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ABSTRACT

Aminoacyl-transfer RNAs contain four standardized
units: amino acids, an invariant 3'-terminal CCA,
trinucleotide anticodons and tRNA bodies. The
degree of interchangeability of the three variable
modules is poorly understood, despite its role in
evolution and the engineering of translation to
incorporate unnatural amino acids. Here, a purified
translation system is used to investigate effects of
various module swaps on the efficiency of multiple
ribosomal incorporations of unnatural aminoacyl-
tRNA substrates per peptide product. The yields of
products containing three to five adjacent L-amino
acids with unnatural side chains are low and cannot
be improved by optimization or explained simply by
any single factor tested. Though combinations of
modules that allow quantitative single unnatural
incorporations are found readily, finding combina-
tions that enable efficient synthesis of products
containing multiple unnatural amino acids is chal-
lenging. This implies that assaying multiple, as
opposed to single, incorporations per product
is a more stringent assay of substrate activity.
The unpredictability of most results illustrates
the multifactorial nature of substrate recognition
and the value of synthetic biology for testing our
understanding of translation. Data indicate that the
degree of interchangeability of the modules of ami-
noacyl-tRNAs is low.

INTRODUCTION

Protein synthesis is highly modular. Messenger RNAs
(mRNAs) are constructed from trinucleotide codon mod-
ules. Elongator aminoacyl-transfer RNAs (AA-tRNAs)
contain four standardized units: a trinucleotide anticodon,
a tRNA body (with a secondary structure usually consist-
ing of four stems), an invariant 3’-terminal CCA, and an
amino acid (AA); three of these four modules are highly

variable (Supplementary Figure S1). AA-tRNAs are inter-
changeable on elongation factor Tu/EFla and on the
ribosomal A and P sites. The order of codons on the
mRNA and the order of AAs within the protein are also
interchangeable; such interchangeability is the basis for
the fields of protein mutagenesis and protein engineering.
In contrast, the degree of interchangeability of the three
variable modules of AA-tRNAs is poorly understood,
despite its importance for engineering translation to incor-
porate unnatural AAs.

AA-tRNA modules were presumably shuffled exten-
sively during evolution by gene duplication, anticodon
mutation and charging with different AAs (1,2). But the
present degree of modularity of the AA-tRNA domains in
protein synthesis cannot be deduced from extensive
knowledge of AA-tRNA structures because the four mod-
ules act together in cis, not trans. Though ‘domain’
boundaries are very precise (Supplementary Figure S1),
shuffling may affect translation activity by altering cis
interactions across domain boudaries or by altering inter-
actions of two domains with another translation macro-
molecule in trans. For example, although anticodon
mutants sometimes function well in vivo [e.g. as suppressor
tRNAs (3)], nucleotides adjacent to the anticodon likely
affect the efficiency of codon recognition by the anticodon
[the extended anticodon hypothesis (4)]. Another example
is that EF-Tu and the ribosome may need to bind to mul-
tiple domains in the AA-tRNA with compensatory affi-
nities [the thermodynamic compensation hypothesis (5)].

Experimental investigation of the degree of AA-tRNA
modularity in translation is challenging. Shuffling AA-
tRNA modules often causes pleiotropic effects in vivo
that extend beyond substrate recognition in translation.
For example, tRNA mutations frequently affect tRNA
nucleoside modification or the processing of precursor-
tRNA (3). Anticodons, in addition to recognizing
codons, are frequently major positive determinants for
the specificity of AA charging by AA-tRNA synthetases
(6). tRNA bodies, in addition to binding to ribosomes, can
also contain negative determinants for charging. Most stu-
dies of the effects of AA-tRNA domain shuffling in trans-
lation have been done by adding in vitro-synthesized
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AA-tRNA mutants, often loaded with unnatural AAs, to
crude in vitro translation systems. However, the highly
complex and incompletely understood constitutions of
crude cell preparations complicate interpretation. For
example, mutant AA-tRNAs must compete with natural
AA-tRNAs, or release factors in the case of suppressor
tRNAs, and some synthetases have a proofreading func-
tion that hydrolyses off non-cognate AAs (6). Thus, while
efficiencies of single incorporations per protein of unnat-
ural AAs from tRNA mutants are frequently below 50%
(7), the cause of these inefficiencies may be due to compet-
ing reactions rather than incomplete interchangeability of
domains in translation.

