www.bjcancer.com

Short Communication Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study

PA van den Brandt^{*,1}, KM Smits¹, RA Goldbohm² and MP Weijenberg¹

¹Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; ²TNO Nutrition and Food Research, PO Box 360, 3700 AJ Zeist, The Netherlands

Energy-adjusted magnesium intake was nonsignificantly inversely related to risk of colorectal cancer (n = 2328) in the Netherlands Cohort Study on Diet and Cancer that started in 1986 (n = 58279 men and 62573 women). Statistically significant inverse trends in risk were observed in overweight subjects for colon and proximal colon cancer across increasing quintiles of magnesium uptake (*P*-trend, 0.05 and 0.02, respectively). Although an overall protective effect was not afforded, our results suggest an effect of magnesium in overweight subjects, possibly through decreasing insulin resistance.

British Journal of Cancer (2007) **96,** 510–513. doi:10.1038/sj.bjc.6603577 www.bjcancer.com © 2007 Cancer Research UK

Keywords: colorectal cancer; cohort studies; magnesium; BMI

Two recent prospective cohort studies among women showed an inverse association between magnesium intake and colorectal cancer (Larsson *et al*, 2005) and colon cancer only (Folsom and Hong, 2006). Magnesium supplementation reduced colon cancer risk in animal experiments (Mori *et al*, 1993). Magnesium plays a role in genomic stability and DNA repair (Hartwig, 2001; Larsson *et al*, 2005) and may reduce hyperinsulinaemia (Paolisso *et al*, 1992; Rodriguez-Moran and Guerrero-Romero, 2003), a risk factor for colorectal cancer (Giovannucci, 1995; Schoen *et al*, 1999). In the Netherlands Cohort Study (NLCS), we investigated colorectal cancer in both sexes in relation to magnesium intake, particularly in overweight subjects, given the suggested beneficial effects of magnesium on insulin resistance (Fung *et al*, 2003).

MATERIALS AND METHODS

The NLCS started in 1986 and included 58 279 men and 62 573 women aged 55-69 years. At baseline, cohort members completed a mailed, self-administered questionnaire on dietary habits, anthropometry, and other risk factors for cancer (Van den Brandt *et al*, 1990a). Habitual consumption of food and beverages during the year preceding baseline was assessed using a 150-item semiquantitative food frequency questionnaire (Goldbohm *et al*, 1994). From this, nutrient intakes were calculated from the 150 food items using the computerized Dutch food composition table (Nevo-table, 1986). Nutrient intake was adjusted for energy intake by the residual method (Willett and Stampfer, 1986).

Data were processed and analysed using the case-cohort approach, enumerating the cases for the entire cohort, and estimating the person-years at risk from a subcohort of 5000 subjects, which was randomly sampled from the entire cohort immediately after the baseline measurement and followed up for vital status. Follow-up for cancer incidence is established by record linkage with the Netherlands Cancer Registry and PALGA, a nationwide pathology database (Van den Brandt *et al*, 1990b). After 13.3 years of follow-up, a total of 2679 incident colorectal cancer cases were reported. Cases and subcohort members were excluded if they reported cancer other than non-melanoma skin cancer, or had incomplete data for diet, anthropometry, or confounders. Finally, 4125 subcohort members and 2328 colorectal cancer cases were available for analysis.

Statistical analysis

Incidence rate ratios (RR) and 95% confidence intervals for colorectal cancer and subsites were estimated using Cox proportional hazards models (Cox, 1972), with Stata software (Cleves *et al*, 2002). Standard errors were estimated using the robust Huber–White sandwich estimator to account for additional variance introduced by sampling from the cohort (Schoenfeld, 1982). All RRs are adjusted for confounders that contributed significantly to the model or influenced the RRs of magnesium more than 10% (age, sex, family history of colorectal cancer, body mass index (BMI), physical activity, energy-adjusted intakes of fat, fiber, calcium, folate, beta-carotene, vitamins E and B6, alcohol, and energy intake).

RESULTS

Mean (\pm s.d.) energy-adjusted magnesium intake was 332 (\pm 58) and 292 (\pm 48) mg day⁻¹ among subcohort men and women, respectively. Important sources of magnesium were wholewheat bread, dairy, pulses, coffee, tea, and peanuts/peanut butter. Magnesium supplements were used by only 0.2% of individuals. Baseline characteristics of the subcohort are presented in Supplementary Table. Magnesium intake was weakly inversely associated with colorectal and colon cancer risks in men and

^{*}Correspondence: Dr PA van den Brandt;

E-mail: PA.vandenBrandt@epid.unimaas.nl

Received 31 October 2006; revised 7 December 2006; accepted 11 December 2006

Table I Relative rates (RRs) of colorectal cancer according to energy-adjusted magnesium intake, inethenands Conort Study 196	Fable I	energy-adjusted magnesium intake, Netherlands Cohort Study 1986-	of colorectal cancer according to energy-ac
--	---------	--	---

