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ABSTRACT
PM2.5 (particulate matter less than or equal to 2.5 micron) is found in the air and
comprises dust, dirt, soot, smoke, and liquid droplets. PM2.5 and carbon monoxide
emissions can have a negative impact on humans and animals throughout the world.
In this paper, we present the performance of a modified exponentially weighted
moving average (modified EWMA) control chart to detect small changes when the
observations are autocorrelated with exponential white noise through the average run
length evaluated (ARLs) by explicit formulas. The accuracy of the solution was verified
with a numerical integral equationmethod. The efficacy of themodified EWMAcontrol
chart to monitor PM2.5 and carbon monoxide air pollution data and compare its
performance with the standard EWMA control chart. The results suggest that the
modified EWMA control chart is far superior to the standard one.

Subjects Statistics, Atmospheric Chemistry, Environmental Contamination and Remediation,
Environmental Impacts
Keywords Autocorrelation, Average run length, Explicit formulas, PM2.5, Carbon monoxide,
Air pollutant

INTRODUCTION
One of the world’s greatest health and environmental problems is air pollution, which has
steadily increased worldwide due to global industrialization and urbanization (Manisalidis
et al., 2020). Air quality monitoring inmany countries has shown that the levels of common
pollutants have increased from 1980 until now. During 2010–2016, an estimated 55.3%
of the global population were exposed to dangerous levels of air pollution (Shaddick et
al., 2020). Therefore, a major global health risk to the world’s population is air pollution,
with more than 90% of people living in areas that do not meet the 2017 World Health
Organization’s (WHO) recommended threshold of air quality levels (Health Effects
Institute, 2019). The WHO data also reveals that in 2016, 6.1 million deaths worldwide
(around 11% of the total global deaths) are attributable to air pollution.

A widespread air pollutant consisting of a mixture of solid and liquid particles suspended
in air is called particulate matter (PM), in which the physical and chemical characteristics
depend on the location. The common chemical components of PM include nitrates,
sulfates, ammonium, other inorganic, and biological compounds (Huang et al., 2014). PM
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is used as an indicator that is relevant to health and is classified in terms of the diameter or
width of the particles, e.g., PM10 means the diameter is 10 µm or less and PM2.5 is 2.5 µm
or less (Saarikoski et al., 2018). PM2.5 can be human-made and naturally occurring. Air
pollution from vehicle emissions and traffic congestion produces both PM2.5 and carbon
monoxide (CO) pollution, with major causes being diesel engine exhaust fumes and traffic
congestion (Pui, Chen & Zuo, 2014; Tian et al., 2015). Emissions from factories and power
plants are also major causes of PM2.5 pollution due to burning fossil fuels, especially coal
(Hua et al., 2015). Moreover, the burning of agricultural waste, especially in South East
Asia, and forest fires are other major causes of PM2.5 pollution (He, Lui & Zhou, 2020; Lee
et al., 2018).

The small size of PM2.5 particlesmakes themparticularly deleterious to health by directly
cause respiratory and cardiovascular morbidity. Since the lungs are the primary organs
affected by PM2.5, exposure can lead to lung injury by perturbations of the lungmicrobiome
and its associated metabolome mechanism (Li et al., 2020), as well as causing respiratory
diseases and lung cancer (Xing et al., 2016). However, PM2.5-induced neuroinflammation
and metabolic turbulence may be mitigated by the anti-inflammatory and anti-oxidative
activities of fisetin (Xu et al., 2020). Long-term exposure to PM pollution in the air causes
extrinsic skin aging, (wrinkles and changes in pigmentation). Moreover, atmospheric
pollutants also lead to skin diseases such as atopic dermatitis (Liao, Eie & Sun, 2020).

The trend in Central and Southern Asia has been a rise in PM2.5 levels between
2010 and 2016 (Shaddick et al., 2020; Cheong et al., 2019; Johnston et al., 2019). Recently
in Thailand, especially in Bangkok and the surrounding area, the population has been
exposed to dangerously high PM2.5 pollution levels due to agricultural waste burning,
foreign sources, and industry. The levels of these small particles have increased over the
past few years (Wimolwattanapun, Hopke & Pongkiatkul, 2011; Oanh et al., 2013; Pinichka
et al., 2017; Mahidol University, 2020). Self-care practices should be the first priority to
manage this problem, while PM2.5 pollution levels should be kept under control and
closely monitored periodically.