In order to overcome these hurdles in testing and
exploiting the modularity of AA-tRNAs in translation,
we reconstituted from purified components the molecular
machinery necessary for ‘replication’ of peptides con-
taining unnatural AAs (8). AA-tRNA domain swaps
were facilitated by chemoenzymatic preparation of non-
suppressor AA-tRNA substrates (7,9). Initial studies used
three tRNA”"-based tRNAs (termed tRNA™™B; .,
tRNA*"BL Gy and tRNAAB,, . where the subscript
refers to the anticodon; Figure 1A). As predicted, this
system did improve efficiences of single unnatural L-AA
incorporation enough to enable the ribosomal synthesis of
defined peptides containing three or five straight unnatural
AAs. Unexpectedly, the yield of these peptides was only
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about 55% or 30%, respectively, when compared with
peptides from all-natural AA-tRNAs (10). This implied
that further optimization of this complex initial system
was required and/or changes to individual tRNA domains
were detrimental and/or AA-tRNA domains were not
fully interchangeable in translation. Subsequent studies
using partially purified (11) or purified (12—17) translation
systems to synthesize polymers of unnatural AAs have
neither focussed on, nor resolved, the issue of low yields
under standard translation conditions. Here, our initial
system is optimized and expanded to further evaluate
the modularity of AA-tRNA substrates in polymerization
by the ribosome. The goal is ribosomal synthesis of com-
binatorial libraries of polymers substituted with unnatural
AAs such as N-methyl-AAs and o-hydroxy acids. This
would allow genetic selections for protease-resistant drug
leads by pure translation display (18).

MATERIALS AND METHODS
Abbreviations

AA or X, amino acid; U, unnatural AA; x-tRNAY,,
x = charged AA, y = AA specificity of either the natural
isoacceptor or the natural isoacceptor upon which the
chemoenzymatic sequence is based, z = either the natural
isoacceptor designation or the anticodon sequence
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Figure 1. Natural E. coli tRNA®" (A) and tRNAF™ (B) (black), and their seven synthetic counterparts (blue): tRNA*"B5 1, (10), tRNATEE, o
(20,21) and five anticodon mutants thereof. The anticodons of the natural tRNAs are purple. Substitutions at the 5 and 3’ termini that maintain
the secondary structure of the AA-stems were included to enable efficient transcription initiation at the first nucleotide with GMP by T7

RNA polymerase.



(5 to 3) of the chemoenzymatic tRNA sequence.
Formylmethionine is fM, O-methylserine is mS, and
2-amino-4-pentenoic acid and 2-amino-4-pentynoic acid
are eU and yU, respectively (eU is also known as allylgly-
cine; structure shown in Figure 2A; structure of peptide
containing these 4 AAs in Figure 5A).

Materials

The preparation of all materials, except those specifically
listed below, have been described in detail (8,10,19).

Messenger RNAs MT,E, MTNV, MTN,V, MTNsV and
MTFV. These mRNAs (sequences given in Figures 2A,
3A, 4A and 5A) were prepared by transcription with T7
RNA polymerase of appropriate oligodeoxyribonucleo-
tide templates hybridized to the 18-mer TAATACGACT
CACTATAG as illustrated in (8). A second version of
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Figure 2. Ribosomal incorporation of four adjacent eU AAs into a
soluble defined polymer. (A) Complete mRNA sequence and encoded
translation products using prechar§ed tRNAs including Thr-tRNA; ™"
(green product) or eU-tRNA”"™B.5y (blue product). The epsilon
translation enhancer and the Shine-Dalgarno ribosome binding site
are underlined. (B) HPLC analysis of the blue translation in (A). The
elution position of the UV-absorbing, unlabeled, fM(eU)4E marker
peptide mixed with the translation products is indicated above the
chromatogram. (C) Analysis by cation-exchange, mini-column chro-
matography of yields for the green and blue translations in (A).
The control assay on the right contains uncharged, full-length tRNA
(...CCApp 3'). Background d.p.m. obtained in translations without
mRNA were subtracted. Negative controls are red. Standard deviations
from the four means are shown.
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mRNA MTNsV was also prepared by transcription
in vitro of EcoRI-cut cloned oligos to rule out an artefac-
tually low yield of translation product due to mRNA
preparation by direct transcription of a long oligo (result
not shown).