	Quintiles of energy-adjusted magnesium intake (mg day ⁻ ')					
	QI	Q2	Q3	Q4	Q5	P-trend
Men						
Quintile cutoffs (mg day $^{-1}$)	<286	286-316	317-341	342-373	> 373	
Median (mg day ⁻¹)	264	303	329	356	401	
Person-years in subcohort	4761	4823	4919	4836	4757	
Colorectal cancer						
Cases	275	281	297	264	263	
Age-adjusted RR ^a	1.0	1.00 (0.80-1.25)	1.04 (0.83-1.29)	0.95 (0.76-1.18)	0.96 (0.77-1.20)	0.57
Multivariate RR ^b	1.0	0.96 (0.75-1.22)	0.96 (0.74–1.26)	0.87 (0.64–1.17)	0.91 (0.62-1.35)	0.50
Colon cancer						
Cases	192	180	185	167	159	
Age-adjusted RR ^a	1.0	0.92 (0.71-1.18)	0.92 (0.72-1.18)	0.86 (0.67-1.10)	0.83 (0.64-1.07)	0.13
Multivariate RR ^b	1.0	0.89 (0.67-1.17)	0.87 (0.64–1.19)	0.82 (0.59–1.15)	0.85 (0.54–1.33)	0.41
Proximal colon cancer						
Cases	77	81	86	73	64	
Age-adjusted RR ^a	1.0	1.03 (0.73-1.45)	1.07 (0.76-1.50)	0.94 (0.66-1.33)	0.83 (0.58-1.20)	0.27
Multivariate RR ^b	1.0	0.95 (0.65-1.38)	0.95 (0.63-1.43)	0.81 (0.51–1.28)	0.73 (0.39–1.36)	0.28
Distal colon cancer						
Cases	103	90	95	90	85	
Age-adjusted RR ^a	1.0	0.85 (0.62-1.17)	0.88 (0.65-1.21)	0.86 (0.63-1.18)	0.82 (0.60-1.14)	0.30
Multivariate RR ^b	1.0	0.84 (0.59-1.19)	0.86 (0.58-1.27)	0.87 (0.57-1.31)	0.94 (0.53-1.64)	0.85
Rectum cancer ^c						
Cases	83	101	112	97	104	
Age-adjusted RR ^a	1.0	1.19 (0.86–1.65)	1.29 (0.94–1.78)	1.15 (0.83–1.59)	1.25 (0.91–1.73)	0.27
Multivariate RR ^b	1.0	1.12 (0.79–1.59)	1.18 (0.80–1.73)	0.99 (0.63–1.55)	1.07 (0.61–1.89)	0.94
Women						
Quintile cutoffs (mg day ⁻¹)	<256	256-279	280-300	301-326	> 326	
Median (mg day ⁻¹)	236	269	289	313	349	
Person-years in subcohort	4902	5152	5157	5014	5258	
Colorectal cancer						
Cases	217	185	172	186	188	
Age-adjusted RR ^a	1.0	0.84 (0.66–1.07)	0.79 (0.62–1.01)	0.88 (0.69–1.12)	0.88 (0.69-1.12)	0.42
Multivariate RR⁵	1.0	0.83 (0.63-1.08)	0.78 (0.58-1.06)	0.89 (0.63-1.24)	0.89 (0.59–1.35)	0.77
Colon cancer						
Cases	159	136	127	135	138	
Age-adjusted RR ^a	1.0	0.94 (0.64–1.10)	0.80 (0.61–1.05)	0.87 (0.66-1.14)	0.88 (0.67-1.15)	0.45
Multivariate RR ^b	1.0	0.83 (0.62–1.12)	0.79 (0.57–1.11)	0.89 (0.61–1.29)	0.89 (0.56-1.40)	0.77
Proximal colon cancer						
Cases	95	70	64	70	84	
Age-adjusted RR ^a	1.0	0.73 (0.52-1.03)	0.68 (0.48-0.97)	0.77 (0.54–1.08)	0.92 (0.66-1.28)	0.70
Multivariate RR [∞]	1.0	0.71 (0.49-1.03)	0.66 (0.44-1.01)	0.75 (0.47–1.20)	0.86 (0.49–1.52)	0.69

 Multivariate RR^b
 I.0
 0.81 (0.52 – I.25)
 0.76 (0.46 – I.25)
 0.89 (0.51 – I.55)
 0.91 (0.46 – I.79)
 0.90

 ^aData presented as RR (95% confidence interval). ^bThe model included age, family history of colorectal cancer, BMI, physical activity, energy-adjusted intakes of fat, fibre, calcium, folate, beta-carotene, vitamin B6, alcohol, and energy intake. ^CIncludes rectosigmoid.

60

1.01 (0.69-1.49)

1.03 (0.63-1.67)

45

0.78(0.5|-|.|8)

women, but nonsignificantly (Table 1). Exclusion of the first 2 years of follow-up yielded similar results. Because men and women showed comparable results, we combined them in analyses stratified by BMI. Table 2 shows that the association with colorectal cancer and its subsites varied by BMI: for those with a

58

1.0

1.0

58

1.0

61

1.02 (0.69-1.50)

1.03 (0.67-1.59)

49

0.83(0.55 - 1.25)

BMI \ge 25 kg m⁻², this was inverse (except rectum), with *P*-trend reaching significance for colon, and especially proximal colon cancer. The RRs of proximal colon cancer for increasing quintiles of magnesium were 1.0, 0.69, 0.65, 0.48, and 0.54, respectively (*P*-trend = 0.02). For those with BMI < 25 kg m⁻², there was no

59

1.02 (0.69-1.51)

1.09 (0.64-1.88)

51

0.90 (0.60-1.35)

Distal colon cancer

Age-adjusted RR^a

Age-adjusted RR^a

Multivariate RR^b

Cases

Rectum cancer^c

Cases

50

0.84 (0.56-1.26)

0.93 (0.47-1.84)

50

0.87 (0.58-1.31)

046

0.98

0.67

PA van den Brandt et al

512

 Table 2
 Relative rates (RRs) of colorectal cancer according to magnesium intake and BMI in men and women combined, Netherlands Cohort Study 1986–1999

