisms may

enhance the cloning efficiency and/or stability of ultralong
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repeats to better recapitulate those observed in certain repeat

expansion diseases.
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(junjie.guo@yale.edu).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completedMaterials Transfer Agreement.

Data and code availability
d Any data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

U2OS and HEK293T cell lines
The U2OS cell line stably expressing rtTA and MCP-YFP was a gift from A. Jain and R. Vale. Both U2OS and HEK293T (ATCC CRL-

3216) cell lines were maintained in DMEM high-glucose medium (Gibco) with 10% (v/v) heat inactivated fetal bovine serum (Gibco)

and penicillin–streptomycin (100 U/mL, Gibco) at 37�C with 5% CO2.

METHOD DETAILS

Generation of tandem repeats by RepEx-PCR
RepEx-PCR was performed by using 0.5 mM each of the two 5ʹ phosphorylated single-stranded DNA oligos (Integrated DNA Tech-

nologies) containing 5-7x sense and antisense repeats, respectively. For most triplet repeats, Q5 hot-start high-fidelity DNA polymer-

ase (New England Biolabs) was used. For GC-rich repeats such asGGGGCC, KAPAHiFi DNA polymerase (Roche) was usedwith GC

buffer and/or GC enhancer. RepEx-PCR products were size-selected and purified from a 0.8%agarose gel. Linear vectors were typi-

cally generated by PCR using non-phosphorylated primers. Vectors linearized by restriction enzymes would need to be blunted and

dephosphorylated to prevent self-ligation. After blunt-end ligation, 1 mL ligation product was transformed in NEB Stable competent

cells (New England Biolabs). After overnight incubation, individual bacterial colonies were amplified in liquid cultures before plasmid

DNAwas extracted. Longer repeats tend to be more unstable and therefore have lower positive rates. For�600 bp repeats, typically

4–16 colonies were screened for the correct repeat insert size and orientation, which were determined by restriction enzyme diges-

tion and DNA sequencing, respectively. After sequencing validation, the repeat insert was further subcloned to a doxycycline-induc-

ible (Tet-On, Clontech) expression vector containing 12x MS2 hairpins.

Luciferase assays
RepEx-PCR-generated�100x CAG repeats were inserted into a dual-luciferase reporter plasmid modified from pmirGLO (Promega)

between firefly luciferase (FLuc) coding sequence in the 0 frame and Renilla luciferase (RLuc) coding sequence in the 0, +1, or +2

frame. Reporter plasmid DNAs as well as control reporter plasmid DNAs with no repeats inserted were transfected in HEK293T cells

in 24-well plates using Lipofectamine 2000 (Invitrogen). 16-24 h after transfection, cells were lysed in Glo Lysis Buffer (Promega) at

room temperature for 5 min. FLuc and RLuc activities in lysates were sequentially measured by using Dual-Glo luciferase assay re-

agents and a GloMax 20/20 luminometer (Promega) according to the manufacturer’s instructions.

Live-cell imaging of repeat RNA foci
U2OS cells plated in glass-bottom 24-well plates (Cellvis) were transfected with 320 ng 12x MS2-tagged repeat expression

construct and 80 ng CMV-BFP plasmid DNA (for labeling transfected cells) mixed with 1.6 mL FuGENE HD (Promega) according

to the manufacturer’s instructions. 4-6 h after transfection, the medium was replaced with fresh DMEM supplemented with

10% FBS and 1 mg/mL doxycycline (Sigma). 16-24 h after induction, cells were imaged at 37�C by using a Lionheart FX automated

microscope (Agilent) with 20x and 603 objectives. Typically, 50-100 BFP-positive cells were imaged in each well for RNA foci

quantification.

RT-qPCR
After live-cell imaging, total RNA from U2OS cells were extracted by using Monarch Total RNA Miniprep kit (New England Biolabs)

and treated with TURBO DNase (Invitrogen). RT-qPCR was performed by using Luna Universal One-Step RT-qPCR reagents (New

England Biolabs), following the manufacturer’s instructions. Primers targeting the MS2 stem-loop regions were used for quantifying

repeat RNA expression levels, which were normalized by GAPDH expression levels.
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Lentivirus preparation and transduction
Single guide RNA (sgRNA) sequences (Table S1) were cloned into lentiCRISPRv2 (Addgene, #52961) by using NEBuilder HiFi DNA

assembly reagents (New England Biolabs). For lentivirus production, 60-70% confluent HEK293T cells were transfected with sgRNA

containing lentiCRISPRv2, pMDLg/pRRE (Addgene, #12251), pRSV-Rev (Addgene, #12253) and VSV.G (Addgene, #14888) plasmids

by using Lipofectamine 2000 (Invitrogen). 72 h after transfection, media was collected and centrifuged at 3,000 rpm for 10 min at 4�C
to pellet the cell debris. The supernatant was filtered through a 0.45 mm low-protein-binding membrane. Viral particles were further

concentrated by adding Lenti-XTM concentrator (Clontech) to the supernatant at a 1:3 ratio. Themixture was incubated for 2 h at 4�C
and centrifuged at 1,500 g for 45 min at 4�C. After removing the supernatant, the pellet containing lentiviruses was resuspended in

1 mL DMEM, aliquoted, and stored at �80�C.
For lentivirus transduction, 23 105 U2OS cells were seeded in each well of 24-well plates. One aliquot of viral particles was added

to each well and mixed. After 48 h, fresh media containing 1 mg/mL puromycin were added for selection. After two rounds of 48-h

selection, puromycin-resistant cells were harvested and expanded for downstream analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

For comparisons of RNA aggregates between two repeat sequences, each with multiple biological replicates, two-tailed Student’s

t tests were used unless indicated otherwise. For the comparison of RNA aggregates between two groups of repeat sequences (Fig-

ure 3C), two-tailed Mann�Whitney U test was used.
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