Statistical process control is a quality control approach for carrying out statistical
methods to monitor and control process change. In particular, the control chart is a
tool that is widely used to monitor processes to detect any changes in them, thereby
preventing the occurrence of faults. In many ecological and environmental sources of data,
the values are not independent over time and often comprise autocorrelated observations
(autocorrelation or serial correlation is a measure of the correlation between current
variable values and their past ones). Hence, the assumption in traditional control chart
methodology that the observations taken from the process are independent and normally
distributed does not hold. Thus, traditional control charts such as the Shewhart control
chart have drastically reduced efficiency when applied to serially correlated observations.
Therefore, many researchers have proposed the cumulative sum (CUSUM) (Page, 1954)
and exponentially weighted moving average (EWMA) (Roberts, 1959) control charts as
suitable alternatives for when the observations are autocorrelated. The EWMAcontrol chart
is recommended when the observations are not normally distributed or are autocorrelated,
as has been determined using the average run length (ARL) statistic (Srivastava & Wu,
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1993;Wardell, Moskowitz & Plante, 1994; Jiang, Tsui & Woodall, 2000; Carson & Yeh, 2008;
Han et al., 2010). The usefulness of control chart techniques has been investigated for
air pollution data in a time series. The CUSUM control chart has been employed for
identifying changes in the mean air pollution level (Barratt et al., 2007), as well as for
identifying important change-points in the time series of air pollutants measured at a busy
roadside location in central London (Carslaw, Ropkins & Bell, 2006). The applicability of
the CUSUM control chart for detecting changes in air pollutant concentrations in Delhi
was investigated by Chelani (2011), who found that they have been significantly increasing
over time.Moreover, standard CUSUM and EWMA control charts have been used to detect
a change in air pollutant time series data in Kuwait (Al-Rashed, Al-Mutairi & Attar, 2019);
the results reveal that both procedures provided early alarms in the detection of changes
in air pollutants. Afterward, a newly structure control statistic was proposed by Patel &
Divecha (2011) and was also generalized structure of control statistic namely modified
EWMA control chart. Several researchers investigated the performance of modified
EWMA chart by different situations of non-normal distribution including Aslam et al.
(2017), Herdiani, Fandrilla & Nurtiti (2018) and Noiplab & Mayureesawan (2019). The
application of modified EWMA procedures was demonstrated using real-life samples by
comparing with the existing charts. The results showed that the proposed control chart is
efficient in quick detection of the out-of-control process (Khan et al., 2018; Saghir, Ahmad
& Aslam, 2019; Saghir et al., 2020; Aslam & Anwar, 2020; Supharakonsakun, Areepong &
Sukparungsee, 2020).

According to these prior studies on control chart performance, the ARL is utilized to
measure the robustness of the chart. In this paper, a modified EWMA control chart, which
was newly developed from the traditional EWMA procedure, is presented for monitoring
and detecting small and abrupt changes in autocorrelated data by evaluating the ARL.
Its performance was studied comparatively with the standard EWMA chart for detecting
changes in PM2.5 and CO gas level.

Modified EWMA chart
Roberts (1959) first proposed the EWMA control chart that is very effectively at detecting
small process changes. This chart’s design parameters are the multiples of widths of the
control limit and smoothing parameter. The EWMA statistic is defined as

Zt = (1−λ)Zt−1+λXt , (1)

where 0 < λ ≤ 1 is smoothing parameter and Xt , t = 1,2,3,... isa sequence of
autocorrelated observations with the starting value is the process target mean Z0=µ0.

The respective upper and lower control limits for the EWMA chart are

UCL=µ0+Hσ

√
λ

2−λ
[
1− (1−λ)2i

]
, (2)

LCL=µ0−Hσ

√
λ

2−λ
[
1− (1−λ)2i

]
, (3)

where H is the width of the control limit and σ is the process standard deviation. The
term

[
1− (1−λ)2i

]
is close to 1 as i becomes large. Hence, the respective upper and lower
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control limit will approach their respective steady-state value as

UCL=µ0+Hσ

√
λ

2−λ
, (4)

and

LCL=µ0−Hσ

√
λ

2−λ
. (5)

Later, modified EWMA control chart was introduced by Patel & Divecha (2011). They
corrected the inertia problem caused by errors in the EWMA statistic by considering past
changes as well as the latest change in the process. The modified EWMA chart is useful for
detecting process changes in observations that are autocorrelated or independent normally
distributed. Recently, Khan, Aslam & Jun (2017) proposed a new control statistic structure
that developed from the modified EWMA control chart as follow:

Zt = (1−λ)Zt−1+λXt +k(Xt −Xt−1), (6)

where λ is the smoothing parameter; Xt , t = 1,2,3,... is a sequence of autocorrelated
observations; k is a constant; and the starting value is the process target mean Z0=µ0. It
is similar to the EWMA statistic but with the last term extended.

This chart generates a false alarm when the Zn value violates the specified control limit.
In general, the upper and lower control limit are respectively given by

UCL=µ0+Lσ

√
λ+2kλ+2k2

2−λ
, (7)

and

LCL=µ0−Lσ

√
λ+2kλ+2k2

2−λ
, (8)

where L and σ is the width of the control limit of modified EWMA procedure and process
standard deviation, respectively.

Method of evaluating ARL for moving average order q model
A time series is a series of data points ordered in time, and the goal of a time series analysis
is usually to make a forecast of the future using time as an independent variable. A usual
characteristic of a time series is autocorrelation, which is correlation between observations
in the same dataset at different points in time. In other words, autocorrelated data portrays
the similarity between observations as a function of the time lag between them. In a time
series analysis, an MA(q) process is a common approach for modeling a univariate time
series for which the error depends linearly on the current and numerous past values of the
error term.

Xt =µ+εt −θ1εt−1−θ2εt−2−···−θqεt−q, (9)

where µis the mean of the series, εt is a white noise process assumed to be exponentially
distributed, θi is a process coefficient, and the starting value of ε0= s is given.
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Let L(u) denote the ARL for an MA(q) process with exponential white noise on a
modified EWMA control chart (see Appendix A1 for the proof) that there exists only one
solution of the integral equation (see Appendix A2). It is obtained by deriving a Fredholm
integral equation of the second kind as follows:

L(u)= 1−
λe

(1−λ)u
α0(λ+k)

[
e−

b
α0(λ+k) −1

]
λe
−µ
α0 ·e

v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q
α0(λ+k) +e−

λb
α0(λ+k) −1

, (10)

with in-control process parameter α0 and out-of-control process parameter α1>α0.