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Quintiles of energy-adjusted magnesium intake (mg day ⁻¹)					
$\begin{array}{c cccc} Constraint (mg dw^{-1}) & < 2/20 & 2/1 - 2/8 & 2/9 - 2/20 & 2/2 - 3/50 & > 3/30 &$		QI	Q2	Q3	Q4	Q5	P-trend
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quintile cutoffs (mg day ⁻¹)	<270	271-298	299-320	321-350	> 350	
$\begin{array}{ccccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Median (mg day ⁻¹)	248	286	309	335	375	
	rerson-years in subconort	9707	7737	7736	7702	10077	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Colorectal cancer						
$ \begin{array}{cccc} W1 = 25 {\rm kg} m^{-2} \\ Cases \\ Case \\ Cases \\ Case \\ Cases \\ Case \\ Cases \\ Case \\ C$	Cases Multivariate RRª	522 1.0	472 0.91 (0.76-1.09)	451 0.89 (0.73-1.08)	433 0.88 (0.70-1.10)	450 0.93 (0.70-1.23)	0.56
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	2		,	· · · · ·	,	· · · · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BMI < 25 kg m ² Cases	257	250	217	229	235	
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	Multivariate RR ^a	1.0	1.05 (0.82-1.35)	0.99 (0.75–1.31)	1.14 (0.83–1.57)	1.11 (0.75–1.64)	0.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$BMI \ge 25 kg m^{-2}$						
$\begin{array}{c cccc} \mbox{Multivariate RR}^{a} & 1.0 & 0.77 (0.59-1.01) & 0.79 (0.59-1.05) & 0.67 (0.48-0.93) & 0.77 (0.50-1.18) & 0.14 \\ \begin{tabular}{cccccccccccccccccccccccccccccccccccc$	Cases	265	222	234	204	215	
Color concer 365 327 298 290 298 Multivariate RR* 1.0 0.89 (0.73-1.09) 0.83 (0.67-1.05) 0.85 (0.66-1.10) 0.91 (0.66-1.25) 0.48 BMI < 25 kg m ⁻² Cases 1.72 1.70 1.41 1.53 1.60 Multivariate RR* 1.0 1.09 (0.82-1.44) 0.99 (0.72-1.37) 1.20 (0.84-1.72) 1.22 (0.79-1.91) 0.34 AMI > 25 kg m ⁻² Cases 1.93 1.57 1.57 1.57 0.66 (0.42-0.87) 0.67 (0.41-1.08) 0.05 Proximal colon concer Cases 1.69 1.67 1.45 1.34 1.49 0.82 (0.54-1.25) 0.18 Multivariate RR* 1.0 0.91 (0.70-1.18) 0.80 (0.59-1.07) 0.75 (0.54-1.04) 0.82 (0.54-1.25) 0.18 Multivariate RR* 1.0 0.91 (0.71-1.18) 0.80 (0.59-1.07) 0.75 (0.54-1.04) 0.82 (0.54-1.25) 0.64 Multivariate RR* 1.0 0.91 (0.67-1.01) 0.65 (0.43-0.98) 0.48 (0.30-0.78) 0.54 (0.29-1.00) 0.020 Discid color conco	Multivariate RR ^a	1.0	0.77 (0.59-1.01)	0.79 (0.59-1.05)	0.67 (0.48-0.93)	0.77 (0.50-1.18)	0.14
$\begin{array}{c ccccc} Cases & 365 & 327 & 298 & 290 & 298 \\ Multivariate RR^4 & 10 & 0.89 (0.73 - 1.09) & 0.83 (0.67 - 1.05) & 0.85 (0.66 - 1.10) & 0.91 (0.66 - 1.25) & 0.48 \\ Multivariate RR^3 & 10 & 1.09 (0.82 - 1.44) & 0.99 (0.72 - 1.37) & 1.20 (0.84 - 1.72) & 1.22 (0.79 - 1.91) & 0.34 \\ Multivariate RR^8 & 10 & 0.77 (0.53 - 0.96) & 0.69 (0.50 - 0.55) & 0.60 (0.42 - 0.87) & 0.67 (0.41 - 1.08) & 0.05 \\ Multivariate RR^8 & 10 & 0.72 (0.53 - 0.96) & 0.69 (0.50 - 0.55) & 0.60 (0.42 - 0.87) & 0.67 (0.41 - 1.08) & 0.05 \\ Multivariate RR^8 & 10 & 0.91 (0.70 - 1.18) & 0.80 (0.59 - 1.07) & 0.75 (0.54 - 1.04) & 0.82 (0.54 - 1.25) & 0.18 \\ Multivariate RR^8 & 1.0 & 0.91 (0.20 - 1.72) & 0.96 (0.62 - 1.67) & 1.13 (0.71 - 1.81) & 1.25 (0.70 - 2.22) & 0.64 \\ Multivariate RR^8 & 1.0 & 0.69 (0.47 - 1.01) & 0.65 (0.43 - 0.98) & 0.48 (0.30 - 0.78) & 0.54 (0.29 - 1.00) & 0.02 \\ Multivariate RR^8 & 1.0 & 0.69 (0.47 - 1.01) & 0.65 (0.43 - 0.98) & 0.48 (0.30 - 0.78) & 0.54 (0.29 - 1.00) & 0.02 \\ Diad colon cancer & 176 & 149 & 147 & 135 & 0.18 \\ MMI \ge 25 kgm^{-2} & 91 & 0.69 (0.66 - 1.17) & 0.90 (0.67 - 1.22) & 1.00 (0.72 - 1.39) & 0.99 (0.64 - 1.53) & 0.81 \\ MMI \ge 25 kgm^{-2} & 71 & 0.44 & 147 & 135 & 0.81 \\ Cases & 176 & 149 & 144 & 147 & 135 & 0.81 \\ MMI \ge 25 kgm^{-2} & 72 & 74 & 71 & 64 & 0.29 & 0.26 & 0.25 & 0.27 & 0.26 \\ MMI \ge 25 kgm^{-2} & 72 & 74 & 71 & 64 & 0.29 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.27 & 0.26 & 0.25 & 0.25 & 0.26 & 0.25 & $	Colon cancer						
$ \begin{array}{c cccc} \mbox{Multivariate R4}^{*} & 1.0 & 0.89 (0.73 - 1.09) & 0.83 (0.67 - 1.05) & 0.85 (0.66 - 1.10) & 0.91 (0.66 - 1.25) & 0.48 \\ \mbox{Multivariate R4}^{*} & 1.0 & 1.09 (0.82 - 1.44) & 0.99 (0.72 - 1.37) & 1.20 (0.84 - 1.72) & 1.22 (0.79 - 1.91) & 0.34 \\ \mbox{Multivariate R4}^{*} & 1.0 & 1.09 (0.82 - 1.44) & 0.99 (0.72 - 1.37) & 1.20 (0.84 - 1.72) & 1.22 (0.79 - 1.91) & 0.34 \\ \mbox{Multivariate R4}^{*} & 1.0 & 0.72 (0.53 - 0.96) & 0.69 (0.50 - 0.95) & 0.60 (0.42 - 0.87) & 0.67 (0.41 - 1.08) & 0.05 \\ \mbox{Postivariate clain cancer} & & & & & & & & & & & & & & & & & & &$	Cases	365	327	298	290	298	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Multivariate RRª	1.0	0.89 (0.73–1.09)	0.83 (0.67–1.05)	0.85 (0.66-1.10)	0.91 (0.66–1.25)	0.48
