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Abstract
Objectives  Dental caries are caused by tooth demineralization due to bacterial plaque formation. However, the resulting 
lesions are often discrete and thus barely recognizable in intraoral radiography images. Therefore, more advanced detection 
techniques are in great demand among dentists and radiographers. This study was performed to evaluate the performance of 
texture feature maps in the recognition of discrete demineralization related to caries plaque formation.
Methods  Digital intraoral radiology image analysis protocols incorporating first-order features (FOF), co-occurrence matri-
ces, gray tone difference matrices, run-length matrices (RLM), local binary patterns (LBP), and k-means clustering (CLU) 
were used to transform the digital intraoral radiology images of 10 patients with confirmed caries, which were retrospectively 
reviewed in a dental clinic. The performance of the resulting texture feature maps was compared with that of radiographic 
images by radiologists and dental specialists.
Results  Significantly improved detection of caries spots was achieved by employing the CLU and FOF texture feature maps. 
The caries-affected area with sharp margins was well defined using the CLU approach. A pseudo-three-dimensional effect 
was observed in outlining the demineralization zones inside the cavity with the FOF 5 protocol. In contrast, the LBP and 
RLM techniques produced less satisfactory results with unsharp edges and less detailed depiction of the lesions.
Conclusions  This study illustrated the applicability of texture feature maps to the recognition of demineralized spots on the 
tooth surface debilitated by caries and identified the best performing techniques.
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Introduction

Dental caries is a chronic infectious disease that is prevalent 
in approximately 44% of the worldwide general population 
under 20 years of age [1]. In the United States, approxi-
mately 90% of adults with symptoms of dental caries have 
this disease [2, 3]. Dental caries typically cause enamel loss 
due to contact with the surfaces of adjacent teeth [4]. The 
bacterial buildup (dental plaque formation) on the tooth sur-
face and secondary lytic effect on the enamel caused by the 
acid formed as a byproduct of bacterial metabolism are con-
sidered the main factors responsible for enamel breakdown 
and the ultimate loss of enamel integrity [5, 6]. Detection 
of dental caries is usually performed by visual inspection. 
In particular, the examination of morphologically invisible 
lesions is based on intraoral radiographic studies [7].

Caries detection involves taking periapical, bitewing, and 
panoramic images, which have a sensitivity of less than 60% 
[8]. Panoramic images have the lowest sensitivity, whereas 
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better results are achieved with bitewing and periapical 
radiographs. Therefore, the former techniques are prefer-
able for dental caries imaging analysis [9–11]. Nevertheless, 
the methods of caries evaluation and qualification criteria 
remain the subjects of active discussion [12].

Determining the dimensions of subtle erosions on the 
internal side of the proximal part of the tooth is a difficult 
task. Moreover, the anatomical noise caused by the com-
plexity of superimposed anatomical structures and multiple 
interpretations by imaging professionals often makes the 
diagnosis uncertain [13, 14]. Thus, it is not usually possible 
to detect dental caries in their initial stages and monitor their 
further progression [15]. Computer-based analysis of digital 
radiographic images of the tooth, which allows the user to 
vary the image characteristics with an exposition of shape 
margins and brightness levels on gray-scale blurred images, 
is, therefore, in great demand in the medical community.

This study was performed to develop an improved method 
for the clinical detection of dental caries using digital 
intraoral radiology (DIR) images.

Related work

In 2015, a method called feature extraction, which allowed 
for computation of texture features from dental X-ray 
images, was proposed [16]. The intensity, mean, entropy, 
perimeter, and energy parameters of the selected region 
were calculated to determine whether the region of interest 
included caries. A three-layer auto-encoder was employed 
for feature calculation, while a softmax layer was used for 
classification. Despite the relatively high sensitivity (97%) 
of the proposed technique, the lack of information regard-
ing the number of training and test data points as well as 
the detailed experimental procedure raised questions regard-
ing whether this approach was sufficiently generalized to 
be applied to any input. A similar methodology involving 
deep neural networks, which enabled dentists to detect tooth 
decay on dental X-ray images, was subsequently proposed 
[17].