Numerical results
The ARLs of the explicit formulas are derived using a Fredholm integral equation of the
second type, those of the numerical integral equation method are approximated using the
Gauss-Legendre quadrature rule with 1,000 nodes, and the control ARL is set to ARL0 =
500. The numerical approximation of the numerical integral equation and the exact result
of the explicit formulas to measure the accuracy in the comparative study according to the
relative error is defined as

ε=
|L(u)− L̂(u)|

L(u)
×100%, (11)

where L(u) is derived from the ARL using the explicit formulas and L̂(u) is an
approximation of the ARL with the numerical integral equation. The numerical results are
reported in Tables 1, 2 and 3.

Computation of the ARL by using the explicit formulas and the numerical integral
equation method on the modified EWMA control chart were carried out with a varied
smoothing parameters (λ= 0.05, 0.10, 0.15 and 0.2); constant k = 1; in-control process
parameter α0 = 1; out-of-control process parameter α1 = (1+ δ)α0, where δ is the shift
size set as 0.001, 0.003, 0.005, 0.01, 0.05, 0.10, 0.50 or 1.00; and in-control process was
ARL0 = 500 (Tables 1 and 2). The parameters were set as µ= 2; coefficients θ1=−0.3,
θ2= 0.5 with λ= 0.05, 0.1 and θ1= 0.1, θ2= 0.3 with λ= 0.15,0.2 for an MA(2) process;
and coefficients θ1= 0.3, θ2= 0.5, θ3= 0.7 with λ= 0.05,0.1 and θ1=−0.5, θ2=−0.3,
θ3 =−0.5 with λ= 0.15,0.2 for an MA(3) process. The results indicate that when the
smoothing parameter was increased, the value of ARL1 was reduced.

The results in Tables 1 and 2 show that the analytically explicit expression of the ARL was
in excellent agreement with the approximated ARL obtained from the numerical integral
equation (NIE) method. The computational time for the numerical integral equation
method was around 21 and 23 s for the MA(2) and MA(3) processes, respectively, while
the explicit formulas required a computational time of less than one second for both.

Table 3 reports the ARL values obtained by using the explicit formulas and numerical
integral equation method. The parameters were set as µ= 2; coefficient parameters
θ1=−0.3, θ2= 0.7, θ3=−0.5 for MA(3) process; λ= 0.1; and k was varies as 5λ, 10λ,
20λ, or 50λ. The results revealed that when the constant k was large, ARL1 was reduced.

The performances of the standard and modified EWMA control charts were also
compared. These were obtained by the explicit expression when varying λ (0.05 and 0.10)
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Table 1 The ARL of explicit formulas and NIEmethod for MA(2) whenµ = 2 and k = 1 onmodified
EWMA control chart.

λ θi b δ Explicit NIE ε

0.00 500.000070 500.000063 1.249× 10−6

0.001 344.029967 344.029963 1.098× 10−6

0.003 211.859210 211.859208 9.666× 10−7

0.005 153.059939 153.059937 9.058× 10−7

0.05 θ1=−0.3 0.4528820782 0.01 90.369435 90.369435 8.348× 10−7

θ2= 0.5 0.05 21.191203 21.191203 6.871× 10−7

0.10 10.915019 10.915019 5.891× 10−7

0.50 2.615077 2.615077 2.141× 10−7

1.00 1.693016 1.693016 8.269× 10−8

0.00 500.000081 500.000068 2.634× 10−6

0.001 334.507743 334.507737 1.996× 10−6

0.003 201.308260 201.308257 1.479× 10−6

0.005 144.002910 144.002908 1.254× 10−6

0.1 θ1=−0.3 0.45905302 0.01 84.171367 84.171366 1.014× 10−6

θ2= 0.5 0.05 19.612599 19.612599 6.883× 10−7

0.10 10.146990 10.146990 5.686× 10−7

0.50 2.508587 2.508587 1.953× 10−7

1.00 1.653220 1.653220 7.259× 10−8

0.00 500.000144 500.000105 7.802× 10−6

0.001 334.491414 334.491395 5.543× 10−6

0.003 201.328130 201.328122 3.721× 10−6

0.005 144.051692 144.051688 2.934× 10−6

0.15 θ1= 0.1 0.572945976 0.01 84.258340 84.258339 2.104× 10−6

θ2= 0.3 0.05 19.742557 19.742557 1.116× 10−6

0.10 10.274933 10.274932 8.711× 10−7

0.50 2.592448 2.592448 2.893× 10−7

1.00 1.709825 1.709825 1.053× 10−7

0.00 500.000089 500.000024 1.309× 10−5

0.001 326.638522 326.638494 8.859× 10−6

0.003 192.985129 192.985118 5.595× 10−6

0.2 θ1= 0.1 0.583106542 0.005 137.017229 137.017224 4.225× 10−6

θ2= 0.3 0.01 79.531204 79.531202 2.809× 10−6

0.05 18.554510 18.554510 1.219× 10−6

0.10 9.693785 9.693784 9.119× 10−7

0.50 2.508174 2.508174 2.751× 10−7

1.00 1.677336 1.677336 1.014× 10−7

Notes.
Where λ is a smoothing parameter, θi is a process coefficient, b is UCL, δ is the shift size and ε is the relative error.

for both control charts, as reported in Tables 4 and 5. The observations were from the
MA(2) and MA(3) processes with θ1=−0.1, θ2=−0.3, and θ1= 0.7, θ2= 0.7, θ3=−0.1,
respectively, for µ= 2, k = 1, and ARL0 = 500. The last row is the relative mean index

Supharakonsakun et al. (2020), PeerJ, DOI 10.7717/peerj.10467 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.10467


Table 2 The ARL of explicit formulas and NIEmethod for MA(3) whenµ = 2 and k = 1 onmodified
EWMA control chart.