$\begin{array}{cccc} Cases & 172 & 170 & 141 & 153 & 160 \\ Multivariate RR^* & 1.0 & 1.09 (0.82 - 1.44) & 0.99 (0.72 - 1.37) & 1.20 (0.84 - 1.72) & 1.22 (0.79 - 1.91) & 0.34 \\ \hline Multivariate RR^* & 1.0 & 0.72 (0.53 - 0.96) & 0.69 (0.50 - 0.95) & 0.60 (0.42 - 0.87) & 0.67 (0.41 - 1.08) & 0.05 \\ \hline Proximal colon cancer & 169 & 167 & 145 & 134 & 149 \\ \hline Cases & 169 & 167 & 145 & 134 & 149 \\ \hline Multivariate RR^* & 1.0 & 0.91 (0.70 - 1.18) & 0.80 (0.57 - 1.07) & 0.75 (0.54 - 1.04) & 0.82 (0.54 - 1.25) & 0.18 \\ \hline Multivariate RR^* & 1.0 & 1.19 (0.82 - 1.72) & 0.96 (0.62 - 1.47) & 1.13 (0.71 - 1.81) & 125 (0.70 - 2.22) & 0.64 \\ \hline Multivariate RR^* & 1.0 & 0.69 (0.64 - 1.77) & 0.90 (0.67 - 1.25) & 0.18 \\ \hline Multivariate RR^* & 1.0 & 0.69 (0.47 - 1.01) & 0.65 (0.43 - 0.98) & 0.48 (0.30 - 0.78) & 0.54 (0.29 - 1.00) & 0.02 \\ \hline Cases & 119 & 0.69 (0.47 - 1.01) & 0.65 (0.43 - 0.98) & 0.48 (0.30 - 0.78) & 0.54 (0.29 - 1.00) & 0.02 \\ \hline Distal colon cancer & 176 & 149 & 144 & 147 & 135 & 0.99 (0.64 - 1.53) & 0.81 \\ \hline Multivariate RR^* & 1.0 & 0.89 (0.68 - 1.17) & 0.90 (0.67 - 1.22) & 1.00 (0.72 - 1.39) & 0.99 (0.64 - 1.53) & 0.81 \\ \hline Multivariate RR^* & 1.0 & 0.77 (0.49 - 1.07) & 0.74 (0.48 - 1.13) & 0.74 (0.46 - 1.18) & 0.77 (0.40 - 1.49) & 0.49 \\ \hline Rectum cancer^* & 157 & 145 & 153 & 143 & 0.74 (0.46 - 1.18) & 0.77 (0.40 - 1.49) & 0.49 \\ \hline Rectum cancer^* & 157 & 145 & 153 & 143 & 0.99 (0.64 - 1.52) & 0.98 \\ \hline Multivariate RR^* & 1.0 & 0.95 (0.72 - 1.25) & 1.02 (0.75 - 1.38) & 0.95 (0.67 - 1.35) & 0.99 (0.64 - 1.52) & 0.98 \\ \hline Multivariate RR^* & 1.0 & 0.98 (0.67 - 1.43) & 0.99 (0.65 - 1.52) & 0.95 (0.67 - 1.35) & 0.99 (0.64 - 1.52) & 0.98 \\ \hline Multivariate RR^* & 1.0 & 0.98 (0.67 - 1.43) & 0.99 (0.65 - 1.52) & 0.99 (0.64 - 1.52) & 0.98 \\ \hline Multivariate RR^* & 1.0 & 0.98 (0.67 - 1.43) & 0.99 (0.65 - 1.52) & 0.95 (0.67 - 1.35) & 0.99 (0.64 - 1.52) & 0.98 \\ \hline Multivariate RR^* & 1.0 & 0.98 (0.67 - 1.43) & 0.99 (0.65 - 1.52) & 1.05 (0.64 - 1.72) & 0.92 (0.50 - 1.71) & 0.95 \\ \hline Multivariate RR^* & 1.0 & 0.98 (0.67 - 1.43) & 0.99 (0.65 - 1.52)$	$BMI < 25 kg m^{-2}$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cases	172	170	4	153	160	0.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Multivariate KR	1.0	1.09 (0.82–1.44)	0.99 (0.72-1.37)	1.20 (0.84–1.72)	1.22 (0.79–1.91)	0.34
$\begin{array}{cccc} Cases & 93 & 157 & 157 & 157 & 137 & 138 \\ Multivariate RR^{a} & 1.0 & 0.72 (0.53-0.96) & 0.69 (0.50-0.95) & 0.60 (0.42-0.87) & 0.67 (0.41-1.08) & 0.05 \\ Proximal colon cancer \\ Cases & 169 & 167 & 145 & 134 & 149 \\ Multivariate RR^{a} & 1.0 & 0.91 (0.70-1.18) & 0.80 (0.59-1.07) & 0.75 (0.54-1.04) & 0.82 (0.54-1.25) & 0.18 \\ \hline \textit{BMI} < 25 kg m^{-2} \\ Cases & 78 & 87 & 64 & 71 & 80 \\ Cases & 78 & 10 & 1.19 (0.82-1.72) & 0.96 (0.62-1.47) & 1.13 (0.71-1.81) & 1.25 (0.70-2.22) & 0.64 \\ \hline \textit{BMI} \geq 25 kg m^{-2} \\ Cases & 78 & 10 & 0.69 (0.47-1.01) & 0.65 (0.43-0.98) & 0.48 (0.30-0.78) & 0.54 (0.29-1.00) & 0.02 \\ \hline \textit{BMI} \geq 25 kg m^{-2} \\ Cases & 176 & 149 & 144 & 147 & 135 \\ Multivariate RR^{a} & 1.0 & 0.89 (0.68-1.17) & 0.90 (0.67-1.22) & 1.00 (0.72-1.39) & 0.99 (0.64-1.53) & 0.81 \\ \hline \textit{BMI} < 25 kg m^{-2} \\ Cases & 81 & 77 & 70 & 76 & 71 \\ Cases & 81 & 77 & 70 & 76 & 71 \\ Multivariate RR^{a} & 1.0 & 1.10 (0.75-1.60) & 1.11 (0.72-1.71) & 1.39 (0.87-2.24) & 1.29 (0.71-2.36) & 0.26 \\ \hline \textit{BMI} < 25 kg m^{-2} \\ Cases & 81 & 77 & 70 & 76 & 71 \\ Cases & 81 & 77 & 70 & 76 & 71 \\ Multivariate RR^{a} & 1.0 & 0.72 (0.49-1.07) & 0.74 (0.48-1.13) & 0.74 (0.46-1.18) & 0.77 (0.40-1.49) & 0.49 \\ \hline \textit{Rectum cance}^{b} \\ Cases & 155 & 153 & 143 & 152 \\ Cases & 145 & 157 & 153 & 143 & 152 \\ Cases & 85 & 80 & 0.95 (0.67-1.35) & 0.99 (0.64-1.52) & 0.98 \\ \hline \textit{BMI} < 25 kg m^{-2} \\ Cases & 85 & 80 & 76 & 76 & 75 \\ Cases & 145 & 1.0 & 0.98 (0.67-1.43) & 0.99 (0.65-1.52) & 1.05 (0.64-1.72) & 0.92 (0.50-1.71) & 0.95 \\ \hline \textit{BMI} < 25 kg m^{-2} \\ Cases & 85 & 80 & 97 & 76 & 76 & 75 \\ Cases & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 65 & 77 & 67 & 77 \\ \hline \textit{Cases} & 72 & 67 & 77 \\ \hline $	BMI $\geq 25 \text{ kg m}^{-2}$						