Prior to the above two studies, other researchers 
extracted multiple features from dental X-ray images using 
texture analysis techniques based on the gray level co-
occurrence matrix (GLCM) [18]. Thus, contrast, correla-
tion, entropy, homogeneity, and energy were computed to 
perform tooth segmentation. Even earlier, an automatic 
system for caries detection that transformed input images 
via the watershed segmentation of histograms was pro-
posed [19]. Several GLCM features were subsequently 
derived and fed into a support vector machine classifier 
with a modified kernel function. The process of dental car-
ies classification was also considered in a study in which 
the authors tested several classifiers, including artificial 
neural network classifiers, k-nearest neighbor classifiers, 

naive Bayes classifiers, and support vector machine clas-
sifiers, to develop a caries detection procedure [20].

Two particular studies reported in the literature were 
very similar to the present study [21, 22]. The authors pro-
posed a simple transformation aimed at caries detection, 
after which GLCM-based texture analysis was performed 
to identify cysts and caries-affected areas. The GLCM 
texture features, including energy, entropy, homogeneity, 
contrast, and correlation, were used for segmentation of 
cyst regions.

Texture feature analysis was also applied to evaluation 
of the bone structure affected by osteoporosis [23–25], and 
similar techniques were used to characterize periapical bone 
loss [26–29], periapical bone healing [30–33], and focal 
periapical lesions [34, 35]. Other research has focused on 
evaluation of the jaws [36] and cases in which sex-dependent 
structural differences in the jaw bone are visible [37].

Materials and methods

Data collection

This retrospective work involved the use of 10 anonymized 
images (periapical radiographs) of different patients admit-
ted to our dental clinic in 2017. The areas containing sus-
pected lesions were analyzed. All radiographs were obtained 
under identical conditions.

The patients’ charts included cases of clinically (intraop-
eratively) confirmed superficial and medium caries as well 
as one case of deep caries taken from a local picture archiv-
ing and communication system, all of which were retrospec-
tively studied. The inclusion criteria were limited visibility 
in the entry DIR images and the presence of photographic 
intraoral documentation (Fig. 1).

The texture feature maps were analyzed independently 
by two radiologists with experience in reading dental radio-
graphs. The interobserver correlation between the readers 
was determined. The following features of changes in the 
radiographic images were examined: the tissue contrast with 
a special focus on the caries-affected area, the content of 
the evaluated shape, the caries outlines, and the sharpness 
of the margins. The obtained radiological results were veri-
fied by a dental specialist involved in the treatment of the 
evaluated cases.

The DIR images were obtained using a dental X-ray 
system (Kodak CS 6500; Carestream Dental, Atlanta, GA, 
USA) at an image quality of 70 kVp, current of 7 mA, mean 
exposure time of 0.05 s, pixel spacing of 0.018 mm, and 
12-bit resolution corresponding to the radiodensity. A Digi-
tal Imaging and Communications in Medicine lossless sys-
tem was used for file storage.
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Methods

The computer vision domain provides many powerful tools 
for the recognition of image content, including an approach 
based on image texture analysis, which allows segmenta-
tion of regions of interest by statistical analysis of the image 
pixel neighborhood. Additionally, clustering or quantization 
methods can be utilized to automatically merge regions of a 
given signal range by additionally taking their spatial posi-
tions into account.

In the present study, texture feature maps were gener-
ated by several methods. This approach significantly differs 
from the one-feature-per-image calculations widely used in 
the literature [38, 39]. Instead of computing a single feature 
describing the entire image, feature values were calculated 
for each pixel position. For this purpose, a moving window 
with a reasonably smaller size than the image resolution is 
typically selected. In our simulations, a square window with 
a resolution of 21 × 21 pixels was employed. The window 
was centered over the pixel of interest and then moved along 

the image coordinates to determine the feature values for all 
pixels in the input image. Most procedures described below 
were performed in this manner to produce feature maps with 
a number equal to the number of parameters. All proposed 
methods were implemented in the Matlab® 2016 environ-
ment (MathWorks, Natick, MA, USA).