λ θi b δ Explicit NIE ε

0.00 500.000035 499.999925 2.200× 10−5

0.001 416.626140 416.226056 2.013× 10−5

0.003 312.391104 312.391049 1.777× 10−5

θ1= 0.3 0.005 249.841554 249.841513 1.634× 10−5

0.05 θ2= 0.5 1.7145985314 0.01 166.435290 166.435266 1.437× 10−5

θ3= 0.7 0.05 45.160512 45.160507 1.073× 10−5

0.10 23.579116 23.579114 9.196× 10−6

0.50 5.145761 5.145761 4.015× 10−6

1.00 2.933150 2.933150 1.841× 10−6

0.00 500.000093 499.999812 5.633× 10−5

0.001 412.884959 412.884760 4.831× 10−5

0.003 306.166728 306.166611 3.847× 10−5

θ1= 0.3 0.005 243.266257 243.266177 3.265× 10−5

0.1 θ2= 0.5 1.790036614 0.01 160.685954 160.685914 2.495× 10−5

θ3= 0.7 0.05 43.171580 43.171574 1.322× 10−5

0.10 22.563452 22.563449 1.031× 10−6

0.50 5.001808 5.001808 4.065× 10−6

1.00 2.881284 2.881284 1.833× 10−6

0.00 500.000074 500.000073 2.124× 10−6

0.001 270.407899 270.407899 1.293× 10−6

0.003 140.988209 140.988209 8.213× 10−7

θ1=−0.5 0.005 95.372295 95.372295 6.522× 10−7

0.15 θ2=−0.3 0.10145919916 0.01 52.755839 52.755839 4.928× 10−7

θ3=−0.5 0.05 11.649752 11.649752 3.004× 10−7

0.10 6.024879 6.024879 2.324× 10−7

0.50 1.671266 1.671266 5.983× 10−8

1.00 1.247145 1.247145 0.000× 10−7

0.00 500.000023 500.000021 3.506× 10−6

0.001 260.636834 260.636833 1.964× 10−6

0.003 133.218384 133.218384 1.140× 10−6

θ1=−0.5 0.005 89.517777 89.517777 8.557× 10−7

0.2 θ2=−0.3 0.1023254883 0.01 49.241334 49.241334 5.910× 10−7

θ3=−0.5 0.05 10.884204 10.884204 3.032× 10−7

0.10 5.670187 5.670187 2.293× 10−7

0.50 1.630976 1.630976 6.131× 10−8

1.00 1.234071 1.234071 0.000× 10−7

Notes.
Where λ is a smoothing parameter, θi is a process coefficient, b is UCL, δ is the shift size and ε is the relative error.
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Table 3 The ARL of explicit formulas and NIEmethod for MA(3) whenµ= 2, λ= 0.1 and k = 5λ, 10λ,
20λ, 50λ onmodified EWMA control chart.