$\begin{aligned} & \text{Protivariate RA} & \text{ID} & \text{OP2} \left(0.33 - 0.39\right) & \text{OBS} \left(0.33 - 0.39\right) & \text{OBS} \left(0.34 - 0.37\right) & \text{OBS} \left(0.42 - 0.87\right) & \text{OBS} \left(0.41 - 1.08\right) & \text{ODS} \\ & \text{Cases} & \text{ISP} & \text$	Cases	193			137	38	0.05
Provided colon concer Cases 169 167 145 134 149 Multivariate R ^R 1.0 0.91 (0.70-1.18) 0.80 (0.59-1.07) 0.75 (0.54-1.04) 0.82 (0.54-1.25) 0.18 BMI < 25 kg m ⁻² Cases 78 87 64 71 80 Multivariate R ^R 1.0 1.19 (0.82-1.72) 0.96 (0.62-1.47) 1.13 (0.71-1.81) 1.25 (0.70-2.22) 0.64 BMI $\ge 25 kg m^{-2}$ Cases 91 80 81 63 69 Multivariate R ^R 1.0 0.69 (0.47-1.01) 0.65 (0.43-0.98) 0.48 (0.30-0.78) 0.54 (0.29-1.00) 0.02 Distal colon cancer Cases 176 149 144 147 135 Multivariate R ^R 1.0 0.89 (0.68-1.17) 0.90 (0.67-1.22) 1.00 (0.72-1.39) 0.99 (0.64-1.53) 0.81 BMI < 25 kg m ⁻² Cases 81 77 70 76 71 Multivariate R ^R 1.0 0.110 (0.75-1.60) 1.11 (0.72-1.71) 1.39 (0.87-2.24) 1.29 (0.71-2.36) 0.26 BMI $\ge 25 kg m^{-2}$ Cases 95 72 74 71 64 Multivariate R ^R 1.0 0.72 (0.49-1.07) 0.74 (0.48-1.13) 0.74 (0.46-1.18) 0.77 (0.40-1.49) 0.49 Rectum cancer ^b Cases 157 145 153 143 152 Cases 157 145 153 143 152 Cases 75 72 74 71 64 Multivariate R ^R 1.0 0.95 (0.72-1.25) 1.02 (0.75-1.38) 0.95 (0.67-1.35) 0.99 (0.64-1.52) 0.98 BMI < 25 kg m ⁻² Cases 75 72 74 75 Multivariate R ^R 1.0 0.95 (0.72-1.25) 1.02 (0.75-1.38) 0.95 (0.67-1.35) 0.99 (0.64-1.52) 0.98 BMI < 25 kg m ⁻² Cases 81 0.70 99 (0.67-1.43) 0.99 (0.65-1.52) 1.05 (0.64-1.72) 0.92 (0.50-1.71) 0.95 BMI < 25 kg m ⁻² Cases 72 85 80 76 76 75 Multivariate R ^R 1.0 0.98 (0.67-1.43) 0.99 (0.65-1.52) 1.05 (0.64-1.72) 0.92 (0.50-1.71) 0.95 BMI < 25 kg m ⁻² Cases 72 85 80 76 76 75 Multivariate R ^R 1.0 0.98 (0.67-1.43) 0.99 (0.65-1.52) 1.05 (0.64-1.72) 0.92 (0.50-1.71) 0.95 BMI $\ge 25 kg m^{-2}$ Cases 72 65 77 67 77	Multivariate KK	1.0	0.72 (0.55-0.76)	0.69 (0.50-0.95)	0.60 (0.42-0.67)	0.67 (0.41 - 1.06)	0.05
$\begin{array}{cccc} Cases & 169 & 167 & 145 & 144 & 147 \\ Multivariate RR^{4} & 10 & 0.91 (0.70-1.18) & 0.80 (0.59-1.07) & 0.75 (0.54-1.04) & 0.82 (0.54-1.25) & 0.18 \\ \hline Multivariate RR^{4} & 10 & 1.19 (0.82-1.72) & 0.96 (0.62-1.47) & 1.13 (0.71-1.81) & 1.25 (0.70-2.22) & 0.64 \\ \hline Multivariate RR^{4} & 1.0 & 1.9 (0.82-1.72) & 0.96 (0.62-1.47) & 1.13 (0.71-1.81) & 1.25 (0.70-2.22) & 0.64 \\ \hline Multivariate RR^{4} & 1.0 & 0.69 (0.47-1.01) & 0.65 (0.43-0.98) & 0.48 (0.30-0.78) & 0.54 (0.29-1.00) & 0.02 \\ \hline Distal colon cancer \\ \hline Cases & 176 & 149 & 144 & 147 & 135 \\ \hline Multivariate RR^{4} & 1.0 & 0.89 (0.68-1.17) & 0.90 (0.67-1.22) & 1.00 (0.72-1.39) & 0.99 (0.64-1.53) & 0.81 \\ \hline BMI \geq 25 kg m^{-2} \\ \hline Cases & 95 & 72 & 74 & 71 & 64 \\ \hline Multivariate RR^{4} & 1.0 & 0.72 (0.49-1.07) & 0.74 (0.48-1.13) & 0.74 (0.46-1.18) & 0.77 (0.40-1.49) & 0.49 \\ \hline Rectur cancel^{b} \\ \hline Cases & 157 & 145 & 153 & 143 & 152 \\ \hline Cases & 85 & 80 & 76 & 76 & 75 \\ \hline Multivariate RR^{4} & 1.0 & 0.98 (0.67-1.43) & 0.99 (0.65-1.52) & 1.05 (0.67-1.35) & 0.99 (0.64-1.52) & 0.98 \\ \hline BMI \geq 25 kg m^{-2} \\ \hline Cases & 85 & 80 & 76 & 76 & 75 \\ \hline Multivariate RR^{4} & 1.0 & 0.98 (0.67-1.43) & 0.99 (0.65-1.52) & 1.05 (0.64-1.72) & 0.92 (0.50-1.71) & 0.95 \\ \hline BMI \geq 25 kg m^{-2} \\ \hline Cases & 85 & 80 & 76 & 76 & 75 \\ \hline Multivariate RR^{4} & 1.0 & 0.98 (0.67-1.43) & 0.99 (0.65-1.52) & 1.05 (0.64-1.72) & 0.92 (0.50-1.71) & 0.95 \\ \hline BMI \geq 25 kg m^{-2} \\ \hline Cases & 85 & 80 & 76 & 76 & 75 \\ \hline Multivariate RR^{4} & 1.0 & 0.98 (0.67-1.43) & 0.99 (0.65-1.52) & 1.05 (0.64-1.72) & 0.92 (0.50-1.71) & 0.95 \\ \hline BMI \geq 25 kg m^{-2} \\ \hline Cases & 72 & 65 & 77 & 67 & 77 \\ \hline \end{array}$	Proximal colon cancer	170	1/7	145	124	140	
$\begin{aligned} & \text{First variate Ret} & \text{First} & Fi$	Cases Multivariate RR ^a	169	167 091 (070–118)	145 0.80 (0.59–1.07)	134 0.75 (0.54–1.04)	149 0.82 (0.54–1.25)	0.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.0	0.71 (0.70 1.10)	0.00 (0.57 1.07)	0.75 (0.51 1.01)	0.02 (0.51 1.25)	0.10