Synthetic tRNA™™  genes with mutated anticodons.
Plasmids encoding tRNAF™B; i, tRNAPPB, ., and
tRNAPB,  « were constructed by QuikChangeR oligo-
directed mutagenesis of the plasmid encoding
tRNAPB, . 4 [(20); Figure 1B] by Madhavi Nalam and
verified by DNA sequencing. The G-C base pair in the
acceptor stem was substituted in comparison with the
native isoacceptor to increase the efficiency of synthesis
in vitro by T7 RNA polymerase (21).

Synthetic tRNA controls. Full-length tRNA species
were prepared by transcription by T7 RNA polymerase
of BstNI-cut plasmids, and then purified by urea polya-
crylamide gel electrophoresis and precipitation with
ethanol.

Synthetic AA-tRNAs. tRNA™™SA species were prepared
by transcription by T7 RNA polymerase of FoklI-cut
plasmids, and then purified by urea polyacrylamide gel
electrophoresis and precipitation with ethanol. Each
transcript was ligated by T4 RNA ligase to an NVOC-
protected pdCA-AA (10,19,22). Concentrations of all
unnatural NVOC-aminoacyl-tRNA substrates were esti-
mated by urea polyacrylamide gel electrophoresis at
pH 5, and only efficient ligations were kept for later
photodeprotection. The efficiency of the photodeprotec-
tion procedure was validated by following change in UV
absorbance of an NVOC-protected pdCA-AA over time.

SH-Asn-tRNA™"". Because of the lack of commercially
available, purified tRNA”" and the difficulty of purifying
it, Asn-tRNA™" was the one AA-tRNA prepared by
charging E. coli tRNAT*! Charging was confined to
just the single tRNA™" jsoacceptor in the tRNA mixture
by using pure *H-labeled Asn (low specific activity;
Moravak Biochemical, CA) and pure His-tagged Asn-
tRNA synthetase over-expressed from an available clone
(23). The yield of Asn-tRNA™" was 6x higher with
tRNAT® from Roche versus Sigma, so the Roche
material was used for large-scale charging. Pilot transla-
tions with 0.44uM Asn-tRNA™" (including 140 pM
tRNAT) prepared from the Roche material and
0.2 uM limiting fMet-tRNA™® gave single incorporation
yields of only ~50% and also inhibited other translations
(data not shown). Higher concentations of this Asn-
tRNA™" decreased yields even further, indicating that
very high concentrations of uncharged tRNAT™! are
inhibitory in our system. However, near saturation of
Asn incorporation was achieved at a lower concentration
of Asn-tRNA™" 0.2uM (which necessarily includes
64 uM tRNAT): 0.2 {M charged tRNA is the same con-
centration as the limiting fMet-tRNA™¢t,

C-terminal *"H-AA-tRNAs. *H-Glu-tRNAS"™ and *H-Val-
tRNA VY were prepared from purified isoacceptors (Sigma
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and Subriden RNA) as described (19), with final specific
activities ranging from 14 000-22 000 d.p.m./pmol.

Marker  peptides. fM(eU)4E  was  synthesized by
Zhongping Tan on an Advanced Chemtech peptide
synthesizer from commercial reagents (19), purified by
HPLC and verified by mass spectrometry.

Methods

All methods have been described (8,10,19) except the
charging and recovery assays below. The translation
assay is reiterated for clarification.

Charging assay for contaminating synthetase activities in
the purified translation system. Our purified translation
system uses ribosomes that were washed four times with
high salt (8). Although these washes decrease the activity
of the ribosomes and are time consuming, the washes were
presumed to be necessary for removing contaminating
AA-tRNA synthetases. Ribosomes in related purified sys-
tems were reported to be highly contaminated with synthe-
tases (24), and a recent purified translation system was
found to be contaminated to the extent that its translation
products sometimes contain natural AAs where unnatural
AAs were encoded (12,13). Thus, the components of our
system, including ribosomes washed different numbers
of times, were assayed for synthetase contamination.
Synthetase charging activities were determined by mea-
suring trichloroacetic acid-precipitated c.p.m. after incu-
bation of the samples with tRNAT® (Sigma), a
commercial mixture of 15 different, "*C-labeled AAs (A,
D,E,F, G, H LK, L,P, R, S, T, V, Y; New England
Nuclear) and ATP at 37°C for 30 min. A DEAE-purified
(tRNA-free) crude cell extract (8) was used as a source of
the synthetases for the positive control. Supplementary
Figure S2 shows that unwashed ribosomes, not translation
factors, were indeed highly contaminated with synthetases
and that all four of our standard washes were necessary to
remove synthetase contaminants completely.