First‑order features

An image histogram describes the probability of detection 
of a particular intensity within the data, and its shape can 
be used to determine important image parameters including 
sharpness, contrast, and number of objects. First-order fea-
tures (FOF) are a formalized representation of such informa-
tion. For image I with spatial resolution W × H and intensity 
range G, the normalized histogram is defined by the follow-
ing equation:

This equation can be used to derive six different features 
(mean, variance, skewness, kurtosis, energy, and entropy) 
as follows:

Here, the value of ε is relatively small to ensure that the 
logarithm function is not computed for 0. To obtain images 
for these features, their values were calculated by the moving 
window method with a spatial dimension of 21 × 21 pixels.
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Fig. 1   Photographs captured with intraoral digital camera before and 
after cavity preparation
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Clustering

Another method that effectively highlights the image content 
is k-means clustering (CLU), which takes the pixel intensity 
into account. A previous study showed that the basic analysis 
of image intensities allows segmentation of medical objects 
[40]. In this technique, the number of search clusters must be 
defined (their initial values are initialized randomly). Each 
pixel of the image is then assigned to the nearest cluster 
using a distance metric (in this study, the Euclidean metric 
was selected). The new cluster value is set to the average 
value of the intensities of all its pixels, and the procedure 
is repeated until the cluster value becomes constant or the 
number of iterations reaches a specified threshold. Although 
this method demonstrates satisfactory performance, it also 
has several drawbacks. First, the number of clusters must 
be known a priori. Second, the colors used in the cluster 
images are assigned randomly. Finally, the random initiali-
zation results in different outcomes for the same input, and 
the method is computationally expensive due to its iterative 
nature.

Therefore, a special quantization procedure that can solve 
several clustering problems has been proposed. It divides all 
intensities of the image pixels into a given number of colors, 
but uses only the intensity information as a guide. While the 
previous method searches for the cluster center in the high-
probability region of the histogram, equal spacing between 
colors is applied during quantization. As a result, the num-
ber of colors is identical to that in the previous technique, 
whereas the division varies slightly. The described method 
solves all of the above-mentioned problems except that the 
number of colors still must be set a priori.

Gray level co‑occurrence matrix

The GLCM [41] contains information on the spatial relations 
between the adjacent pixels in the texture. It is calculated 
as a matrix with entries that represent the probabilities of 
the coexistence of two gray tones next to each other. The 
distance between the analyzed pixels is used as a parameter 
(its value was set to 1 in this study). To eliminate the influ-
ence of texture rotation, it is reasonable to compute four 
different matrices at angles of 0°, 45°, 90°, and 135° in the 
adjacency direction and calculate their sum before feature 
calculations. Moreover, to facilitate the computation pro-
cedure, the input image is quantized to a lower number of 
gray levels to reduce the matrix size (in our experiments, 
the images were quantized down to 32 colors). It is possible 
to extract the following 14 features from this matrix: angu-
lar second moment, contrast, correlation, variance, homo-
geneity, sum average, sum variance, sum entropy, entropy, 
difference variance, difference entropy, two informational 
measures of correlation, and maximal correlation coefficient.

Gray tone difference matrix

The texture described in the context of human texture percep-
tion is defined by the gray tone difference matrix (GTDM) 
[42]. Its column vector contains G entries, which represent 
the difference between the pixel intensity level I and the aver-
age illumination Ī in a small K × K neighborhood described 
as follows:

Here, M = (2K + 1)2. When a given illumination does not 
exist or the image has only one color, the corresponding entries 
are equal to zero. It is possible to derive five features from 
this matrix: coarseness, contrast, busyness, complexity, and 
strength.

Run‑length matrix

Another technique for texture characterization is the run-length 
matrix (RLM) method, which assumes that a texture of good 
quality is complex and can, therefore, be defined by rapid 
changes in illumination (pixel values), whereas the coarse tex-
ture is expressed by the larger sections of similar color [43]. 
This information is encoded in a matrix, the entries of which 
store the probabilities of the occurrence of a selected illumina-
tion value across a number of adjacent pixels. Because of the 
difficulty in defining the maximum length of the color run, it 
is acceptable to reduce the maximum length down to 10 and 
place all longer runs in the same matrix entry. Furthermore, 
for computational reasons (as in the case of GLCM), the gray 
levels in the image are quantized to a smaller number of inten-
sities (32 in this study). To eliminate the rotation of input data, 
the matrix was computed at 0° and 90° and summed before 
feature calculation. In this study, 11 features were calculated 
[43–46], and their values are summarized in Table 1.