Cases 91 80 81 25 kg m ⁻² Cases 91 80 81 63 69 Multivariate R ^a 1.0 1.19 (0.82 - 1.72) 0.96 (0.62 - 1.47) 1.13 (0.71 - 1.81) 1.25 (0.70 - 2.22) 0.64 BMI $\ge 25 kg m^{-2}$ Cases 91 80 81 63 69 Multivariate R ^a 1.0 0.69 (0.47 - 1.01) 0.65 (0.43 - 0.98) 0.48 (0.30 - 0.78) 0.54 (0.29 - 1.00) 0.02 Distal colon cancer Cases 176 149 144 147 135 Multivariate R ^a 1.0 0.89 (0.68 - 1.17) 0.90 (0.67 - 1.22) 1.00 (0.72 - 1.39) 0.99 (0.64 - 1.53) 0.81 BMI $\ge 25 kg m^{-2}$ Cases 95 72 74 71 64 Multivariate R ^a 1.0 0.72 (0.49 - 1.07) 0.74 (0.48 - 1.13) 0.74 (0.46 - 1.18) 0.77 (0.40 - 1.49) 0.49 Rectum cance ^b Cases 157 145 153 153 143 152 Multivariate R ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI $\ge 25 kg m^{-2}$ Cases 95 72 74 71 64 Multivariate R ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI $\ge 25 kg m^{-2}$ Cases 157 0.45 153 153 143 152 Multivariate R ^a 1.0 0.99 (0.67 - 1.43) 0.99 (0.65 - 1.52) 1.05 (0.64 - 1.72) 0.92 (0.50 - 1.71) 0.95 BMI $\ge 25 kg m^{-2}$ Cases 75 72 74 76 76 75 Multivariate R ^a 1.0 0.98 (0.67 - 1.43) 0.99 (0.65 - 1.52) 1.05 (0.64 - 1.72) 0.92 (0.50 - 1.71) 0.95 BMI $\ge 25 kg m^{-2}$ Cases 72 65 77 67 77	$BMI < 25 kg m^{-2}$	70	07	6.4	71	00	
$BMI \ge 25 kg m^{-2}$ Cases 91 80 81 63 69 0.47 - 1.01 0.65 (0.43 - 0.98) 0.48 (0.30 - 0.78) 0.54 (0.29 - 1.00) 0.02 Distal colon cancer Cases 176 149 144 147 135 Multivariate RR ^a 1.0 0.89 (0.68 - 1.17) 0.90 (0.67 - 1.22) 1.00 (0.72 - 1.39) 0.99 (0.64 - 1.53) 0.81 BMI $\ge 25 kg m^{-2}$ Cases 81 77 70 76 71 Multivariate RR ^a 1.0 1.10 (0.75 - 1.60) 1.11 (0.72 - 1.71) 1.39 (0.87 - 2.24) 1.29 (0.71 - 2.36) 0.26 BMI $\ge 25 kg m^{-2}$ Cases 95 72 74 71 64 Multivariate RR ^a 1.0 0.72 (0.49 - 1.07) 0.74 (0.48 - 1.13) 0.74 (0.46 - 1.18) 0.77 (0.40 - 1.49) 0.49 Rectum cancer ^b Cases 157 145 153 143 152 Cases 157 145 153 143 152 Multivariate RR ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI $\ge 25 kg m^{-2}$ Cases 157 145 153 143 152 Cases 157 145 153 143 152 Multivariate RR ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI $\ge 25 kg m^{-2}$ Cases 157 145 153 143 152 Cases 157 145 153 143 152 Multivariate RR ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI $\ge 25 kg m^{-2}$ Cases 72 65 77 67 75 Cases 74 77 76 75 Cases 75 76 75 Cases 72 65 77 67 77	Multivariate RR ^a	1.0	1.19 (0.82–1.72)	0.96 (0.62–1.47)	1.13 (0.71–1.81)	1.25 (0.70-2.22)	0.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$DAU > 25 h m^{-2}$						
Multivariate RR^a I.0 0.69 (0.47-1.01) 0.65 (0.43-0.98) 0.48 (0.30-0.78) 0.54 (0.29-1.00) 0.02 Distal colon cancer Cases 176 149 144 147 135 0.99 (0.64-1.53) 0.81 BMI < 25 kg m^{-2} Cases 81 77 70 76 71 0.99 (0.64-1.53) 0.26 BMI < 25 kg m^{-2} Cases 81 77 70 76 71 0.99 (0.71-2.36) 0.26 BMI > 25 kg m^{-2} Cases 95 72 74 71 64 0.77 (0.40-1.49) 0.49 Rectum cancer ^b Cases 1.0 0.72 (0.49-1.07) 0.74 (0.48-1.13) 0.74 (0.46-1.18) 0.77 (0.40-1.49) 0.49 BMI < 25 kg m^{-2} BMI < 25 kg m^{-2} 0.99 (0.64-1.52) 0.99 (0.64-1.52) 0.98 BMI < 25 kg m^{-2} 85 80 76 76 75 0.99 (0.64-1.52) 0.98 BMI < 25 kg m^{-2} 85 80 76 76 75 0.99 (0.64-1.52) 0.98 BMI > 25 kg m^{-2} 85 80 76 76 75 <th< td=""><td>BIVII ≥ Z3 Kg m Cases</td><td>91</td><td>80</td><td>81</td><td>63</td><td>69</td><td></td></th<>	BIVII ≥ Z3 Kg m Cases	91	80	81	63	69	
Distal colon cancer 76 149 144 147 135 135 Multivariate RR ^a 1.0 0.89 (0.68 - 1.17) 0.90 (0.67 - 1.22) 1.00 (0.72 - 1.39) 0.99 (0.64 - 1.53) 0.81 BMI < 255 kg m ⁻² Cases 81 77 70 76 71 Multivariate RR ^a 1.0 1.10 (0.75 - 1.60) 1.11 (0.72 - 1.71) 1.39 (0.87 - 2.24) 1.29 (0.71 - 2.36) 0.26 BMI > 255 kg m ⁻² Cases 95 72 74 71 64 Cases 95 72 74 71 64 0.77 (0.40 - 1.49) 0.49 Rectum cancer ^b Cases 1.0 0.72 (0.49 - 1.07) 0.74 (0.48 - 1.13) 0.74 (0.46 - 1.18) 0.77 (0.40 - 1.49) 0.49 Rectum cancer ^b Cases 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI < 225 kg m ⁻² Cases 85 80 76 76 75 0.92 (0.50 - 1.71) 0.95 BMI > 255 kg m ⁻² Cases 72 65 77 67 77 77 </td <td>Multivariate RR^a</td> <td>1.0</td> <td>0.69 (0.47-1.01)</td> <td>0.65 (0.43-0.98)</td> <td>0.48 (0.30-0.78)</td> <td>0.54 (0.29-1.00)</td> <td>0.02</td>	Multivariate RR ^a	1.0	0.69 (0.47-1.01)	0.65 (0.43-0.98)	0.48 (0.30-0.78)	0.54 (0.29-1.00)	0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Distal colon cancer						
