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Background: Mouse urodynamic tests are fundamental to understanding normal lower

urinary tract (LUT) function. These experiments also contribute to our understanding of

neurological dysfunction, pathophysiological processes, and potential mechanisms of

therapy.

Objectives:Systematic assessment of published evidence on urodynamics, advantages

and limitations of different urodynamic measurements in mice, and consideration of

potential implications for the clinical field.

Methods: A search using specific search-terms for urodynamic studies and mice was

conducted on PubMed (from inception to 1 July 2016).

Results: We identified 55 studies examining or describing mouse neuro-urodynamics.

We summarize reported features of mouse urodynamic function deriving from

frequency-volume chart (FVC) measurements, voiding spot assays, filling cystometry,

and pressure-flow studies. Similarly, an influence of the diurnal cycle on voiding is

observed in mice and should be considered when interpreting rodent urodynamic

studies, especially FVC measurements and voiding spot assays. Anaesthesia, restraint

conditions, or filling rate influencemouse neuro-urodynamics. Mouse cystometric studies

have observed intravesical pressure oscillations that accompany urine flow, attributed to

high frequency opening and closing of the urethra. This characterization is not seen in

other species, except rats. In contrast to human clinical urodynamics, the terminology

of these examinations has not been standardized although many rodent urodynamic

studies have been described.

Conclusion: Mice have many anatomical and physiological similarities to humans

and they are generally cost effective, and allow investigation of the effects of aging

because of their short lifespan. There are some differences between mouse and human

urodynamics. These must be considered when interpreting LUT function in mice, and

translational value of murine disease models.

Keywords: mouse model, lower urinary tract dysfunction, cystometry, electromyography of the external urethral

sphincter, frequency-volume chart
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BACKGROUND

The neuro-urodynamic control of the lower urinary tract (LUT)
requires precise choreography between the central and peripheral
nervous systems. These neural mechanisms are complex and
impairment are associated with voiding and storage dysfunction;
for example, overactive bladder (OAB), urinary incontinence or
detrusor underactivity. In clinical practice, human urodynamic
studies evaluate the function of the LUT and are useful in the
assessment and diagnosis of patients with a broad range of lower
urinary tract symptoms (LUTS) (Drake et al., 2016).

A mammalian model is fundamental to understanding
LUT function, and these experiments also contribute to our
understanding of pathophysiological processes. Rodents have
useful anatomical and physiological similarities to humans, and
are generally cost effective. Their short lifespan (about 2 years)
means it is feasible to evaluate the effects of aging. Rodent
urodynamic studies, such as filling cystometry, pressure-flow
studies, or neural activity recording, provide crucial information
to enable mechanistic insights into the basis of neural control.
In the clinical field, the terminology and practice of urodynamic
studies have been developed by the International Continence
Society (ICS), to standardize such measurements. Given the
importance of animal models, a variety of techniques have
been adopted to measure pressures in the rodent LUT and
proposals made to standardize terminology (Fry et al., 2010;
Andersson et al., 2011). Rats are a useful animal model
for neuro-urodynamic studies in part because their bladders
have been well-characterized by both in vitro and in vivo
experiments.

On the other hand, the urodynamic properties of the mouse
LUT have not been characterized as well as those of other
rodents. This is possibly because mice are more difficult to handle
and the in vitro/in vivo properties are more poorly understood
(Uvin et al., 2012). However, the ability to generate genetically-
modified mice can provide valuable mechanistic insights and
therefore it is appropriate to consider mouse urodynamics in
the context of current developments. The present review covers
recent knowledge of mouse urodynamics and considers potential
implications in the clinical field. In addition the limitations of
urodynamic measurements in mice are discussed.

NORMAL MICTURITION CYCLE IN MICE

In neonatal mice, maternal parenting exploits a perineal-to-
bladder reflex to trigger voiding. The adult form of voiding
triggered by bladder distension does not become functional
until several weeks after birth. As the adult reflex appears,
the neonatal perineal-to-bladder reflex becomes weaker and
eventually disappears (de Groat et al., 1998).

Abbreviations: BOO, bladder outlet obstruction; BP, basal pressure; BPH, benign

prostatic hyperplasia; BPS, bladder pain syndrome, DSD, detrusor sphincter

dyssynergia; EMG, Electromyography; EUS, the external urethral sphincter; FVC,

frequency-volume chart; LUTS, lower urinary tract symptom; NVCs, non-voiding

contractions; OAB, overactive bladder; PAG, periaqueductal gray; PMC, pons

micturition center; SCI, Spinal cord injury; TP, threshold pressure; VSA, voiding

spot assays.

Rodents pass urine with a nocturnal predominance in voiding
frequency (Ito et al., 2015; Yoshiyama et al., 2015). Figure 1 is
a 24-h trace of frequency-volume chart (FVC) measurements
of male mice at the age of 10 weeks and clearly demonstrates
that there are notable differences in the voiding behavior and
water intake between daytime and night-time. These FVC
measurements indicate that young mice (10-weeks old) of both
genders usually urinate about 10 times per day, and urination
occurs mainly in the dark cycle due, for this nocturnal animal
(Aizawa et al., 2013).

Mice are highly social animals and adapt to their
surroundings. It is important for precise assessment of mouse
voiding behavior to allow for adequate adaptation periods before
experiments once animals are moved into a new environment
to minimize stress and anxiety. In addition, mice of both
sexes use urinary scent marks for territorial communication.
Urinary scent incorporates information about individuals (such
as species, sex, and individual identity) as well as metabolic
information (such as social dominance, and reproductive and
health status) (Arakawa et al., 2008; Hou et al., 2016). Voids
used for territorial marking seem to be similar to non-territorial
voids of mice, and there are no clear criteria to distinguish them
in vivo.

URODYNAMIC TECHNIQUES AVAILABLE
FOR MICE

Given the potential translational relevance of mouse
urodynamics, we describe the published evidence in
sequence akin to the progressive approach taken in clinical
urodynamics (Table 1). Mouse urodynamic function is
mainly determined by FVC measurements, voiding spot
assays, filling cystometry, and pressure-flow studies. In
this section, we summarize the literature for mouse
urodynamics, and highlight uncertainties when interpreting
their results.