Local binary patterns

A completely different method for texture characterization is 
represented by local binary patterns (LBP) [47, 48]. This tex-
ture operator calculates a different representation of the input 
images as a straightforward result of its execution. For each 
input pixel I(xc,yc), a neighborhood defined by radius R and the 
number of evenly sampled points on the radius P is specified. 
The LBP function is calculated as follows:
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Here, the operator s[.] returns 1 for positive values and 
0 otherwise.

Laws’ texture energy measures

Another way to extract hidden information from the image 
is to use Laws’ texture energy measures (LAWS) [49]. This 
technique utilizes a predefined set of masks to calculate the 
local energy for a given image. These masks are designed to 
enable the detection of four texture characteristics, namely 
level, edge, spot, and ripple, which are then combined to 
describe more complex findings. In the present study, nine 
texture feature maps were derived using this technique.

Preprocessing

Most of the proposed techniques are designed for 8-bit 
gray-scale images. Moreover, their implementation is per-
formed at this data accuracy. Nevertheless, the processed 
data have a 12-bit precision; therefore, more information 
can be obtained using the entire scale. In previous studies, 
various methods were proposed to reduce the bit resolution 
and related noise level [50, 51]; however, the authors also 
considered the loss of information that occurred during the 
image resolution reduction from 12 to 8 bits and decided 
to examine whether an appropriate preprocessing method 
might improve the applicability of the proposed texture 
operator. Therefore, several transformations that highlighted 
certain ranges were considered. They were represented by 
histogram equalization (HEQ) and the statistical dominance 
algorithm (SDA) [52].

HEQ highlights larger areas with small illumination vari-
ations by increasing their contrast. Consequently, the tissue 
pattern becomes more noticeable, but some regions may 
be discriminated after the appearance of large objects. In 
this study, HEQ was performed both for the original 12-bit 
images (whose resolution was subsequently reduced to 8 
bits) and for the images followed by method application. 
Although this technique is nondeterministic, its combina-
tion with other methods can create additional possibilities 
for data analysis. The order of performing the bit cut and 
HEQ procedures does not influence the generated texture 
feature maps.

The SDA represents another approach to the analysis of 
sensitive changes in image illumination. This technique is 
based on the equal treatment of mutual relations between 
pixels; nevertheless, their luminance values can be either 
very high or very low, which requires better visualization of 
the local texture pattern. The resulting SDA image is scaled 
to 8 bits, after which it is analyzed using a procedure similar 
to that used for the original image. As a result, all texture 
feature maps were calculated.

Post‑processing

The results obtained after application of all of the above-
described texture analysis techniques may lead to different 
computer responses with various distributions. Therefore, 
the original images in this study were analyzed by applying 
a histogram stretching (HSTR) algorithm after 8-bit normali-
zation and HEQ procedure followed by scaling the results to 
the 8-bit resolution.

Table 1   Summary of texture feature maps computed using various techniques

GLCM gray level co-occurrence matrix, FOF first-order features, GTDM gray tone difference matrix, RLM run-length matrix

Texture
feature

GLCM FOF GTDM RLM

F1 Angular second moment (energy) Mean Coarseness Short run emphasis
F2 Contrast Variance Contrast Long run emphasis
F3 Correlation Skewness Busyness Gray level nonuniformity
F4 Variance Kurtosis Complexity Run-length nonuniformity
F5 Inverse difference moment (homogeneity) Energy Texture strength Run percentage
F6 Sum average Entropy Low gray level run emphasis
F7 Sum variance High gray level run emphasis
F8 Sum entropy Short run low gray level run emphasis
F9 Entropy Short run high gray level run emphasis
F10 Difference variance Long run low gray level run emphasis
F11 Difference entropy Long run high gray level run emphasis
F12 Information measure of correlation I
F13 Information measure of correlation II
F14 Maximal correlation coefficient
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Summary of texture feature map analysis 
techniques

For the obtained DIR images, texture feature maps 
were constructed using the above-described preprocess-
ing techniques, analysis methods, and post-processing 
approaches (their possible combinations are shown in 
Fig. 2).