Translation assays. To assay synthetic AA-tRNAs in a
full translation cycle, translations were always pro-
grammed for incorporation of a *H-AA at the C-terminus.
Also, to avoid proofreading and in situ charging with nat-
ural AAs, aminoacyl-tRNA synthetases were omitted
from all translations. Translations (10) contained 0.5 uM
each of initiation factors 1-3 and elongation factors Ts and
G, 2.5uM elongation factor Tu, 0.25uM purified ribo-
somes, 1pM appropriate mRNA, 0.2pM (limiting)
fMet-tRNA,™¢t 0.5 pM C-terminal, *H-labeled, natural,
clongator AA-tRNA, and upstream-encoded, unlabeled
or low-specific-activity elongator AA-tRNAs at the fol-
lowing concentrations: 0.2pM Asn-tRNA™ 0.5uM
Thr-tRNA;™ (except at 3uM in Figure 2C), 0.5uM
Val-tRNA Y, and photodeprotected, chemoenzymatic,
elongator AA-tRNAs at the concentrations given in
the figures (note that higher concentrations of this
clongator AA-tRNA were always used when mRNAs
programmed multiple, rather than single, incorporations
per peptide; see figures). Translations were performed
without preincubation (except for Figures S4 and S5) in

Sul volumes at 37°C for 40 min, then terminated by the
addition of NaOH. Maximal yields typically corresponded
to half of the limiting 0.2 uM fMet-tRNA™® incorpo-
rated within 40min into peptide d.p.m. (i.e. 0.5pmol
per 5Sul translation). Substitution of our standard 4x
washed ribosomes with a more active preparation
(25,26) did not improve the relative yields of unnatural
to natural peptide products.

Quantitation of peptide yields by cation-exchange
chromatography. N-formylated peptide products were
separated from free AAs by passage through a cation-
exchange mini-column (Dowex 50X8-200) in 0.5M HCL
Recovery from the columns was estimated as follows.
Radiolabelled fM(eU)4,E and fMT4E were prepared by
ribosomal synthesis, passaged through the columns and
then quantitated by scintillation counting of aliquots of
the eluates (as in Figure 2C). Additional aliquots of
these eluates were then re-passaged through the columns
(fresh columns) and the eluates counted. Recovery of the
re-passaged fM(eU)4E was 92 £2% of the loaded eluate,
and recovery of the re-passaged fMT4E was 93 +2%.
Thus, the large difference in yield of the two peptides
when synthesized by the ribosome cannot be attributed
to differences in recovery.

Analytical C-18 HPLC. Radiolabeled translation reaction
was treated with NaOH, mixed with authentic unlabeled
marker peptide, acidified with acetic acid and filtered
through a Microcon 10. The filtrate was analyzed by
reversed phase HPLC on a C-18 column using a 9-59%
acetonitrile:water gradient containing 0.1% trifluoroacetic
acid.

RESULTS

Ribosomal synthesis of different polymers of eU from
tRNA*"® bodies

The prior 30% translation yield of the polymer of unnat-
ural eU AAs, fM(eU)sV, compared with the polymer of
natural AAs, fMT5V (10), might be due to lower recovery
rather than lower synthesis. Consistent with this idea is
that the unnatural peptide is much less soluble than the
natural peptide in the highly acidic solutions used for
analysis (Supplementary Figure 3), and incorporation of
a single eU-tRNA"B 55 was 100% efficient (10). Thus,
a different poly(eU) target was chosen that is theoretically
more hydrophilic: fM(eU)4E (Supplementary Figure 3).
Marker peptide fM(eU)4E was synthesized chemically
and indeed found to be much more soluble than
fM(eU)sV. Translation of mRNA MT4E (Figure 2A)
with eU-tRNA™B,. (3uM) yielded a product that
comigrated with marker fM(eU)4E on HPLC as expected
(Figure 2B). However, the yield of this product measured
by cation-exchange mini-columns was still similar to
fM(eU)sV and still low (mean = 42%) when compared
to the control reaction using the same mRNA tem-
plate and all-natural AA-tRNAs, in this case producing
fMT4E (Figure 2C). The recovery of both peptides from
cation-exchange columns was measured at >90% (see
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Figure 3. Ribosomal incorporation of 1, 2 and 5 eU AAs from
a tRNA*"E with a wild-type anticodon-loop sequence. (A) Test mRNA
sequences. y = 1, 2 or 5. For the GAA codon, no cognate AA-tRNA was
supplied. (B) Incorporation of a single eU from tRNA*"B ¢, (blue). The
positive control translations (green) used all natural AA-tRNAs and
mRNA MTFV. Negative controls are red; standard deviations are
shown. (C) Incorporation of 1, 2 and 5 eUs from tRNA®"B ; at var-
ious concentrations. (B) and (C) Background d.p.m. obtained in transla-
tions without mRNA was essentially the same as the signal from the red
translations, and these background d.p.m. were subtracted from all
translations.