Non-invasive Tests (Table 2)
Non-invasive tests may evoke less physical and psycological
stress than invasive testing, and allow additional experimental
observations to be made. Consequently, it is feasible to undertake
longitudinal monitoring of processes like aging or disease
progression.

Metabolic Cage–Frequency-Volume Chart

Measurements
Housing mice in metabolic cages enables the measurement of
voiding behavior by quantifying the volume of urine drops
of freely moving mice (Sutherland et al., 1997; Chen et al.,
2005; Aizawa et al., 2013; Yoshiyama et al., 2015). Such FVC
measurements using metabolic cages generally allow calculation
of voided volume and voiding time, and previous studies have
recorded voiding behavior for 14 h (overnight) (Sutherland et al.,
1997), 24 h (Aizawa et al., 2013; Yoshiyama et al., 2015), and 48 h
(Chen et al., 2005).

Voided volume and bladder capacity are much smaller in mice
than in other rodents, so metabolic cages for FVC recording

Frontiers in Physiology | www.frontiersin.org 2 February 2017 | Volume 8 | Article 49

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Ito et al. A Review of Mouse Neuro-Urodynamics

FIGURE 1 | A 24-h trace of a frequency-volume charts (FVC) (upper) and water intake (lower) of a male mouse at the age of 10 weeks. Each animal was

separately placed in a conscious condition, without any restraint, in a metabolic cage that allows precise measurement of voiding episodes, voided volume, drinking

episodes, and amounts (001–006 metMCM/TOA-UFabolic cage, Mitsubishi Chemical Medience, Tokyo, Japan). After 24-h adaptation, voided volume, voiding

frequency, and water intake volume were recorded using a PowerLab® data acquisition system continuously for 24 h starting at 9:00 pm. The mice had free access to

water and food during recording.

TABLE 1 | Summary of clinical neuro-urodynamic tests for human and relevant mouse neuro-urodynamic tests.

Tests Neuro urodynamics

Human clinical technique Mouse technique

Non-invasive Symptom score Various questionnaires Not applicable

such as

International Prostate Symptom Score (IPSS)

QOL question

Bladder diary Micturition chart Metabolic cage

Frequency volume chart (FVC) Frequency volume chart (FVC)

Bladder diary Voiding Spot Assay (VSA)

Urodynamic tests Urinary flow rate Not applicable

Post-void urine (PVR) analysis

Other tests Near intra-red spectroscopy (NIRS) Phenotyping (Distended bladder, Perineal for staining)

Invasive Urodynamic tests Filling cystometry (storage phase) Filling cystometry (storage phase)

Pressure-flow study (voiding phase) Pressure-flow study (voiding phase)

Electrophysiology

Future Special tests Functional magnetic resonance imaging (fMRI) Functional magnetic resonance imaging (fMRI)

Positron emission tomography (PET) Positron emission tomography (PET)

Electrophysiology

might be less accurate to measure the precise voided volume,
because there is a potential problem with evaporation from small
urine deposits.

In the FVC measurements, it is important for precise
recording of voided volume to remove feces prior to entry
into the measuring system. A novel metabolic cage, with a
specially-designed net to separate urine from feces, has been
recently described (Aizawa et al., 2013; Yoshiyama et al., 2015).
This enables recording of precise voided volume, average flow
rate, voiding frequency, and water intake of conscious mice
continuously for more than 24 h.

As described above, an influence of the diurnal cycle
on voiding is observed in mice and should be considered
when interpreting rodent urodynamic studies, especially FVC
measurements and voiding spot assays (VSA, below), and was
achieved in the above papers. To measure precise mouse urinary

storage function, mice need a prior adaptation period of more
than 24 h.

Voiding Spot Assay (VSA)
VSA is a widely used method to measure the FVC for free
moving and awake mice (Birder et al., 2002; Cornelissen et al.,
2008; Sugino et al., 2008; Boudes et al., 2011; Yu et al., 2014;
Bjorling et al., 2015) and precise measurement of the voiding
behavior of mice using a metabolic cage has space and cost
implications. The VSA does not allow calculation of urine flow
rate, but is useful to measure the pattern and volume of voiding.
Voiding behavior is analyzed by placing the animal above or on
a piece of filter paper (Jusuf et al., 2001). However, some have
indicated that it is difficult to draw inferences about urodynamic
parameters from voiding spots, at least in young healthy mice
(Bjorling et al., 2015). In fact, some previous VSA studies in mice
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TABLE 2 | Summary of non-invasive tests for mouse urodynamic studies.

Species Sex Weeks Body weight (g) Voided volume

per micturition (µl)

Day vs. night Reference

Metabolic cage C57BL/6J m 5 16.5 ± 0.3 104.3 ± 7.6 24 h Aizawa et al., 2013

9 22.0 ± 0.3 137.1 ± 5.4

13 24.3 ± 0.3 177.8 ± 8.6

17 25.6 ± 0.2 251.8 ± 15.4

21 26.9 ± 0.3 267.4 ± 22.5

WT (C57BL/6Cr) m 8–12 22.1 ± 0.3 about 380 24 h Yoshiyama et al., 2015

WT (129Sv and C57BL/6) f NA 15–23 490 ± 130 14 h (overnight) Sutherland et al., 1997

WT (129Sv and C57BL/6J) f 12 24.3 ± 0.9 160 ± 30 48 h Chen et al., 2005

Voiding spot assay 129S1/SvImJ m 10–12 27.1 ± 0.8 40.1 4 h (9 a.m.–2 p.m.) Bjorling et al., 2015

f 10–12 21.8 ± 0.8 103.7

C57BL/6J m 10–12 27.6 ± 0.5 86.7

f 10–12 19.2 ± 0.2 68.8

NOD/ShiLtJ m 10–12 29.1 ± 1.3 40

f 10–12 24.5 ± 0.4 51.9

CAST/EiJ m 10–12 16.6 ± 0.3 3.8

f 10–12 13.4 ± 0.6 15.9

WT (C57BL6) m 9–17 25.7 ± 1.1 NA 1 h Birder et al., 2002

C57BL/6 m NA 20–30 NA 1 h (8–11 a.m.) Cornelissen et al., 2008

f NA 20–30 NA

Balb/CAN m NA 20–30 NA

f NA 20–30 NA

A/J m NA 20–30 NA

f NA 20–30 NA

B6:129 m NA 20–30 NA

f NA 20–30 NA

129 m NA 20–30 NA

f NA 20–30 NA

WT (C57BL/6 and DBA/2) f 7–8 27.6 ± 2.25 430 ± 80 overnight 8 h Jusuf et al., 2001

C57BL/6 m 10–12 unknown 108.3 ± 14.1 3 h (unknown) Boudes et al., 2011

f, female; m, male; NA, not assessed; WT, wild type.

did not attempt to calculate the voided volume, but only the
number of individual spots (Birder et al., 2002; Cornelissen et al.,
2008).