Multivariate RRa1.00.89 (0.68 - 1.17)0.90 (0.67 - 1.22)1.00 (0.72 - 1.39)0.99 (0.64 - 1.53)0.81 $BMI < 25 kg m^{-2}$ Cases8177707671Multivariate Raa1.01.10 (0.75 - 1.60)1.11 (0.72 - 1.71)1.39 (0.87 - 2.24)1.29 (0.71 - 2.36)0.26 $BMI \ge 25 kg m^{-2}$ Cases9572747164Multivariate Raa1.00.72 (0.49 - 1.07)0.74 (0.48 - 1.13)0.74 (0.46 - 1.18)0.77 (0.40 - 1.49)0.49Rectum cancerb Cases1.00.95 (0.72 - 1.25)1.02 (0.75 - 1.38)0.95 (0.67 - 1.35)0.99 (0.64 - 1.52)0.98 $BMI < 25 kg m^{-2}$ Cases85807676750.95 $BMI < 25 kg m^{-2}$ Cases85807676750.92 $BMI < 25 kg m^{-2}$ Cases85807676750.92 $BMI > 25 kg m^{-2}$ Cases25 kg m^{-2} Cases25776777 $BMI > 25 kg m^{-2}$ Cases25776777	Cases	176	149	44	147	135	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Multivariate RR ^a	1.0	0.89 (0.68-1.17)	0.90 (0.67-1.22)	1.00 (0.72-1.39)	0.99 (0.64–1.53)	0.81
Cases8177707671Multivariate RRa1.01.10 (0.75 - 1.60)1.11 (0.72 - 1.71)1.39 (0.87 - 2.24)1.29 (0.71 - 2.36)0.26BMI $\ge 25 kg m^{-2}$ Cases9572747164Multivariate RRa1.00.72 (0.49 - 1.07)0.74 (0.48 - 1.13)0.74 (0.46 - 1.18)0.77 (0.40 - 1.49)0.49Rectum cancerb Cases157145153143152Multivariate RRa1.00.95 (0.72 - 1.25)1.02 (0.75 - 1.38)0.95 (0.67 - 1.35)0.99 (0.64 - 1.52)0.98BMI $< 25 kg m^{-2}$ Cases85807676750.92 (0.50 - 1.71)0.95BMI $\ge 25 kg m^{-2}$ Cases7265776777	$BMI < 25 kg m^{-2}$						
Multivariate RRaI.0I.10 (0.75-1.60)I.11 (0.72-1.71)I.39 (0.87-2.24)I.29 (0.71-2.36)0.26BMI $\geq 25 kg m^{-2}$ Cases9572747164Multivariate RRaI.00.72 (0.49-1.07)0.74 (0.48-1.13)0.74 (0.46-1.18)0.77 (0.40-1.49)0.49Rectum cancer ^b Cases157145153143152Multivariate RRaI.00.95 (0.72-1.25)I.02 (0.75-1.38)0.95 (0.67-1.35)0.99 (0.64-1.52)0.98BMI $< 25 kg m^{-2}$ Cases85807676750.92 (0.50-1.71)0.95BMI $\geq 25 kg m^{-2}$ Cases7265776777	Cases	81	77	70	76	71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Multivariate RR ^a	1.0	1.10 (0.75–1.60)	1.11 (0.72–1.71)	1.39 (0.87–2.24)	1.29 (0.71–2.36)	0.26
Cases9572747164Multivariate RRa1.00.72 (0.49 - 1.07)0.74 (0.48 - 1.13)0.74 (0.46 - 1.18)0.77 (0.40 - 1.49)0.49Rectum cancerbCases157145153143152Multivariate RRa1.00.95 (0.72 - 1.25)1.02 (0.75 - 1.38)0.95 (0.67 - 1.35)0.99 (0.64 - 1.52)0.98BMI < 25 kg m^{-2}85807676750.92 (0.50 - 1.71)0.95BMI > 25 kg m^{-2}0.98 (0.67 - 1.43)0.99 (0.65 - 1.52)1.05 (0.64 - 1.72)0.92 (0.50 - 1.71)0.95BMI > 25 kg m^{-2}Cases7265776777	BMI $\geq 25 \text{kg} \text{m}^{-2}$						
Multivariate RR ^a I.0 $0.72 (0.49 - 1.07)$ $0.74 (0.48 - 1.13)$ $0.74 (0.46 - 1.18)$ $0.77 (0.40 - 1.49)$ 0.49 Rectum cancer ^b Cases I57 I45 I53 I43 I52 Multivariate RR ^a I.0 $0.95 (0.72 - 1.25)$ I.02 (0.75 - 1.38) $0.95 (0.67 - 1.35)$ $0.99 (0.64 - 1.52)$ 0.98 BMI < 25 kg m ⁻² Cases 85 80 76 76 75 Multivariate RR ^a I.0 $0.98 (0.67 - 1.43)$ $0.99 (0.65 - 1.52)$ I.05 (0.64 - 1.72) $0.92 (0.50 - 1.71)$ 0.95 BMI > 25 kg m ⁻² Cases 72 65 77 67 77	Cases	95	72	74	71	64	
Rectum cancer ^b Cases 157 145 153 143 152 Multivariate RR ^a 1.0 0.95 (0.72 - 1.25) 1.02 (0.75 - 1.38) 0.95 (0.67 - 1.35) 0.99 (0.64 - 1.52) 0.98 BMI < 25 kg m ⁻² Cases 85 80 76 76 75 0.92 (0.50 - 1.71) 0.95 BMI > 25 kg m ⁻² Cases 72 65 77 67 77	Multivariate RR ^a	1.0	0.72 (0.49–1.07)	0.74 (0.48–1.13)	0.74 (0.46–1.18)	0.77 (0.40–1.49)	0.49
Cases157145153143152Multivariate RRa1.00.95 (0.72 - 1.25)1.02 (0.75 - 1.38)0.95 (0.67 - 1.35)0.99 (0.64 - 1.52)0.98BMI < 25 kg m^{-2}	Rectum cancer ^b						
Multivariate RR* 1.0 0.95 (0.72-1.25) 1.02 (0.75-1.38) 0.95 (0.67-1.35) 0.99 (0.64-1.52) 0.98 BMI < 25 kg m^{-2}	Cases	157	145	153	143	152	0.00
BMI < 25 kg m ⁻² Cases 85 80 76 76 75 Multivariate RR ^a 1.0 0.98 (0.67−1.43) 0.99 (0.65−1.52) 1.05 (0.64−1.72) 0.92 (0.50−1.71) 0.95 BMI ≥ 25 kg m ⁻² Cases 72 65 77 67 77	Multivariate RRª	1.0	0.95 (0.72–1.25)	1.02 (0.75-1.38)	0.95 (0.67–1.35)	0.99 (0.64–1.52)	0.98
Cases 85 80 76 76 75 Multivariate R ^a 1.0 0.98 (0.67 - 1.43) 0.99 (0.65 - 1.52) 1.05 (0.64 - 1.72) 0.92 (0.50 - 1.71) 0.95 BMI $\ge 25 \text{ kg m}^{-2}$ Cases 72 65 77 67 77	$BMI < 25 kg m^{-2}$						
$BMI \ge 25 kg m^{-2}$ Cases 72 65 77 67 77	Cases Multivariate PP ^a	85	80 098 (067 143)	76	76	75 092 (050 171)	0.95
BMI ≥ 25 kg m ⁻² Cases 72 65 77 67 77		1.0	(27.1–70.0) 07.0	0.77 (0.03-1.32)	1.03 (0.07-1.72)	0.72 (0.00-1.71)	0.75
Lases 12 60 // 6/ //	$BMI \ge 25 kg m^{-2}$	70	/ F	77	/7	77	
Multivariate RR ^a 1.0 0.91 (0.60–1.39) 1.07 (0.69–1.67) 0.85 (0.50–1.44) 1.06 (0.54–2.05) 0.98	Cases Multivariate RRª	1.0	0.91 (0.60–1.39)	// 1.07 (0.69–1.67)	0.85 (0.50–۱.44)	// 1.06 (0.54–2.05)	0.98