k θi b δ Explicit NIE ε

0.00 500.000066 500.000043 4.561× 10−6

0.001 413.570468 413.570451 4.083× 10−6

0.003 307.119823 307.119812 3.491× 10−6

θ1=−0.3 0.005 244.081098 244.081090 3.137× 10−6

5λ θ2= 0.7 0.3993899124 0.01 160.988028 160.988024 2.660× 10−6

θ3=−0.5 0.05 42.170082 42.170082 1.846× 10−6

0.10 21.358100 21.358099 1.552× 10−6

0.50 4.092363 4.092363 6.280× 10−7

1.00 2.254223 2.254223 2.573× 10−7

0.00 500.000057 500.000050 1.383× 10−6

0.001 322.652564 322.652560 1.028× 10−6

0.003 188.777532 188.777531 7.591× 10−7

θ1=−0.3 0.005 133.436625 133.436624 6.465× 10−7

10λ θ2= 0.7 0.3381621032 0.01 77.030788 77.030787 5.282× 10−7

θ3=−0.5 0.05 17.693001 17.693001 3.662× 10−7

0.10 9.130173 9.130173 3.023× 10−7

0.50 2.283033 2.283033 1.007× 10−7

1.00 1.537883 1.537883 3.251× 10−8

0.00 500.000064 500.000060 7.459× 10−7

0.001 259.369506 259.369504 4.634× 10−7

0.003 132.360364 132.360364 3.136× 10−7

θ1=−0.3 0.005 88.971221 88.971221 2.615× 10−7

20λ θ2= 0.7 0.416955807 0.01 49.057165 49.057164 2.118× 10−7

θ3=−0.5 0.05 11.092459 11.092459 1.451× 10−7

0.10 5.913303 5.913303 1.167× 10−7

0.50 1.796095 1.796095 3.341× 10−8

1.00 1.339172 1.339172 7.467× 10−9

0.00 500.000067 500.000064 5.106× 10−7

0.001 218.076288 218.076288 2.735× 10−7

0.003 102.797634 102.797634 1.760× 10−7

θ1=−0.3 0.005 67.421706 67.421706 1.455× 10−7

50λ θ2= 0.7 0.763809721 0.01 36.459416 36.459416 1.174× 10−7

θ1=−0.5 0.05 8.314559 8.314559 7.938× 10−8

0.10 4.565969 4.565969 6.132× 10−8

0.50 1.588295 1.588295 1.889× 10−8

1.00 1.253079 1.253079 0.000× 10−8

Notes.
Where λ is a smoothing parameter, θi is a process coefficient, b is UCL, δ is the shift size and ε is the relative error.
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Table 4 Comparison ARL for MA(2) andMA(3) whenµ= 2, (θ1,θ2)= (−0.1,−0.3), (θ1,θ2,θ3)= (0.7, 0.7,−0.1) and k = 1 on EWMA andmod-
ified EWMA control charts using by explicit formulas.

Shift size MA(2)

λ= 0.05 λ= 0.1

(δ) EWMA
(h= 1.540947× 10−6)

Modified
(b= 0.247244692)

EWMA
(h= 9.722515× 10−2)

Modified
(b= 0.2494786708)

0.00 500.000084 500.000051 500.000053 500.000045
0.001 491.302902 322.103642 496.493518 311.471395
0.003 474.409028 188.165212 489.573629 177.579957
0.005 458.159230 132.886351 482.775802 124.203548
0.01 420.179693 76.597597 466.298614 70.932841
0.05 216.581889 17.452224 357.212201 16.095125
0.10 101.304137 8.935028 262.720549 8.288535
0.30 9.326784 3.244020 96.241953 3.076188
0.50 2.314971 2.182431 45.489101 2.100245
1.00 1.062006 1.475103 13.178794 1.446133
2.00 1.002599 1.189396 3.916046 1.179423
RMI 3.266348 0.057529 12.408089 0.000000
Shift size MA(3)

λ= 0.15 λ= 0.2
(δ) EWMA

(h= 0.26180448)
Modified
(b= 1.495885499)

EWMA
(h= 0.48260591)

Modified
(b= 1.552310613)

0.00 500.000023 500.000016 500.000059 500.000012
0.001 497.068024 389.027511 497.491338 384.835986
0.003 491.267689 269.482277 492.501520 263.538348
0.005 485.551042 206.178820 487.548819 200.434640
0.01 471.616385 129.968083 475.331533 125.474506
0.05 376.298194 33.106525 386.389784 31.756669
0.10 288.608113 17.342524 297.158447 16.662591
0.30 117.137775 6.311771 113.435186 6.117180
0.50 58.046820 4.096353 53.536263 3.995715
1.00 17.466862 2.475941 15.918420 2.438029
2.00 5.133009 1.705112 5.033017 1.691792
RMI 6.988635 0.000000 7.082964 0.000000

Notes.
Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.

(RMI ) defined as

RMI =
1
n

n∑
i=1

[
ARLδi−ARL

smallest
δi

ARLsmallest
δi

]
, (12)

where ARLδidenotes the ARLs of the EWMA andmodified EWMA control charts obtained
via the explicit formulas for each shift size and ARLsmallest

δi
denotes the smallest of the ARLs

for each shift size.
The results in Table 4 show that when λ= 0.05, the performance of the modified EWMA

control chart was better than the standard one for shift sizes of 0.001, 0.003, 0.005, 0.01,
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Table 5 Comparison ARL for MA(2) observations for PM2.5 in Thailand whenµ= 51.163, (θ1,θ2) = (−0.723,−0.380) and α0= 8.90 on EWMA
andmodified EWMA control charts using by explicit formulas.

Shift size λ= 0.05 λ= 0.1

(δ) EWMA
(h= 4.2219× 10−5)

Modified
(b= 0.02922099)

EWMA
(h= 0.041728)

Modified
(b= 0.03046693)

0.00 500.058819 500.062160 500.040155 500.049594
0.001 499.135917 372.303952 499.464575 371.313138
0.003 497.295828 246.500852 498.315774 245.210289
0.005 495.463334 184.318545 497.170110 183.121388
0.01 490.915098 113.156303 494.319608 112.261092
0.05 456.167456 28.053250 472.201199 27.791251
0.10 416.548214 14.711725 446.185321 14.575755
0.30 292.467926 5.402048 357.803981 5.358236
0.50 208.450137 3.507836 289.541426 3.483141
1.00 94.976087 2.098796 176.853408 2.088303
2.00 24.817914 1.428039 75.347531 1.424175
RMI 22.115534 0.000000 33.559477 0.000000
Shift size λ= 0.15 λ= 0.2
(δ) EWMA

(h= 0.211034)
Modified
(b= 0.03171369)

EWMA
(h= 0.305241)

Modified
(b= 0.03296119)

0.00 500.037390 500.045701 500.042301 500.068733
0.001 499.529929 370.409082 499.539394 369.591967
0.003 498.516876 244.034940 498.535421 242.964923
0.005 497.506311 182.033100 497.533895 181.042240
0.01 494.990736 111.449184 495.040738 110.710551
0.05 475.411216 27.554328 475.631720 27.339135
0.10 452.240112 14.452853 452.652967 14.341252
0.30 372.239132 5.318641 373.229915 5.282691
0.50 308.827934 3.460822 310.167476 3.440555
1.00 199.849984 2.078817 210.495325 2.070201
2.00 93.953526 1.420680 95.355765 1.417504
RMI 37.060241 0.000000 37.933433 0.000000

Notes.
Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.