The test period and timing in the light-dark cycle are crucial
factors in voiding spot assays and FVC measurements, and
most papers provide information about when the tests were
done (Jusuf et al., 2001; Cornelissen et al., 2008; Yu et al.,
2014; Bjorling et al., 2015). Thus, VSAs have been performed
in the light phase of the cycle [for 1 h (Cornelissen et al., 2008)
and 4 h (Bjorling et al., 2015)], in the overnight period [for
8 h (Jusuf et al., 2001)], but the diurnal phase was not stated
in some [for 1 h (Birder et al., 2002) and 3 h (Boudes et al.,
2011)].

A modified VSA system, called the automated voided stain
on paper (aVSOP) method, has been developed to allow more
detailed assessment over an extended time-frame (Negoro et al.,
2012). This system has a motor to roll paper under the cage and
collect urine stains. This can record accurately the number of
voids, voiding frequency, and voided volume for several days.

Invasive Tests
Urodynamic studies in mice include filling cystometry and
pressure-flow studies for the investigation of storage and voiding
phases, respectively. Although many rodent urodynamic studies
have been described, the terminology of these examinations
has not been standardized. An absence of reliable terminology
risks misinterpretation of the findings and also impedes effective
cross referencing between studies and establishment of reference
ranges for normality. Therefore, it is important to establish
the terminology of rodent urodynamic studies. Only one paper
provides a proposed standardization of terminology (Andersson
et al., 2011), and this is a suitable reference point for research at
the current time.

Testing Method
Experimental techniques are well-developed and described in
several papers (Fry et al., 2010; Andersson et al., 2011).
After induction of anesthesia, a catheter is implanted in the
bladder dome and tunneled subcutaneously to the abdominal

Frontiers in Physiology | www.frontiersin.org 4 February 2017 | Volume 8 | Article 49

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Ito et al. A Review of Mouse Neuro-Urodynamics

skin incision or head position. The bladder is filled at a
controlled rate, and cystometric parameters can be measured
via the implanted catheter under non-restrained, restrained, or
anesthetized conditions (Andersson et al., 2011; Uvin et al.,
2012). In contrast to human clinical urodynamics, where the
detrusor pressure is calculated as intravesical pressure minus
abdominal pressure, measurement of abdominal pressure is
seldom undertaken in mouse urodynamics. One report (Smith
et al., 2012) didmeasure abdominal pressure to calculate detrusor
pressure, but in others intravesical pressure is recorded alone
(Sutherland et al., 1997; Lemack et al., 2000; Pandita et al., 2000;
Jusuf et al., 2001; Birder et al., 2002; Schröder et al., 2003, 2004;
Igawa et al., 2004; Chen et al., 2005; Cornelissen et al., 2008;
Beamon et al., 2009; Smith and Kuchel, 2010; Soler et al., 2010;
Aizawa et al., 2013; Bjorling et al., 2015; Yoshiyama et al., 2015;
Franken et al., 2016).

Conscious mouse urodynamic studies have been undertaken
under ambulatory or static conditions. Although ambulatory
methods may be more physiological catheter problems are
common, such as twisting and/or dislodging when using
non-restrained mice. However, there are some technical tips to
prevent catheter problems, such as securing the catheter to the
skin at the point of its external exit, or between the skin and
the bladder. Swiveling supports may help to minimize twisting
of the tubing. On the other hand, the free-moving status often
generates noise and artifacts in the cystometric tracing which can
affect accurate analysis. Indeed a previous report indicated that it
is difficult to obtain precise voiding volume reliably from awake
mice cystometry (Smith and Kuchel, 2010).

Catheters implanted into the bladder in mouse urodynamics
generally employ one of two diameters, PE 10 (internal/outer
diameter is 0.28/0.61 mm) or PE 50 (internal/outer diameter is
0.58/0.97mm) tubing. PE 50 is most commonly used for bladder
cannulation in mouse urodynamics (Birder et al., 2002; Igawa
et al., 2004; Cornelissen et al., 2008; Beamon et al., 2009; Smith
and Kuchel, 2010; Boudes et al., 2011; Comiter and Phull, 2012;
Smith et al., 2012; Aizawa et al., 2013; Bjorling et al., 2015;
Yoshiyama et al., 2015; Franken et al., 2016) and some studies
used PE10 for the same purpose (Sutherland et al., 1997; Pandita
et al., 2000; Schröder et al., 2003, 2004; Soler et al., 2010; Mingin
et al., 2015). PE 10 is thinner and softer than PE 50, which
might decrease the physical stress and inflammation caused
by catheter implantation in the bladder. However, the small
diameter may increase the risk of artifacts during measurements,
and potentially failure to measure pressure reliably (Smith and
Kuchel, 2010). Although there is a need to compare the merits
and disadvantages of the catheter options, the authors were
unable to identify any published comparison.

The implantation of a catheter into the bladder dome may
cause infection, inflammation or edema in the mucosa and
submucosa area, which might influence the cystometric results.
In mouse urodynamic studies, catheterization into the bladder
is generally done shortly before cystometry. Previous reports,
however, show variation in the time interval between catheter
implantation and cystometry; 0 day (Sutherland et al., 1997;
Lemack et al., 2000; Jusuf et al., 2001; Streng et al., 2002a,b;
Boudes et al., 2011; Comiter and Phull, 2012; Smith et al., 2012;

Yu et al., 2014; Bjorling et al., 2015; Yoshiyama et al., 2015;
Franken et al., 2016), 2 days (Schröder et al., 2003, 2004; Chen
et al., 2005; Smith and Kuchel, 2010), 3 days (Pandita et al.,
2000; Igawa et al., 2004; Soler et al., 2010; Mingin et al., 2015),
4 days (Aizawa et al., 2013), and 6–8 days (Cornelissen et al.,
2008). A longer period after catheter implantationmight decrease
the post-surgical changes of the bladder; on the other hand, it
might increase problems from mucosal regeneration, giving rise
to obstruction of the catheter.