^aThe model included age, sex, family history of colorectal cancer, BMI, physical activity, energy-adjusted intakes of fat, fibre, calcium, folate, beta-carotene, vitamin E, vitamin B6, alcohol, and energy intake. ^bIncludes rectosigmoid.

association with magnesium. Tests for interaction were nonsignificant. Results for men and women separately were essentially similar (data not shown).

DISCUSSION

An inverse association between magnesium intake and colorectal cancer risk in women was first reported in a Swedish cohort study (Larsson et al, 2005). In the Iowa Women's Health Study, an inverse association was found only for colon cancer. We found weak inverse associations with risks of colorectal and colon cancer in men and women, which were generally nonsignificant. In both sexes, the inverse association was most evident for proximal colon cancer risk. When we stratified by BMI level, the inverse association was observed only in those with BMI $\ge 25 \text{ kg m}^{-2}$. As overweight is related to decreased insulin sensitivity (Fung et al, 2003), this may suggest that magnesium is inversely associated with colorectal cancer risk through improved insulin sensitivity. Recently, magnesium intake was found to be associated with increased levels of adiponectin, which may improve insulin sensitivity (Qi et al, 2005); adiponectin was inversely associated with colorectal cancer risk among men (Wei et al, 2005).

Strengths of our study include large numbers of cases, scope for comparing the sexes, and the completeness of follow-up. We found weaker inverse associations between colorectal cancer and magnesium intake than in the Sweden (Larsson *et al*, 2005) and, to a lesser extent, Iowa studies (Folsom and Hong, 2006). It may be relevant that reported magnesium intake levels are lower in Sweden than in the Netherlands: median intakes in lowest and highest quintiles were 198 and 268 mg day⁻¹ (Larsson *et al*, 2005), and 236 and 349 mg day⁻¹ in Dutch women, respectively. Magnesium intake of up to 325 mg day⁻¹ was recently found to

REFERENCES

- Cleves MA, Gould WW, Gutierrez RG (2002) An Introduction to Survival Analysis Using Stata. Texas: Stata Press
- Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc B 34: 187-220
- Folsom AR, Hong CP (2006) Magnesium intake and reduced risk of colon cancer in a prospective study of women. Am J Epidemiol 163: 232-235
- Fung TT, Manson JE, Solomon CG, Liu S, Willett WC, Hu FB (2003) The association between magnesium intake and fasting insulin concentration in healthy middle-aged women. J Am Coll Nutr 22: 533-538
- Giovannucci E (1995) Insulin and colon cancer. Cancer Causes Control 6: 164-179
- Goldbohm RA, van den Brandt PA, Brants HA, van't Veer P, Al M, Sturmans F, Hermus RJ (1994) Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. *Eur J Clin Nutr* **48**: 253–265
- Hartwig A (2001) Role of magnesium in genomic stability. *Mutat Res* **475:** 113-121
- Larsson SC, Bergkvist L, Wolk A (2005) Magnesium intake in relation to risk of colorectal cancer in women. JAMA 293: 86-89
- Ma B, Lawson AB, Liese AD, Bell RA, Mayer-Davis EJ (2006) Dairy, magnesium, and calcium intake in relation to insulin sensitivity: approaches to modeling a dose-dependent association. *Am J Epidemiol* **164**: 449–458
- Mori H, Morishita Y, Shinoda T, Tanaka T (1993) Preventive effect of magnesium hydroxide on carcinogen-induced large bowel carcinogenesis in rats. *Basic Life Sci* **61:** 111-118
- Nevo-table (1986) Dutch food composition table; Nederlands voedingsstoffenbestand 1986-1987. The Hague: Voorlichtingsbureau voor de Voeding

513

be associated with insulin sensitivity, and intakes above this level might not provide further benefits; sex-specific data were not presented (Ma *et al*, 2006). We observed no further decrease in risk in our subsite-specific analyses (Table 2) in quintile 5 ($>350 \text{ mg day}^{-1}$; median 375) compared to quintile 4 (321–350 mg day⁻¹; median 313), which is in line with the threshold finding. The magnesium intake in Iowa women (Folsom and Hong, 2006) was comparable to our study, but Iowa women were generally heavier (Folsom and Hong, 2006) than Dutch women, which could explain the different findings given the modification by BMI.

In conclusion, our results provide no clear support for an overall protective effect of magnesium on colorectal cancer in men or women, but are compatible with an impact in the subgroup of overweight subjects, possibly through reduced insulin resistance. Further studies are needed to elucidate this relationship.

ACKNOWLEDGEMENTS

We are indebted to the participants of the study and further wish to thank the cancer registries (IKA, IKL, IKMN, IKN, IKO, IKR, IKST, IKW, IKZ, and VIKC) and the Netherlands nationwide registry of pathology (PALGA). We also thank Dr Arnold Kester for statistical advice; Sacha van de Crommert, Henny Brants, Jolanda Nelissen, Conny de Zwart, Marijke Moll, Nathalie Slangen, Willy van Dijk, and Annemie Pisters for assistance; and Harry van Montfort, Ton van Moergastel, Linda van den Bosch, and Ruud Schmeitz for programming assistance.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

- Paolisso G, Sgambato S, Gambardella A, Pizza G, Tesauro P, Varricchio M, D'Onofrio F (1992) Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 55: 1161-1167
- Qi L, Rimm E, Liu S, Rifai N, Hu FB (2005) Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. *Diabetes Care* 28: 1022-1028
- Rodriguez-Moran M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. *Diabetes Care* 26: 1147-1152
- Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, Dobs A, Savage PJ (1999) Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91: 1147-1154
- Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. *Biometrika* 69: 239-241
- van den Brandt PA, Goldbohm RA, van't Veer P, Volovics A, Hermus RJ, Sturmans F (1990a) A large-scale prospective cohort study on diet and cancer in The Netherlands. *J Clin Epidemiol* **43:** 285–295
- van den Brandt PA, Schouten LJ, Goldbohm RA, Dorant E, Hunen PM (1990b) Development of a record linkage protocol for use in the Dutch Cancer Registry for Epidemiological Research. *Int J Epidemiol* **19:** 553– 558
- Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS (2005) Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst 97: 1688-1694
- Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124: 17-27