0.05, 0.10 and 0.30, whereas for shift size of 0.50, 1.00, and 2.00, the small RMI of the
modified EWMA chart was 0.057529 while that the RMI of the EWMA control chart
was 3.266348. When λ= 0.1, 0.15 and 0.2, the modified EWMA control chart was more
powerful than the standard one for all cases of shift size with the zero RMI. The results
indicate that overall, the modified EWMA control chart was better than the standard one
at detecting process changes.

Application of the modified EWMA chart
PM2.5 and CO gas air pollutants are being constantly emitted, which is likely to increase
over time in the winter and summer seasons. When the levels of these air pollutants are
high (>50 µg/m3 for PM2.5 (https://en.wikipedia.org/wiki/Air_quality_guideline) and
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>10,000 ppm for CO (https://www.airqualitynow.eu/download/CITEAIR-Comparing_
Urban_Air_Quality_across_Borders.pdf)), the quality of the ambient air is unhealthy to
humans. Increasing PM2.5 concentration can lead to coughing, breathing difficulties, and
eye irritation and can be deadly to humans.

Table 5 contains a comparison of the ARLs of the modified and standard EWMA control
charts obtained via the explicit formulas. PM2.5 and CO measurements were taken every
day in January andMay, respectively, 2020 by the Pollution Control Department, Thailand.
There were small and abrupt changes in the PM2.5 and CO level data in the Din Daeng
district of Bangkok (where there is a high volume of traffic) from measurements near
a busy road (Chuersuwan et al., 2008). The PM2.5 and CO air pollution level data were
tested for autocorrelation in the observations. The Box-Jenkins technique was applied
to the two air pollution datasets to determine whether they fit forecast time series data
models. The models with the lowest Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) values were considered as optimal. Moreover, t -test statistics
proved that the two datasets were autocorrelated. The parameter values for the MA(1) and
MA(2) processes were fitted and provided 51.163 for the mean and -0.723 and -0.380 for
the coefficients, respectively. The PM2.5 level was found to be significant for the MA(2)
process.

The efficiency of themodified EWMAprocedure was also emphasized by its performance
with the CO level data for the Din Daeng district, Bangkok, Thailand. Table 6 displays
the ARLs of the modified and traditional EWMA control charts. The explicit formulas
were used for measuring the ARLs of the CO gas level. The data were collected every day
in May 2020. The analysis for an MA autocorrelated process resulted in a mean of 1.198
and −0.662, −0.479, and −0.495 for the coefficients of the MA(1), MA(2), and MA(3)
processes. The results of the PM2.5 and CO air pollutant data indicate that the modified
EWMA control chart was more effective than the standard one for detecting small shifts,
and so confirms that it is excellent for monitoring unusual observations with undesirable
values in a timely manner for all cases of exponential smoothing parameter.

The efficacy of the control charts was visualized by plotting graphs to showcase the
effective results obtained from the proposed procedure in a comparative study. Figure 1
shows that the modified EWMA control chart detected upper PM2.5 shifts at the 7th to
11th and 17th to 21st observations. On the other hand, the standard EWMA control chart
only detected shifts at the 10th to 26th observations, as illustrated in Fig. 2. Figure 3 exhibits
that the modified EWMA chart detected upper CO level shifts at the 12th, 25th to 26th,
and 30th to 31st observations. On the contrary, the original EWMA chart only detected
upper CO level shifts at the 30th to 31st observations, as shown in Fig. 4.

The modified EWMA control chart detected the upper change in PM2.5 level at the
7th observation (i.e., the 7th January), which marked the beginning of extreme changes
in PM2.5 emissions at the upper level. Meanwhile, the standard EWMA control chart
detected the change at the 10th observation (i.e., the 10th January). Although the CO gas
level emissions were low and harmless to the human body, the performance of the modified
EWMA control chart for detecting the change in CO gas emissions was exemplary.
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Table 6 Comparison ARL for MA(3) observations for CO gas in Thailand whenµ = 1.198, (θ1,θ2,θ3)= (−0.662,−0.479,−0.495) and α0 =
0.1226 on EWMA andmodified EWMA control charts using by explicit formulas.

Shift size λ= 0.05 λ= 0.1

(δ) EWMA
(h= 2.15351× 10−10)

Modified
(b= 5.6968× 10−10)

EWMA
(h= 4.97638× 10−9)

Modified
(b= 5.00361× 10−10)

0.00 500.018859 500.018440 500.048462 500.049041
0.001 410.684518 12.373073 418.900893 11.525787
0.003 279.691311 4.269468 296.482942 4.020852
0.005 192.837824 2.664904 212.155442 2.537072
0.01 80.144470 1.544761 96.189807 1.501932
0.05 1.406011 1.004560 1.824931 1.004121
0.10 1.007555 1.000146 1.022682 1.000130
0.30 1.000009 1.000000 1.000051 1.000000
0.50 1.000001 1.000000 1.000005 1.000000
1.00 1.000000 1.000000 1.000000 1.000000
2.00 1.000000 1.000000 1.000000 1.000000
RMI 21.935199 0.000000 25.458726 0.000000
Shift size λ= 0.15 λ= 0.2
(δ) EWMA