Conscious but restrained conditions allow accurate
measurements without movement artifacts. In contrast to
those in rats, few studies are described in mice and these have
been mainly in spinal cord injury models (DePaul et al., 2015;
Kadekawa et al., 2016). However, restraint appears to reduce the
voided volumes to less than 50 ul (DePaul et al., 2015; Kadekawa
et al., 2016). Thus, like anesthesia, restrained conditions might
influence urodynamic function (see below).

Electromyography of the external urethral sphincter
(Figure 2) can be combined with various techniques can be used
for conscious restraint (Kadekawa et al., 2016) and decerebration
(Sadananda et al., 2011, 2013).

Filling Cystometry (Storage Phase)

Bladder
Parameters assessed during filling cystometry include bladder
capacity, bladder compliance, the number of non-voiding
contractions (NVCs), basal pressure (BP) at the initiation of
filling and threshold pressure (TP) at onset of micturition. With
mouse filling cystometry, the BP and TP are usually around 5—
10 cmH2O (Pandita et al., 2000; Schröder et al., 2003, 2004; Igawa
et al., 2004; Boudes et al., 2011; Aizawa et al., 2013) and 10–40
cmH2O (Pandita et al., 2000; Igawa et al., 2004; Schröder et al.,
2004; Smith and Kuchel, 2010; Soler et al., 2010; Aizawa et al.,
2013), respectively.

Filling rates used vary widely, from 10 (Cornelissen et al.,
2008; Aizawa et al., 2013; Mingin et al., 2015) to 100 (Sutherland
et al., 1997; Lemack et al., 2000; Jusuf et al., 2001) µl/min. With
C57BL6 mice, filling rate in ambulatory filling cystometry seems
to be most appropriate at 10 µl/min (Cornelissen et al., 2008;
Aizawa et al., 2013; Mingin et al., 2015), because voided volumes
are approximately 140–180 µl; similar to that in ambulatory
frequency volume charts (Aizawa et al., 2013) (Table 3). The
filling rate will affect LUT function. In urodynamic studies,
ideally this should be close to the natural filling rate determined
by the rate of urine production. However, this can be difficult
to do in practize and will lead to long durations between voids.
For example, young mice usually urinate around 10 times per
day (Aizawa et al., 2013). Natural filling also makes it difficult to
calculate the precise bladder infusion volume and is a significant
limitation at this small bladder capacity. Thus, artificial filling
is usually more practical and advantageous for maximizing
urodynamic observations, notwithstanding that mice generally
void with longer intervals.

Of the range of available anesthesic agents, urethane is usually
used in mouse cystometry (Sutherland et al., 1997; Jusuf et al.,
2001; Birder et al., 2002; Smith and Kuchel, 2010; Boudes
et al., 2011; Smith et al., 2012; Bjorling et al., 2015). Focusing
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FIGURE 2 | Cystometry and EMG recordings from spinal cord intact (A) and T8–T9 spinal cord injury (SCI; B) mice 2 weeks post-injury with the brain rostral

to the supracollicular level sectioned from the brainstem and removed. Transperineal recording of the external urethral sphincter is combined with conventional

filling cystometry. (A-1): This shows the guarding reflex that prevents leaking as bladder pressure approaches threshold. This is followed by increased phasic

(bursting) and decreased tonic activity during which voiding occurs and pressure returns to baseline. (B): Following transection and the development of

detrusor-sphincter-dyssynergia (DSD; B-1), when the bladder contracts, tonic sphincter activity increases resulting in non-voiding contractions and eventually

overflow incontinence.

on C57BL6 mice, Table 3 shows that the voided volume of
conscious mice is 140–146 µl (Cornelissen et al., 2008; Aizawa
et al., 2013), and those anesthetized with urethane is 32–90
µl (Smith and Kuchel, 2010; Boudes et al., 2011; Bjorling
et al., 2015; Franken et al., 2016). These findings indicate that
anesthesia might reduce the voided volume of mice during
filling cystometry, although other experimental manipulations
may confound this interpretation: For example anesthesia allows
a stable trace to be recorded without artifact from physical
activity (Smith and Kuchel, 2010; Boudes et al., 2011; Smith
et al., 2012; Boudes et al., 2013; Yu et al., 2014; Bjorling et al.,
2015; Franken et al., 2016). However, the effects of anesthetic
agents on urodynamic parameters cannot be avoided. Urethane
was reported to influence the voiding function of rodents less
than other agents (Matsuura and Downie, 2000). However,
some studies indicated that any form of anesthesia can affect
the cystometric patterns of mice (Smith and Kuchel, 2010)
in a similar way to rats (Yoshiyama et al., 1993a,b; Aizawa
et al., 2015b). Some previous studies using rats indicated that
urethane anesthesia can suppress the bladder micturition reflex
and NVCs (Cheng and de Groat, 2004). Another study using a
decerebrated rat model suggested that urethral activity, which
is essential for efficient voiding, is more sensitive to the dose
dependent suppressive effect of urethane than afferent or efferent
mechanisms controlling the bladder. Furthermore, the afferent
limb had a higher sensitivity to urethane than the efferent limb
in the micturition reflex pathway. Because effects of urethane
persisted after removal of the forebrain, they were presumed to be

mediated by actions on the brain stem, spinal cord, or peripheral
nervous system (Yoshiyama et al., 2013).

NVC activity has been observed in both awake and
anesthetized mice (Pandita et al., 2000; Birder et al., 2002;
Cornelissen et al., 2008; Comiter and Phull, 2012; Smith et al.,
2012; Mingin et al., 2015; Yoshiyama et al., 2015). It has been
proposed that this activity contributes to the volume sensory
process, via activation of mechanoreceptors during filling (Lagou
et al., 2006b; Streng et al., 2006). NVCs are described as phasic
increases of intravesical pressure during filling cystometry, not
associated with passage of urine. For precise confirmation of
NVC, it is necessary to confirm there is no urine expulsion
from the urethra when NVC activity is documented in the
bladder pressure recordings. Many previous reports have used
a minimum amplitude for NVCs of 5–10 mmHg (Birder
et al., 2002; Cornelissen et al., 2008; Comiter and Phull, 2012;
Yoshiyama et al., 2015; Kadekawa et al., 2016). However, there
are no reliable and well-acceptable diagnostic criteria to define
NVCs, which leads to variation of NVC parameters between
studies (Pandita et al., 2000; Birder et al., 2002; Cornelissen et al.,
2008; Comiter and Phull, 2012; Smith et al., 2012; Mingin et al.,
2015; Yoshiyama et al., 2015; Kadekawa et al., 2016).