As discussed in the previous sections, the utilized 
texture operators have various parameters. For the LBP 
method, it is the radius, and for CLU, the number of 
searched clusters and related number of colors in the 
resulting image are taken into account. After determin-
ing the statistical features of GLCM, FOF, GTDM, and 
RLM, the corresponding texture feature maps are calcu-
lated (see Table 1).

The parameters describing the areas of the analyzed 
neighborhoods should also be determined. For computa-
tion of texture feature maps, the moving window reso-
lution was 21 × 21 pixels (as mentioned previously). 
For the LBP function, P = 8 was always used, while the 
radius varied from 5 to 20. Clustering was performed in 
the range of 10 to 50 clusters. When the images were 
preprocessed with the SDA, the domination threshold was 
set to zero to obtain results that were independent of the 
image quality or objects surface, and the radius was set 
to 20. Some of the discussed techniques may have addi-
tional parameters. The selected values are presented in 
the detailed descriptions of the corresponding methods.

Results and Discussion

In this study, texture feature maps were calculated for the 
collected input DIR data. After considering all possible 
combinations of the preprocessing, texture transformation, 
and post-processing methods, 1200 output images were 
obtained per input image.

Image processing observations

The CLU approach was applied to clearly define the bor-
ders of the regions affected by caries. In many cases, these 
regions were characterized by unique color sets. Notably, 
the selection of colors was random; however, its uniqueness 
on the entire image scale was important (see Fig. 3, second 
row).

The LBP method, in which preprocessing was applied to 
the original data points transformed by RAW/HEQ at R = 15, 
outlined the region of caries very clearly. In future studies, 
straightforward application of LBP to the input data with a 
resolution of 16 bits will be considered.

The texture feature maps produced by applying the FOF 
method to the original data set revealed that the most use-
ful information was provided by the energy measure (F5) 
(because of its shape, it was called a pseudo-three-dimen-
sional view), which is shown in the third row of Fig. 3. 
Another valuable parameter for further analysis is entropy 
(F6) (Fig. 3, last row), which outlines various objects but 
visualizes the caries-affected regions as consistent, char-
acteristic areas. Good performance was also demonstrated 

Normalization 
to 8 bits

Normalization to 8
bits, histogram 
equalization

Histogram 
equalization 16 bits, 
normalization to 8
bits

SDA 16 bits, 
normalization to 8
bits

Preprocessing Texture feature map 

Clusters (CLU)

Gray level co-occurrence matrix

First-order features

Gray tone difference matrix

Local binary patterns

Run length matrix

Postprocessing

12-/16-bit input im
age

None

Histogram 
stretching

Histogram 
equalization

Final 8-bit texture feature m
ap

Laws’ texture energy measures

Fig. 2   All possible entry data processing paths. SDA statistical dominance algorithm, CLU k-means clustering
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by the HSTR and HEQ post-processing techniques, which 
clearly marked the regions of demineralization. The image 
quality of the texture feature maps obtained for energy 
and entropy (F5 and F6) was similar to that of the images 

produced by other methods; thus, considering the simplic-
ity of their computations, they were used as the reference 
data. Interestingly, when the SDA was applied during the 
preprocessing stage, the texture feature maps obtained for 

Fig. 3   Input DIR images and their texture feature maps. DIR digital intraoral radiology
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energy and entropy (F5 and F6) were swapped, which was 
observed in all simulations.

For the original data, the texture feature map of coarse-
ness obtained using the GTDM technique (F1) and post-
processed with either HSTR or HEQ produced images 
similar to those obtained for FOF entropy (F6), but with 
a smaller number of details; therefore, their regions were 
less visible. Similarly, for the same input data, the GTDM 
busyness textural feature map (F3), which was obtained 
using the same post-processing method, contained images 
reflecting FOF energy (F5) with fewer details. A possible 
solution to this problem, which leads to a different data 
representation, may be the application of GTDM busy-
ness (F3) to the images preprocessed and post-processed 
by HEQ. The obtained visual representation of various 
regions may show caries-affected areas, as shown in Fig. 4.