Materials and Methods section), so the lower yield of eU
polymer compared with the natural peptide is due to a
difference in synthesis, not recovery.

The translations in Figure 2 were performed for 40 min
without preincubation and without release factors so that
initiation and recycling should be rate-limiting (8), thereby
preventing exhaustion of elongator substrates and prema-
ture terminations. To test whether or not these long incu-
bations caused preferentially lower yields with unnatural
substrates, the reactions were reconfigured by separately
preinitiating ribosomes and preincubating AA-tRNAs
with EF-Tu, each for 10min, and then combining the
mixes for short reaction times (8). The relative product
yields were still lower with eU-tRNA?"B,. than
Thr-tRNA, and much lower at the shortest timepoint
(15s; Supplementary Figure S4), suggesting that poly-
merization of eU-tRNA*"B 5, is slower than of the nat-
ural AA-tRNA. Thus, longer incubation times can favor
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higher yields with unnatural AA-tRNAs, and preferential
deacylation of eU-tRNA versus Thr-tRNA in the long
incubation is apparently not the cause of the low yields.
Lower complex formation of eU-tRNA*"B,qy with
EF-Tu is also apparently not problematic because the
concentration of EF-Tu was saturating (Supplementary
Figure S5).

Another possible cause of the suboptimal substrate
activity of eU-tRNA?"B, is that the U—G point
mutation in the middle of the anticodon triplet reduces
the efficiency of decoding. Although this hypothesis is
not supported by the finding that this substrate saturates
incorporation of a single eU (10), it remains possible that
the mutation may misfold the anticodon loop and this
may only be detectable in our assay when two misfolded
anticodon loops function in adjacent positions on the
ribosome. Furthermore, it is known that mutating the
anticodon can decrease function in translation (27,28).
In order to test this, a tRNA containing an unmodified,
wild-type, anticodon loop sequence, eU-tRNA™™B, 0,
was synthesized and used to translate mRNAs MTNYV,
MTN,V and MTN;sV (Figure 3A). In Figure 3B,
eU-tRNA™™B 1, was titrated in assays requiring one
incorporation per peptide. The yield of fMTeUV was
indistingishable from that of the fMTFV control peptide,
and control translations substituted with unacylated
full-length tRNA”"B,; did not synthesize any full-
length peptide, confirming that a single eU incorporated
very efficiently into product. Surprisingly, the yield
of fMT(eU)sV from mMTN;sV using the same eU-
tRNAB, 1y was only 5% compared with the control
translation with all-natural AA-tRNAs (Figure 3C), sig-
nificantly lower than the 30% yield of fM(eU)sV from
eU-tRNA™™B 5 (10). This very low yield cannot be
accounted for by insufficient substrate or insufficient
photo-deprotection because the yields were independent
of substrate concentration (Figure 3C). Nor could the
yield be accounted for by general inhibition of translation
by the unnatural AA-tRNA, based on the measured incor-
poration of "*C-Thr into products in the same translations
[as also noted in (20)]. Thus, a wild-type anticodon loop
sequence can be less efficient than an anticodon mutant for
ribosomal polymerization of unnatural AAs. Of course
the anticodon is still not native because it lacks the queuo-
sine (Q) modification, but the result of this modification
in comparison with the unmodified G is apparently a
slight decrease in the stability of pairing with C (29).