Outlet
The functional examination of the urethral sphincter is difficult
in mouse urodynamic studies. Electromyography (EMG) of
the external urethral sphincter (EUS) is technically challenging
because of their small size (Andersson et al., 2011). Therefore,
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TABLE 3 | Summary of invasive tests for mouse urodynamic studies.

Filling

rate

(µl/min)

Species Sex Weeks Body

weight

(g)

Urodynamic parameters

Voided

volume per

micturition

(µl)

Basal

pressure

Threshold

pressure

Micturition

pressure

Unit Reference

Conscious 10 C57BL/6J m 25 40.8 ± 2.0 146 ± 42 7.5 ± 2.8 18.6 ± 4.3 30.3 ± 4.0 cmH2O Aizawa et al., 2013

10 C57BL/6 m NA 20–30 140 ± 23.0 NA 17.9 ± 3.0 19.8 ± 1.8 mmHg Cornelissen et al.,

2008

10 f NA 20–30 143 ± 28.0 NA 12.2 ± 2.5 19.3 ± 2.4

10 Balb/CAN m NA 20–30 30.3 ± 4.0 NA 25.5 ± 5.2 19.2 ± 2.8

10 f NA 20–30 40.5 ± 7.3 NA 18.1 ± 3.2 19.0 ± 2.5

10 A/J m NA 20–30 50.0 ± 4.3 NA 5.3 ± 6.3 17.2 ± 2.6

10 f NA 20–30 51.7 ± 8.4 NA 16.1 ± 3.5 18.4 ± 4.3

10 B6:129 m NA 20–30 164 ± 49.0 NA 16.9 ± 1.8 21.5 ± 3.0

10 f NA 20–30 184 ± 59.0 NA 13.9 ± 2.5 19.7 ± 2.7

10 129 m NA 20–30 50.2 ± 11.9 NA 14.4 ± 1.8 15.8 ± 2.3

10 f NA 20–30 77.5 ± 12.9 NA 10.8 ± 1.4 16.1 ± 1.8

41.7 WT (129/SvJ) m 18–23 NA 240 ± 20 7.1 ± 0.9 17.8 ± 1.4 32.3 ± 2.5 cmH2O Igawa et al., 2004

41.7 f 18–23 NA 170 ± 10 7.6 ± 0.7 18.8 ± 0.9 33.4 ± 2.4

10 C57BL/6 m 6 20–30 about 180 about 8 NA NA mmHg Mingin et al., 2015

25 Balb/CJ f NA 20.2 ± 0.4 110 ± 20 7.11 ±

1.0

12.12 ±

1.22

63.71 ±

5.21

cmH2O Pandita et al.,

2000

25 WT

(DBA/1LacJ)

NA NA 17.2 ± 0.4 49.5 ± 7.6 6.3 ± 2.1 12.5 ± 2.2 36.0 ± 4.5 cmH2O Schröder et al.,

2004

25 MNRI f NA 25.7 ± 0.4 150 ± 20 5.9 ± 1.3 9.5 ± 1.0 40.3 ± 3.3 cmH2O Schröder et al.,

2003

25 C57BL/6J f NA 15–37 not obtained NA about 20 about 40 cmH2O Smith and Kuchel,

2010

33.3 WT (albino

FVB)

m 4–6 mo NA 200 ± 40 29.9 ±

7.0

42.2 ± 2.5 59.0 ± 5.4 cmH2O Soler et al., 2010

33.3 f 18 mo NA 170 ± 60 29.9 ±

2.0

47.3 ± 2.1 64.5 ±

15.7

15 WT (129Sv

and

C57BL/6J)

f 12 24.3 ± 0.9 130 ± 10 NA NA 34.9 ± 1.6 mmHg Chen et al., 2005

Restrained 10 C57BL/6N f 9 18–20 50 ± 20 8.1 ± 1.3 NA 32.0 ± 5.0 cmH2O Kadekawa et al.,

2016

25 C57BL/6 f 8–10 NA about 20 NA NA NA mmHg DePaul et al., 2015

Anesthesia 20 Balb/CAN m NA 18–22 58 ± 13 NA NA 12 ± 5 mmHg Beamon et al.,

2009

13.3 129S1/SvImJ m 10–12 27.1 ± 0.8 123.6 NA NA 39 ± 1.4 mmHg Bjorling et al.,

2015

13.3 f 10–12 21.8 ± 0.8 196.8 ± 28 NA NA 51.5 ± 2.4

13.3 C57BL/6J m 10–12 27.6 ± 0.5 42.0 NA NA 21.9 ± 1.5

13.3 f 10–12 19.2 ± 0.2 32 ± 2.7 NA NA 27.1 ± 1.2

13.3 NOD/ShiLtJ m 10–12 29.1 ± 1.3 90.0 NA NA 25 ± 1.8

13.3 f 10–12 24.5 ± 0.4 148 ± 18.7 NA NA 31.5 ± 2.3

13.3 CAST/EiJ m 10–12 16.6 ± 0.3 111.1 NA NA 25.4 ± 3.1

13.3 f 10–12 13.4 ± 0.6 77.3 ± 10.7 NA NA 22.8 ± 1.2

20 C57BL/6 m 10–12 NA 48 6.9 ± 0.5 4.2 ± 0.2 26.6 ± 1.0 cmH2O Boudes et al.,

2011

25 Balb/CAN f NA 26.8 57.5 NA NA 26.8 ± 2.4 mmHg Comiter and Phull,

2012

(Continued)
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TABLE 3 | Continued

Filling

rate

(µl/min)

Species Sex Weeks Body

weight

(g)

Urodynamic parameters

Voided

volume per

micturition

(µl)