When the SDA was used during the preprocessing 
stage, the texture feature maps obtained for GTDM coarse-
ness and texture strength (F1 and F5) were similar to those 
computed for FOF entropy (F6), while for GTDM con-
trast and busyness (F2 and F3), the corresponding maps 
strongly resembled those of FOF energy (F5). However, 
their image quality was also lower, which limited the 
clinical application of GTDM as compared with the out-
puts generated by the FOF method. Notably, computation 
of the FOF features proceeded much faster than that of 
the GTDM features. Moreover, the texture feature maps 
obtained for GTDM coarseness (F1) without preprocessing 
or application of the SDA were nearly identical.

Evaluation of the GLCM method did not produce any 
essential results for the DIR images. When the original 
images were processed, the resulting texture feature maps 
were blurred and not very detailed. Application of HEQ 
to the selected features during the preprocessing stage 
noticeably improved the information quality. However, 
this change was not significant enough to produce new 
frontiers for DIR image analysis. When the SDA was 
used at the initial stage, the obtained contrast (F2), dif-
ference variance (F10), and difference entropy (F11) fea-
tures resulted in a texture feature map reflecting FOF F5, 
while the energy (F1) and inverse difference moment (F5) 
reflected the FOF entropy (F6).

By taking the images generated by the LAWS transfor-
mation of the original data into account, any information 
can be obtained from the resulting textural feature maps, 
because they contained mostly noise. The application of 
the HEQ procedure at the preprocessing stage improves the 
utility, especially for the F1 feature. The generated texture 
feature maps reflect those obtained for RLM gray level nonu-
niformity (F3) and preprocessed with HEQ, but they are 
more pronounced. When the SDA was applied at the initial 
stage, most of the results were similar to those obtained for 
FOF energy (F5); however, their noise level was higher. In 

general, adding the post-processing stage with HEQ signifi-
cantly improved the quality of the produced maps.

No significant output was produced for the texture fea-
ture map derived from the RLM calculated for the original 
data. Some results may be described as a set of iso-lines, but 
the caries-affected area was not clearly visible. The appli-
cation of HEQ at the initial stage of the RLM gray level 
nonuniformity (F3) computations yielded interesting data, 
while the results obtained with SDA preprocessing reflected 
FOF energy (F5), but with fewer details; this rendered them 
useless in clinical research. The absence of a preprocessing 
stage or using HEQ at the initial stage during the RLM F4 
computation did not produce any important findings. When 
the SDA was used for preprocessing and HEQ was applied 
at the post-processing stage, resemblance to FOF entropy 
(F6) was observed with fewer details in the caries-affected 
area because of the selected post-processing method. For 
the RLM high gray level run emphasis and short run high 
gray level run emphasis features (F7 and F9) and HEQ pre-
processing, the obtained texture feature maps represented 
the tooth roots and periapical areas in an interesting man-
ner. However, these methods are not applicable to caries 
detection. Some of these maps are shown in the examples, 
as presented in Fig. 4.

Clinical usability of texture maps and their 
interpretation

Compared with the DIR images, a significant increase in 
the tissue contrast between the caries-affected regions and 
mineralized tissue was observed when the CLU method 
was used. The former were highlighted as areas with differ-
ent color intensities. The image obtained by clustering the 
input data indirectly reflects changes in radiodensity, and 
these changes are precisely expressed by the areas of differ-
ent colors. The margins of the change are also well demar-
cated as variations in the color of the normal bone, and the 
affected regions are clearly visible. Therefore, this method 
can be used to detect caries and evaluate related areas.

The output of the LBP transformation procedure allows 
exact determination of the caries-affected areas, where the 
high tissue contrast between the normal and demineralized 
regions is highlighted. The margins of the lesions are well 
demarcated, but their definition (sharpness) is not as good 
as that in the FOF texture feature maps and images obtained 
by the clustering method. The usefulness of LBP is question-
able, because the caries localization performed using these 
images produces no major benefits compared with the pro-
cedure conducted using DIR images and must be supported 
by other tissue texture feature maps (such as FOF ones).

The texture feature map representing the variance of 
FOF energy (F5) was highly applicable to caries lesion 
localization. The shape of the lesion margins was well 
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demarcated by the highlighted areas of different miner-
alizations, which produced an excellent picture compared 
with the initial DIR images. Although this texture appears 
similar to the surface plot of the original image, it signifi-
cantly enhances the region of interest, as shown in Fig. 5. 
This texture emphasized the differentiation of the degree of 
demineralization of the tooth tissues in the carious cavity. 