Having demonstrated that inefficient polymer synthesis
from eU-tRNA™"B, 1 could not be rescued with a wild-
type anticodon loop sequence, this implied that rescue
required making the substrate even more like native
Asn-tRNA™™ (Figure 1A). However, tRNA™" is a poor
experimental system for such tests because it is difficult to
introduce modified nucleosides into tRNA transcripts,
natural tRNA™" is not commercially available and is
very difficult to purify, the natural 5’ terminus (pUCC
...) cannot be synthesized efficiently in vitro with T7
RNA polymerase, charging of tRNA*"B5, with Asn
by the purified E. coli Asn synthetase was found to be
very low (result not shown), and chemical rearrangement
problems are predicted during pdCpA-Asn-NVOC
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synthesis. It was therefore decided to synthesize a tRNA
body that is more tractable experimentally, tRNAF"B,

Validation of a different tRNA body, tRNA"""

Effects of absence of post-transcriptional nucleoside mod-
ifications on translation kinetics have only been reported
for one unmodified tRNA, E. coli tRNAPheC3G-G70¢
(21,30) termed tRNAF"B5 . o (Figure 1B). Provided that
tRNAPPB . \ was appropriately renatured, lack of mod-
ifications had minimal effects on dipeptide synthesis,
but translocation had not been evaluated. Translocation
was thus tested under our typical conditions, where
fMTFV synthesis is saturated by native Phe-tRNAP™ at
>0.25 uM (as predicted for efficient translation limited by
02uM  fMet-tRNA™®:  Supplementary Figure S6).
tRNAP™B, \ chemically charged by ligation to pdCpA-
Phe-NVOC was photo-deprotected and compared at
different concentrations with 0.5 M native Phe-tRNAP"
(Figure 4A and B). Concentrations of Phe-tRNAP™B;,
as low as 0.5 UM saturated translation incorporation and
translocation to the same extent as 0.5puM native Phe-
tRNAP"™. The same results were obtained by mischarging
with an unnatural AA, eU (Figure 4C). This validates this
unmodified tRNA body and the chemoenzymatic ligation
method for efficient incorporation of a cognate and an
unnatural AA.

Synthesis of unnatural polymers from tRNA""® bodies

The modularity of tRNAPP was further tested by trans-
lation of mRNA MNTVE into fM-yU-mS-eU-E
(Figure 5A). This enabled direct comparison with prior
results using three different tRNA®"® tRNAs (10) and
has advantages over the poly(eU) systems of having
higher product solubility (10) and the ability to substitute
incorporation of any combination of individual unnatural
AA-tRNAs with a cognate natural AA-tRNA. To this
end, three additional tRNAP™B bodies with mutated
anticodons were constructed to form base pairs with the
N, T and V codons (Figures 1B and 5A). The three
encoded tRNAPPBMInNUSCA ¢ranseripts were then synthe-
sized and chemically charged with the appropriate unnat-
ural AAs to give yU-tRNAPPB, 1, mS-tRNAPB,
and eU-tRNAP™B_, . Translations with these three
tRNAPPB bodies did indeed produce fM-yU-mS-eU-E
(Figure 5B, blue square; also in Figure 6), based on com-
plete dependence on each one of the three tRNAFPPEg
(Figure 5B, red squares). However, the yield was only
15% in comparison with the MVE positive control
(Figure 5B legend). This was surprising, given the high
activity of the parent tRNAP™B (Figure 4B and C) and
the prior 60% yield of an identical translation reaction
except with three tRNA™"® bodies [(10); blue triangle
plotted on Figure 5B for comparison].

Dissecting the effect on polymer yield of each
incorporation of an unnatural AA-tRNA

Why was it only possible to incorporate unnatural
AA-tRNAs quantitatively within a peptide at single,
not multiple, positions? We previously proposed two alter-
native hypotheses (19): (i) Given evidence that adjacent
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Figure 4. Incorporation of Phe and eU and from synthetic tRNAPE

at various concentrations in comparison with natural Phe-tRNAP he (A)
mRNA sequence. For the GAA codon, no cognate AA-tRNA was
supplied. (B) and (C) Translation products with the indicated sub-
strates supplied for the F or X AAs. The control assays on the right
contain uncharged, full-length tRNA. Standard deviations are shown.
Background d.p.m. obtained in translations without mRNA were
subtracted.

tRNAs interact on the ribosome [e.g. (31)], such an inter-
action [either the E and P sites or the P and A sites
(Figure S1)] may be inefficient if both AA-tRNAs are
unnatural, and (ii) There may be small decreases in yield
for single insertions (even for non-neighboring positions)
that are difficult to measure, and these decreases become
easier to measure when combined for multiple AA inser-
tions. To test these two hypotheses, each unnatural
AA-tRNA was substituted with the cognate natural AA-
tRNA in all 14 possible combinations for the two blue
translations yielding fM-yU-mS-eU-E in Figure 5B. The
results (Figure 6) were again unexpected, disproving both
hypotheses (i) and (ii).