Basal

pressure

Threshold

pressure

Micturition

pressure

Unit Reference

100 WT (ICR and

C57 strains)

f 4–6 mo 32.3 260 ± 110 NA NA NA mmHg Lemack et al.,

2000

25 C57BL/6 f 2 mo about 18 about 50 about 12 about 40 48 ± 2.5 cm/W Smith et al., 2012

25 12 mo about 26 about 100 about 8 about 30 47 ± 1.2

25 22 mo about 26 about 120 about 6 about 30 44 ± 1.7

25 26 mo about 30 about 200 about 4 about 25 44 ± 2.3

20 C57BL/6J f 11–13 NA about 80 about 3 NA about 40 cmH2O Franken et al.,

2016

80 WT (FVB/N) m 4–9 mo 24.3–37.7 NA NA NA 25.6 ± 4.8 mmHg Streng et al.,

2002a

80 WT (FVB/N) m 7–8 mo 30.6 ± 3.3 NA NA NA 28.5 ± 5.6 mmHg Streng et al.,

2002b

10 WT (C57BL6) m 9–17 25.7 ± 1.1 about 200 NA NA NA cmH2O Birder et al., 2002

100 WT (129Sv

and C57BL/6)

f NA 18.7 420 ± 210 NA NA 59.5 ±

12.8

cmH2O Sutherland et al.,

1997

25 C57BL/6J f NA 15–37 90 ± 20 NA about 40 about 60 cmH2O Smith and Kuchel,

2010

Decerebrated 10 WT

(C57BL/6Cr)

m 8–12 22.1 ± 0.3 131 ± 11 NA 3.8 ± 0.4 23.0 ± 2.2 mmHg Yoshiyama et al.,

2015

f, female; m, male; NA, not assessed; mo, months; WT, wild type.

co-ordinated activity of bladder and urethra under normal and
pathological conditions has not been well-characterized in mice,
in contrast to numerous studies in rats (Sadananda et al., 2011).
There are a few reports that measure the EUS-EMG in the
awake mice under restrained conditions. In these, fine wire
EMG electrodes were placed percutaneously into or near the
EUS and simultaneous measurements of intravesical pressure
and EUS-EMG activity were performed during continuous
cystometrograms (DePaul et al., 2015; Kadekawa et al., 2016).
These reports showed low-amplitude tonic EUS-EMG activity
between voids during continuous infusion (DePaul et al., 2015).
However, they mainly focused on EUS-EMG activity during the
voiding phase, so the specific details during the storage phase is
still incompletely described (DePaul et al., 2015; Kadekawa et al.,
2016).

Sensory function during filling
To investigate afferent pathways from the bladder, direct
measurement of afferent nerve activity is necessary and pelvic
nerve activity is most often measured. Afferent nerve activity
of mice has mainly been measured with in vitro experiments
(Daly et al., 2007, 2010, 2014; Collins et al., 2013; Mingin et al.,
2015) and in vivo observations are fewer (Zvara et al., 2010) as
in vivo measurement is technically difficult. The above studies
were performed to investigate the afferent activity during bladder
filling, not during the voiding phase as these preparations were
not voiding. With ex vivo experiments, the urinary bladder and
urethra were usually dissected with postganglionic nerves, major

pelvic ganglia, and pelvic nerves and placed in a recording
chamber recirculated with gassed (95% O2 and 5% CO2) saline
solution at 35 (Daly et al., 2007, 2010, 2014; Collins et al., 2013) or
37 (Mingin et al., 2015) ◦C. Subsequently, the pelvic nerves were
teased into fine branches and placed onto platinum electrodes for
recording.

During the storage phase, ramp bladder distension caused
an increase in afferent discharge with increasing intravesical
pressure (Daly et al., 2007, 2010, 2014; Collins et al., 2013;
Mingin et al., 2015). The relationship between afferent discharge
and pressure is non-linear. Afferent activity increases markedly
when intraluminal pressure is raised between 0 and 20mmHg,
with a smaller increase as intraluminal pressure is further raised
between 20 and 45mmHg) (Daly et al., 2007).

In general, direct measurement of pelvic nerve activity
records afferent activity from many units, that includes neurones
innervating not only the bladder, but also the urethra and
other pelvic organs such as the rectum. To overcome this
problem, single-unit mechanosensitive afferent measurement in
vivo (Aizawa et al., 2012, 2014, 2015a) and ex vivo (Ito et al., 2016)
in a rat model has been developed and were able to distinguish
between A-delta and C fibers. To date the same approach has not
been reported for mouse preparations.

Pressure Flow Studies (Voiding Phase)

Bladder
Pressure flow studies are used to assess several urodynamic
parameters, including maximum detrusor pressure (Pdet max),
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maximum flow rate (Qmax), detrusor pressure at maximum flow
rate; (Pdet Qmax), high frequency oscillations of Pdet and post
voided residual volume.

The small voided volume of mice makes difficult the precise
time-dependent correlation of Pdet changes and urine flow rate
in a pressure-flow study. However, some studies have estimated
flow rate during voiding, for example, for example by dividing
total voided volume by total flow to obtain average urine flow rate
(Smith et al., 2012). Urine flow rate has also been measured with
an ultrasonic flow probe surrounding the distal urethra between
the rhabdosphincter and penile bulb and connected to a flow
meter (Streng et al., 2002a,b). These studies indicated that the
maximum urine flow rate of mice was 16.8–17.7 and the average
was 1–2.5ml/min (Streng et al., 2002a,b; Smith et al., 2012).

In mice, the measurement of residual urine volume is also
technically challenging, but some studies report values of 2–60
µl in normal conscious mice during urodynamic testing (Pandita
et al., 2000; Schröder et al., 2003; Igawa et al., 2004; Chen et al.,
2005; Soler et al., 2010). In attempting tomeasure precise residual
urine volume in mice, a single cycle cystometry technique may
be employed, where the bladder is emptied by aspiration after
voiding. This technique may allow residual urine volume to be
measured directly.

Finally, the voiding pressure of mice anesthetized with
urethane is significantly higher than that of mice without
anesthesia (Smith and Kuchel, 2010). To our knowledge, the
effects of anesthesia on residual urine volume has not been
measured thus far, but in rats, urethane, and chloral hydrate
anesthesia led to less efficient voiding and increased residual
urine volume (Streng et al., 2006).

Outlet
Technical challenges with flow measurement mean that
assessment of voiding in mice is based on the observation of
urine output and increased bladder pressure. However, this
has the limitation that co-ordinated voiding driven by the
pontine micturition center (PMC) cannot be distinguished from
non-voiding urine flow (leakage of urine equivalent to detrusor
overactivity incontinence).