The pseudo-three-dimensional effect shows the different 
absorption of X-rays inside the cavity. After clinical evalu-
ation, we found that the obtained FOF energy (F5) images 
were extremely useful for detection of the lesions caused 
by caries. Additionally, the FOF energy (F5) texture feature 
map remarkably enriched the entire picture with a special 
emphasis on the anatomical details.

Fig. 4   Texture feature maps for sample DIR images. DIR, digital intraoral radiology



284	 Oral Radiology (2020) 36:275–287

1 3

Next, the FOF F6 map contained very sharp margins of 
the change emphasizing the contrast of the caries-affected 
area (the latter was highlighted as a bright region compared 
with the relatively dark surroundings). However, unlike the 
FOF energy (F5) texture feature map, the regions of different 
mineralization were not well delineated; this is a clear draw-
back of this approach. Both the energy and entropy maps (F5 
and F6, respectively) are highly recommended for evaluation 
of the lesions produced by caries and determination of their 
degree of severity.

As noted in the technical overview of the obtained results, 
the medical findings also show that applying the GTDM F1 
feature post-processed with HEQ or HSTR produces results 
similar to the FOF entropy (F6) image, but with fewer details 
in the lesion area and with less tissue contrast. Therefore, 
the effectiveness of caries detection was lower than that 
achieved using the FOF texture feature maps, leading to no 
clinical benefits.

The construction of a texture feature map by the applica-
tion of HEQ at the initial stage and the LAWS F1 feature 
increased the contrast of the demineralization zone in a large 
number of cases; however, the outline of their margins was 
relatively poor. Therefore, the clinical usefulness of this tex-
ture map was negligible.

Finally, applying the RLM texture operator after the 
HEQ procedure resulted in useful pictures with highlighted 

caries-affected areas and their margins, but the reproduc-
ibility of this effect was very low.

The possibility of image processing supplied with the 
medical equipment should also be mentioned. These soft-
ware implementations deliver many classic image process-
ing techniques to enhance the input image. In 2002, a thor-
ough analysis of many solutions was presented [53]. In most 
cases, those filters demand interactive parameter settings; 
therefore, the human influence of the final result is strong. 
In a very recent study, the influence of standard techniques 
such as contrast and luminance selection was investigated in 
the context of caries detection in standard DIR images, and 
no significant difference was noted [54]. Similarly, a study in 
2004 showed that additional filters such as sharpness, zoom, 
and pseudocolor do not affect the detection of occlusal car-
ies [55]. The sharpen, smooth, and emboss filters have been 
previously verified [56]. Only the emboss filter had some 
value for the detection of approximal carious lesions in pos-
terior teeth, but the output images looked like a surface plot 
(Fig. 5a). The present study showed that texture feature maps 
have a greater impact on caries detection than does surface 
plot analysis. Interestingly, the authors of another report pre-
sented the impact of lossy compression on the presentation 
of demineralization zones [57], similar to the CLU shown 
in this article.

Fig. 5   Comparison of a surface plot and an FOF F5 feature map



285Oral Radiology (2020) 36:275–287	

1 3

Conclusions and future studies

The results of this study revealed that the CLU approach 
could be particularly useful in the visualization of caries-
affected areas. Furthermore, FOF texture feature maps may 
be used to detect caries spots. In particular, FOF energy (F5) 
reflects different degrees of demineralization and can, there-
fore, assist in the analysis of decalcification of caries cavities. 
Moreover, FOF entropy (F6) depicts the caries-affected areas 
as bright spots on the tooth surface. The usefulness of these 
texture feature maps was confirmed by the clinical evaluation 
of teeth using the images obtained with the intraoral camera.

The GTDM, LAWS, and RLM methods demonstrated 
limited clinical usefulness, because they produced better 
outlined caries-affected areas (compared with those in the 
original DIR images), but with much fewer details than in 
the CLU and FOF texture feature maps. The effects observed 
for these textures were caused by the application of preproc-
essing techniques, such as the SDA and HEQ techniques.

Future work in this area will explore the dependence of 
the texture feature maps on their resolution, which may be 
important for the recognition of caries lesions obtained using 
different X-ray instruments.
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