In the eight translations incorporating two or three
unnatural AA-tRNAs per peptide (Figure 6, bottom
half), the lowest yield for the tRNA”*"Bs and the lowest
yield for the tRNAP"Bs were both for fM-yU-T-eU-E
synthesis, the only product lacking adjacent unnatural
AA-tRNAs. Further, the decreases in yield for multiple
insertions (Figure 6, bottom half) were not simply due to
multiplication of small decreases in yield for each single
insertion (Figure 6, second row of bars). Rather, all the
lowest yielding translations included yU for both the
tRNA"s and the tRNAP"Bs. This was not simply
just due to some major problem with yU or the AAC
codon because fM-yU-mS-eU-E was synthesized from
the three tRNA™"Ps at 79% yield, and, surprisingly,
because yU-tRNAP™B translations gave higher yields if
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Figure 5. Comparison between tRNAT™Bs and tRNA**"Bs for incor-
porating three adjacent, different unnatural AAs. (A) Rational design
of three anticodon mutants of tRNAPB,, . (Figure 2B) for synthesis
of a peptide containing three different unnatural AAs. The encoded
natural and unnatural translation products are green and blue, respec-
tively, and the structure of the latter is shown. (B) Dependence on each
unnatural AA-tRNA for synthesis of fM-yU-mS-eU-E. The positive
control translations used all natural AA-tRNAs and mRNA MVE
(8) to give fMVE with a mean yield of 0.49 pmol (not plotted). The
test syntheses (blue) used mRNA MNTVE. As stringent negative con-
trols for the specificity of incorporation (red), each of the unnatural
AA-tRNAs was omitted individually. tRNAPBs open squares.
tRNAM"Bs open triangles [taken from ref. (10)]. Background d.p.m.
obtained in translations without mRNA were subtracted.

the downstream AA came from the unnatural mS-
tRNAPPE  instead of the natural Thr-tRNAT
(Figure 6). Thus, although the tRNA”"B translations
were generally higher yielding than the tRNAP"® transla-
tions, as predicted from Figure 5B results, the major dif-
ferences in yields were not due to problems with all three
tRNAP"Bs but rather just due to the poorly-incorporating
yU-tRNAPheBGUU

Finally, another variable that might affect AA-tRNA
efficiency in translation is considered: the stability of anti-
codon-codon base pairing (29). For the two tRNA”"B
bodies in the synthesis of poly(eU) (Figures 2C and 3C),
the yields correlate with the relative, theoretical, codon-
anticodon stabilities:

elU — tRNAAsnBGUU< elU — tRNAAsnBGGU

Figure 5A shows the anticodon-codon base pairing:
from left to right, anticodon GUU forms 2 UA + 1 GC
bps; anticodon GGU forms 1 UA +2 GC bps.
However, Figure 6 shows that yields for the six
tRNA” and tRNAPPB bodies increased in general as
follows:

yU — tRNAGUU< mS — tRNAGGU< elU — tRNAGAC
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Figure 6. Effect on yield of all combinations of three different unnat-
ural AA incorporations into fMNTVE from tRNA*"®s and
tRNAP'Bs  The sequences of the eight product peptides are shown
to the left of the bars. The positive control translations with all natural
AA-tRNAs gave fMNTVE with mean yield of 0.33 pmol (light green
bar done in parallel with tRNA*"B translations) and 0.39 pmol (dark
green bar done in parallel with tRNAP"® translations) and were nor-
malized to 100%. The heights of the other (blue) bars are represented
as relative to their all-natural peptide controls (green) performed on the
same day. Background d.p.m. obtained in translations without mRNA
were subtracted, and standard deviations for each of the 15 different
types of translations are shown.

Though the efficiencies of these four tRNAgyy and
tRNAGGu AA-tRNAs again correlate with the theoretical
relative stabilities, the two eU-tRNAgacs do not. The two
highest yielding unnatural AA-tRNAs, both with anti-
codon GAC, form ICG + 1 AU + 1 GU bps, the lowest
theoretical stability of the three anticodon-codon pairings
shown in Figure 5A.