Mouse cystometric studies have observed intravesical
pressure oscillations that accompany urine flow, attributed
to high frequency opening and closing of the urethra. This
characterization is not seen in other species, except rats (Streng
et al., 2002a,b). At the onset of the voiding contraction, the
EUS-EMG activity increases in amplitude and shows “bursting”
coincident with rapid intravesical pressure oscillations in the
cystometric tracing. Subsequently EUS-EMG activity declines
after the peak of the contraction coinciding with the void (DePaul
et al., 2015). In clinical urodynamics, such an intravesical
pressure oscillations with concomitant involuntary urethral
sphincter activation implies detrusor sphincter dyssynergia
(DSD), as seen in upper spinal or brainstem neurological
conditions, such as spinal cord injury or multiple sclerosis.

However, the details of EUS function during bladder
contraction is still unclear in mice. EUS-EMG recordings are
better-characterized in rats, and exhibit tonic activity before
the onset of voiding and bursting activity during voiding,

which generates high frequency pressure oscillations. Here a
subsequent post-void pressure increase occurs as the bladder
remains contracted whilst the EUS ceases bursting and resumes
tonic firing (Sadananda et al., 2011, 2013).

Sensory function during voiding
There are no published reports of afferent activity measurement
during the voiding phase. Pressure-flow studies using a
decerebrated arterially-perfused rat show characteristic pelvic
nerve recordings during the voiding phase, with bursts of activity
corresponding to changes in bladder pressure and EUS activity
(Sadananda et al., 2011).

Special Tests
Sensation
To date, there are no reports in mice characterizing sensations
during the micturition cycle. To know how a mouse senses
such activity is not possible (Parsons and Drake, 2011), however
functional brain imaging might give a surrogate indication. In
rats, there are some functional brain imaging studies using
techniques such as functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET). These have
identified brain regions activated during bladder filling and
voluntary control of micturition (Tai et al., 2009; Deruyver et al.,
2015; Wong et al., 2015). During storage, the periaqueductal gray
(PAG) is activated by afferent input from the urinary bladder,
whilst the PMC is inactive (Tai et al., 2009). Storage is also
accompanied by activation of several regions including the motor
cortex, somatosensory cortex, cingulate cortex, retrosplenial
cortex, thalamus, putamen, insula, and the septal nucleus (Tai
et al., 2009).

These techniques have also identified in rats brain regions
activated during bladder contractions (Tai et al., 2009; Deruyver
et al., 2015; Wong et al., 2015). When bladder volume
increased to the micturition threshold, the switch from
storage to micturition was associated with PMC activation and
enhanced PAG activity (Tai et al., 2009). Micturition was also
associated with increased activity of several regions including:
The motor cortex, thalamus, putamen, cingulate, insula,
hypothalamus, substantia nigra, globus pallidus, hippocampus,
and inferior colliculus (Tai et al., 2009). A small-animal PET
imaging study demonstrated that volume-induced voiding and
isovolumetric bladder contractions in rats provoke changes
in brain metabolism, including activation of the insular and
cingulate cortices, which is consistent with their proposed role
in mapping bladder afferent activity (Deruyver et al., 2015).
However, knowledge of the precise functions these various
regions play in the micturition remains unclear.

PROXIES FOR DISEASE CONDITIONS

A large range of mouse models has contributed to the
understanding of pathophysiologies underlying LUTS (Parsons
and Drake, 2011). Most are animal models with induced
dysfunction, in which relevant pathological changes are
experimentally applied to a healthy animal. In addtion,
genetically modified mouse models, for instance transgenic mice,
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have been used to investigate functional urological changes. In
this section, we review currently available pathophysiological
mouse models and describe their use and also their limitations
when interpreting results from animal models to understand
human conditions.

Sensory Stimulation Models
Animal models of OAB and bladder pain syndrome (BPS) are
commonly made by eliciting bladder hypersensitivity and/or
inflammation, which is chemically induced by intravesical or
intraperitoneal instillation of a noxious substance (Parsons and
Drake, 2011). Chemical agents used for this purpose include
cyclophosphamide (Boudes et al., 2013), acetic acid (Yoshiyama
et al., 2008, 2010), or hydrogen peroxide (Homan et al., 2013;
Dogishi et al., 2015).

OAB is a symptom-based diagnosis, so it is currently
impossible to develop a true animal model for OAB (Parsons and
Drake, 2011). BPS has an important symptomatic element, but
there are additional structural changes which could potentially be
modeled (Offiah et al., 2016). For example, recent papers indicate
that Hunner-type interstitial cystitis shows histologically obvious
inflammation (Maeda et al., 2015; Akiyama et al., 2016). An
experimental autoimmune cystitis model induced by uroplakin
3A-derived immunogenic peptide might be a possible BPS model
in mice. This model showed autoimmune inflammatory changes
of the bladder, and key phenotype features (Izgi et al., 2013).

Reduced Compliance Models
Spinal cord injury (SCI) models are one of the commonest
neurological models used.With SCImodels usingmice, complete
transection of the thoracic spinal cord at vertebral level T8
(DePaul et al., 2015), T8/9 (McCarthy et al., 2009; Kadekawa et al.,
2016), or T10 (Wilson et al., 2005) have been reported. The timing
of measurements after development of SCI vary substantially
from study to study—from 1–2 weeks (McCarthy et al., 2009), 1–
6 weeks (Wilson et al., 2005), 4 weeks (Kadekawa et al., 2016), up
to 18 weeks (DePaul et al., 2015). SCI is associated with increased
bladder weight [2.3 times (Wilson et al., 2005) larger than
that of controls]. Cystometric changes after SCI show increased
numbers of NVCs (McCarthy et al., 2009; Kadekawa et al.,
2016), decreased voiding efficiency (Kadekawa et al., 2016), and
increased residual urine volume (DePaul et al., 2015; Kadekawa
et al., 2016). The combination of pressure-flow studies and EMG
measurements in mice with SCI indicate development of DSD
(DePaul et al., 2015) and decreased EUS activity (Kadekawa et al.,
2016).