(h= 8.7735× 10−6)
Modified
(b= 4.45335× 10−10)

EWMA
(h= 9.2341× 10−4)

Modified
(b= 4.009478× 10−10)

0.00 500.061271 500.067195 500.027847 500.029982
0.001 443.510830 10.806701 459.400446 10.190344
0.003 350.844729 3.810433 389.296622 3.630480
0.005 279.559120 2.428984 331.547146 2.336624
0.01 163.232107 1.465789 226.523241 1.434960
0.05 7.394604 1.003757 23.667633 1.003452
0.10 1.543142 1.000116 4.865620 1.000105
0.30 1.007718 1.000000 1.171529 1.000000
0.50 1.001440 1.000000 1.048075 1.000000
1.00 1.000237 1.000000 1.011600 1.000000
2.00 1.000061 1.000000 1.003766 1.000000
RMI 36.248876 0.000000 47.475014 0.000000

Notes.
Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.

DISCUSSION
The findings reveal that the modified EWMA control chart performed well for the case
of smoothing parameter is greater than or equal to 0.1 due to the RMI of the modified
EWMA chart being less than the RMI of the EWMA chart.

When applied to real data, the modified EWMA control chart performed excellently for
detecting shifts in the PM2.5 and CO pollution levels in all cases of smoothing parameter
value. The smoothing parameter value of 0.1 is recommended in applications using the
modified EWMA control chart. It is a good choice as it is easier to employ and performed
better than the original EWMA control chart in all situations tested.
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Figure 1 The process detecting of PM2.5 level observations of modified EWMA control chart.
Full-size DOI: 10.7717/peerj.10467/fig-1

Figure 2 The process detecting of PM2.5 level observations of the EWMA control chart.
Full-size DOI: 10.7717/peerj.10467/fig-2

CONCLUSIONS
The exact ARL was provided by deriving explicit formulas that saved significantly on
computational time. Therefore, it is an excellent alternative for evaluating the ARL as a
measure of the effectiveness of the modified EWMA control chart. The technique showed
good aptitude in monitoring and detecting small process shifts, as illustrated by changes
in PM2.5 and CO gas levels examples comprising autocorrelated observations fitted to
MA(2) and MA(3) models with exponential white noise. The empirical ARL shows that a
smoothing parameter value of 0.1 to 0.2 supported the modified EWMA control chart far
better than the EWMA control chart for all cases. Therefore, determination of the correct
smoothing parameter of the chart should not be disregarded.
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Figure 3 The process detecting of CO gas level observations of the modified EWMA control chart.
Full-size DOI: 10.7717/peerj.10467/fig-3

Figure 4 The process detecting of CO gas level observations of the EWMA control chart.
Full-size DOI: 10.7717/peerj.10467/fig-4

APPENDIX A1: DERIVATION ARL FOR MA(Q) PROCESS
According to an MA(q) process in the Eq. (9) as follows:

Xt =µ+εt −θ1εt−1−θ2εt−2−···−θqεt−q. (9)

Therefore, the modified EWMA statistic for an MA(q) model can be written as

Zt = (1−λ)Zt−1−Xt−1+(λ+k)εt +(λ+k)µ−(λθ1+θ1k)εt−1
−(λθ2+θ2k)εt−2−···−

(
λθq+θqk

)
εt−q, (13)

where t = 1,2,3,. . . , the initial value in the process mean Z0= u, X0= v , ε0= s, and we use
one side of the control limit (i.e., LCL = 0 and UCL = b). Thus, we can obtain

Z1= (1−λ)u−v+(λ+k)ε1+(λ+k)µ−(λθ1+θ1k)s−···−
(
λθq+θqk

)
ε1−q. (14)
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If X1 causes the out-of-control state for Z1, then
(1− λ)u− v + (λ+k)ε1 + (λ+k)µ− (λθ1+θ1k)s− ··· −

(
λθq+θqk

)
ε1−q > b

or (1−λ)u−v+(λ+k)ε1+(λ+k)µ−(λθ1+θ1k)s−···−
(
λθq+θqk

)
ε1−q< 0.

If X1 causes the in-control state for Z1, then 0< (1−λ)u−v+ (λ+k)ε1+ (λ+k)µ−
(λθ1+θ1k)s−···−

(
λθq+θqk

)
εt−q< b.

This can be written in the form
−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k < ε1

<
b−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k .

The probability that ε1 satisfies the bounds mentioned above for probability distribution
function εt is given as follows:

P
(
−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k <ε1

<
b−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k

)
=
∫ b−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k
−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)εt−q

λ+k

f (y)dy .

According to the method of Champ & Rigdon (1991), let L(u) denote the ARL on a
modified EWMA chart for an MA(q) process. We can write the integral equation in the
form

L(u)= 1+
∫ b−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)ε1−q

λ+k

−(1−λ)u+v−(λ+k)µ+(λθ1+θ1k)s+···+(λθq+θqk)ε1−q
λ+k

L

[
(1−λ)u−v+(λ+k)y+(λ+k)µ−
(λθ1+θ1k)s−···−

(
λθq+θqk

)
εt−q

]
f (y)dy. (15)

By changing the integral variable:
g = (1− λ)u− v + (λ+k)y + (λ+k)µ− (λθ1+θ1k)s− (λθ2+θ2k)εt−2− ··· −(
λθq+θqk

)
εt−q,

we obtain

L(u)= 1+
1

λ+k

∫ b

0
L(g )f(

g− (1−λ)u+v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+
(
λθq+θqk

)
εt−q

λ+k
−µ

)
dg .