DISCUSSION

These synthetic biology experiments, optimizations and
controls confirm and extend our prior initial study (10)
on unnatural peptide synthesis in a purified translation
system. It is clear that low yields in that study cannot be
explained by any single potential problem tested here,
such as low solubility of products, differential recoveries
from the columns, preferential deacylation of unnatural
AA-tRNA, a sub-saturating concentration of EF-Tu, an
unnatural anticodon loop sequence, tRNA”"B_gpecific
problems, an inability to synthesize an unnatural AA-
tRNA completely in vitro that incorporates efficiently at
a single site, inefficient polymerization of adjacent unnat-
ural aminoacyl-tRNAs, regular decrease in yield with each
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unnatural incorporation, and codon-anticodon interac-
tions of low theoretical stability. Figures 2-6 showed
that the most stringent test for substrate efficiency in our
purified system is measuring multiple, not single, incor-
porations of unnatural AAs per product. Multiple, as
opposed to single, AA incorporations have also proved
superior for assaying AA-tRNA substrate efficiency in
crude and in vivo systems (31-34). The complexity of
the different AA-tRNA structures and their assay
results preclude a simple structural explanation for all
the inefficiencies. Indeed, it may be naive to expect a
single structural explanation, as different AA-tRNAs
may be inefficient for different reasons. However, the
data do demonstrate the incomplete modularity of
AA-tRNAs in polymerization by the ribosome. This has
implications for the universality of the genetic code.
Constraints in the code are apparently imposed not only
by the AA-tRNA synthetases and the proteome, but
also by the difficulty in changing the AA specificity of a
tRNA without substantially decreasing its activity in
translation (28).

Changes in AA-tRNA modules presumably affect trans-
lation efficiency by altering structural recognition elements
for EF-Tu (5) and/or the ribosome/mRNA complex.
Though kinetic studies are needed to define the mechan-
ism(s), some discussion of potential mechanisms consis-
tent with the results is warranted. EF-Tu was used in
excess and was apparently saturating (Supplementary
Figure S5), and preferential deacylation of unnatural sub-
strates was apparently not problematic, so there was no
indication that delivery of L-AA-tRNAs was limiting.
Because the translation system is highly purified
(Supplementary Figure S2), there should not be any nat-
ural substrates or release factors competing with unnatu-
ral substrates at the A site. However, the slow synthesis
of a polymer of eU-tRNA™"®,5u (Supplementary
Figure S4) opens up the possibility of pausing at each
unnatural incorporation for long enough to prevent com-
pletion of synthesis of full-length product during the incu-
bation and/or to allow peptidyl-tRNA drop-off from the
ribosome before chain completion. Indeed, even single
incorporations of more radical unnatural AAs, the
D-AA, a-hydroxy acid and N-methyl-AA backbone ana-
logs, are dramatically slow (30,35,36). Slow incorporation
might explain why product yields were generally lower
when multiple, as opposed to single, unnatural incorpora-
tions were required (Figures 2—6). Peptidyl-tRNA drop-off
from the ribosome competes significantly with elongation
during translation of N-terminal codons using natural
substrates (37,38), let alone unnatural substrates. Given
that drop-off is thought to be much slower at downstream
codons due to stronger binding of longer peptidyl
sequences to the ribosome tunnel, it is possible that incor-
poration of unnatural AAs could be improved by incor-
poration downstream of a long leader peptide.

Incomplete modularity of AA-tRNAs has implications
for pure translation display with unnatural AAs, a method
for the genetic synthesis and selection of unnatural peptide
ligands attached to their mRNAs via the ribosome (18).
Attempted synthesis of libraries in a combinatorial
manner, and synthesis of longer products (e.g. 10-mers),

would be expected to yield only a subset of the desired
encoded library products. Though some losses would be
acceptable, it would be important to verify that losses did
not represent too great a proportion of the encoded
library. The preponderance of unexpected results here
means that it is difficult to predict the translation activity
of any individual unnatural AA-tRNA a priori. The
synthetic scope might be extended in the future by synthe-
sizing and testing additional tRNA bodies in vitro that are
more closely related to their wild-type versions. It has also
been reported recently that using unnatural AA-tRNAs
at extremely high concentrations (0.2 mM each) facilitates
polymerization of unnatural L-AAs, N-methyl-AAs,
N-alkyl-glycines and a-hydroxy acids (15-17). Mutation
of the translation apparatus can also improve its tolerance
for unnatural substrates (39).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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