Mice with experimental autoimmune encephalomyelitis have
been used to study neuro-inflammatory bladder dysfunction
equivalent to that which occurs with multiple sclerosis,
and showed detrusor overactivity in severe experimental
autoimmune encephalomyelitis (Franken et al., 2016).
Extrapolating data from these models has to take into account
the uncertainties of transferring findings from an acute model
to a chronic human condition. Experimental autoimmune
encephalomyelitis is also a transient self-limiting condition
that often recovers spontaneously, whereas multiple sclerosis is
chronic and progressive.

Bladder Outlet Obstruction (BOO) Models
Effects similar to BOO in humans are apparently straightforward
to model in animals. This has been achieved by partial
obstruction of the urethra using some form of ligature. The
time to when measurements are made after development of
BOO vary from study to study—from 1 week (Schröder et al.,
2003), 4 weeks (Austin et al., 2004), 5 weeks (Pandita et al.,
2000) up to 6 weeks (Beamon et al., 2009; Comiter and Phull,
2012) following BOO surgery. These mouse models show many
of the structural and physiological bladder wall changes seen
in human BOO, including muscle cell hypertrophy (Austin
et al., 2004; Beamon et al., 2009; Comiter and Phull, 2012),
altered responsiveness to stimuli (Austin et al., 2004), and
altered spontaneous myogenic activity (Beamon et al., 2009) with
enhancement of NVCs (Pandita et al., 2000; Comiter and Phull,
2012).

Many of the published studies using partial BOO murine
models have used female mice (Pandita et al., 2000; Schröder
et al., 2003; Comiter and Phull, 2012), which complicates their
interpretation, given that they are derived to model male benign
prostatic hyperplasia (BPH). Furthermore, induced BOO ismuch
more acute and potentially more severe than BPH–particularly
if the urethra is ligated by a suture tied firmly against a rigid
rod. BOO models showed increased bladder weight 2.5–3.9
times (Pandita et al., 2000; Austin et al., 2004; Beamon et al.,
2009; Comiter and Phull, 2012) larger than that of control.
BOO murine models may involve not only outlet obstruction
but also detrusor insufficiency but no urodynamic features to
distinguish have been agreed. Notwithstanding, partial BOO
appears to be a good model to study LUTS as it can be reliably
reproduced.

Transgenic Models
Knock-out (KO) models and other transgenic animals are used
to study and understand the molecular mechanisms involved
in both normal LUT physiology and dysfunction. The mouse is
most commonly employed, given that it is widely available, easy
to maintain and has a relatively short generation interval.

Several transgenic mouse models have been studied in the
functional urological field and urodynamic studies have been
performed in mice with KO of; alpha−1D receptors (Chen
et al., 2005), muscarinic, M2 and M3 receptors (Igawa et al.,
2004), purinergic receptor (P2X3) (Cockayne et al., 2000), EP1
receptors (Schröder et al., 2004), TRPV1 and TRPV4 channels
(Birder et al., 2002; Yoshiyama et al., 2015), neuronal nitric
oxide synthase (nNOS) (Sutherland et al., 1997), inducible nitric
oxide synthase (iNOS) (Lemack et al., 2000), uroplakin II (UPII)
and III (UPIIIa) (Aboushwareb et al., 2009), Ncx/Hox11L.1
(a member of the Hox11 homeobox gene family) (Jusuf
et al., 2001). Studies have also described Immp2lTg(Tyr)979Ove

mutant mice with mitochondrial dysfunction which have
a deficiency of Immp2l protein (Soler et al., 2010), and
aromatase overexpressing transgenic mice (Streng et al.,
2002a,b). Specific urodynamic features seen in these mice,
which informed the phenotype and pathophysiological
understanding have been reviewed elsewhere (Parsons and
Drake, 2011).
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Aging Models
An appropriate study to clarify the pathophysiology of aging
is needed but there are many limitations to performing
such an investigation. In the elderly human population
there are important indirect interactions due to comorbidities
such as hypertension, diabetes mellitus, hyperlipidemia, and
cerebrovascular or cardiovascular diseases. It is also difficult
to separate the influence of such disorders from that of
aging. In rodent models, the influence of at least some of
these comorbidities can be avoided though they are rarely
evaluated and reported. The age of mice used for aging
studies has varied from 12 months (Lai et al., 2007), 70
weeks (Shenfeld et al., 2005), 20 months (Perše et al.,
2013), 22 months (Smith et al., 2012), 18–24 months (Lagou
et al., 2006a), 24 months (Daly et al., 2014), 26 months
(Smith et al., 2012), and 28–34 months (Lagou et al.,
2006b).

To our knowledge, there is only one study that investigated
age-related changes to mice cystometric parameters (Smith et al.,
2012). This showed that aging (26 months) is associated with
an impaired ability to respond to the challenge of continuous
bladder filling with cyclic voiding and diminished bladder
volume sensitivity (Smith et al., 2012).

In addition, organ bath studies using isolated mice bladder
show that both micromotion related activity and the phasic
component of the contractile response to muscarinic agonists are
substantially reduced in agingmice (Lagou et al., 2006b). Another
immunohistochemical analysis showed that older mice showed
patchy denervation of the detrusor (Lagou et al., 2006a).

Other Models
Mingin and colleagues demonstrated that some social stress
decreased voided volume in young male mice, and they proposed
this approach as an overactivity model by social stress (Mingin
et al., 2015). Acute exposure of part of the skin to cold stimuli can
also evoke rapid bladder contractions and voids in anesthetized
mice and was proposed as an acute cold-induced urgency model
(Uvin et al., 2015). These models lead to increased sensory

activity, which is a mechanism that has been proposed as a
potential cause of urgency.

CONCLUSIONS

Animal experiments are fundamental for understanding LUT
function and these experiments also contribute to investigation
of pathophysiological changes. Rats are currently the most
used animal model for neuro-urodynamic studies, and mouse
urodynamics has not been so well-characterized. However, the
mouse models available, notably genetic modifications, provide
valuable mechanistic insights. The present review covers recent
knowledge of mouse urodynamics and considers potential
implications in the clinical field. However, there are some
differences between mouse and human urodynamics which must
be considered when neuro-urodynamics to interpret voiding in
mice models. Available disease models in mice have crucial issues
of interpretation when deriving translational value. Nonetheless,
mouse urodynamic tests should give important information on
bladder physiology, pathophysiology and pharmacology.
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