(16)

In this study, we define εt is a white noise process and assumed that it is exponentially
distributed with parameter α. Therefore, the L(u) is a Fredholm integral equation of the
second kind as follow:

L(u)= 1+
1

λ+k

∫ b

0
L(g )

1
α
e−

g−(1−λ)u+v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q
α(λ+k) +

µ
α dg (17)

which becomes

L(u)= 1+
e

(1−λ)u−v−(λθ1+θ1k)s−(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q
α(λ+k) +

µ
α

α(λ+k)

∫ b

0
L(g ) ·e−

g
α(λ+k) dg . (18)

Supharakonsakun et al. (2020), PeerJ, DOI 10.7717/peerj.10467 15/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.10467


Suppose that

C(u)= e
(1−λ)u−v−(λθ1+θ1k)s−(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q

α(λ+k) +
µ
α , 0≤ u≤ b

and

D=
∫ b

0
L(g ) ·e−

g
α(λ+k) dg , whereDisaconstant .

Thus, we can obtain

L(u)= 1+
C(u)

α(λ+k)
D. (19)

The ARL for an MA(q) process on a modified EWMA control chart is obtained by
deriving a Fredholm integral equation of the second kind as follows:

L(u)= 1−
λe

(1−λ)u
α0(λ+k)

[
e−

b
α0(λ+k) −1

]
λe
−µ
α0 ·e

v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q
α0(λ+k) +e−

λb
α0(λ+k) −1

, (10)

with in-control process parameter α0 and out-of-control process parameter α1>α0.

APPENDIX A2: EXISTENCE AND UNIQUENESS OF ARLS
The Banach’s Fixed-point Theorem is used to show the exists and a uniqueness of the
solution for ARL using the integral equation for the explicit formulas.

Let M 6=∅ be a complete metric space and d :M×M→R.d is a distance function on
M such that the following axioms hold.

1. d(x,y)≥ 0 for all x,y ∈M
2. d(x,y)= 0 if and only if x = y
3. d(x,y)= d(y,x)↔ x = y for all x,y ∈M
4. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈M .
Since (M ,d) is a complete metric space, it denoted the space of all continuous function

on [0,b] with the norm ‖·‖∞= sup
u∈I
|L(u)| and every Cauchy’s sequence Lnn≥0 for a point

of Mconverges to a point L0 ∈ [0,b]. In this case, let T be an operation in the class of all
continuous functions defined by,

T (L(u))= 1+
1

λ+k

∫ b

0
L(g )

1
α
e−

g−(1−λ)u+v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q
α(λ+k) +

µ
α dg . (20)

By Banach’s Fixed-point Theorem, if an operator T is a contraction, then the fixed-
point equation T (L(u))= L(u) has a unique solution. The Eq. (20) exists and has a unique
solution according to the following the theorem.

Theorem 1. (Banach’s Fixed-point Theorem)
Let (M ,d) be a complete metric space and T :M→M be a contraction mapping with

contraction constant c ∈ [0,1) such that ‖T (L1)−T (L2)‖≤ c‖L1−L2‖ for all L1,L2 ∈M .
Subsequently, there exists a unique L(.) ∈ X such that T (L(u))= L(u) (Sofonea, Han &
Shillor, 2006).
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Proof . The inequality
‖T (L1)−T (L2)‖≤ c‖L1−L2‖for all L1,L2 ∈ [0,b] with 0≤ c < 1.
Consider Eq. (14),
‖T (L1)−T (L2)‖ = sup

u∈[0,b]
|L(u)|

= sup
u∈[0,b]

∣∣∣(L1(g )−L2(g )) 1
λ+k

∫ b
0 L(g )

1
α

e−
g−(1−λ)u+v+(λθ1+θ1k)s+(λθ2+θ2k)εt−2+···+(λθq+θqk)εt−q

α(λ+k) +
µ
α dg

∣∣∣∣
≤ sup

u∈[0,b]

∣∣∣∣‖L1−L2‖∞−α(λ+k)α(λ+k) e
(1−λ)u−v−(λθ1+θ1k)s−(λθ2+θ2k)εt−2−···−(λθq+θqk)εt−q

α(λ+k) +
µ
α

[
e
−b

α(λ+k) −1
]∣∣∣∣

=‖L1−L2‖∞
∣∣∣1−e −b

α(λ+k)

∣∣∣ sup
u∈[0,b]

∣∣∣∣e (1−λ)u−v−(λθ1+θ1k)s−(λθ2+θ2k)εt−2−···−(λθq+θqk)εt−q
α(λ+k) +

µ
α

∣∣∣∣
= c‖L1−L2‖∞,

where c =
∣∣∣1−e −b

α(λ+k)

∣∣∣ sup
u∈[0,b]

∣∣∣∣e (1−λ)u−v−(λθ1+θ1k)s−(λθ2+θ2k)εt−2−···−(λθq+θqk)εt−q
α(λ+k) +

µ
α

∣∣∣∣; 0≤ c < 1 and c

is a positive constant.
By Theorem 1, Banach’s Fixed-point Theorem guarantees the existence and uniqueness

of the solution for the ARL.
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