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Abstract: Cow milk is the most common dairy milk and has been extensively researched for its
functional, technological and nutritional properties for a wide range of products. One such product
category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding
is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons,
consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture
infant, follow-on and young child formulas over the last 30 years. While similar in many aspects,
compositional and functional differences exist between cow and goat milk. This offers the opportunity
to explore different formulations or manufacturing options for formulas based on goat milk. The use of
whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium
chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised.
These features improve the composition and microstructure of whole goat milk-based infant formula,
providing similarities to the complex human milk fat globules, and have been shown to benefit
digestion, and cognitive and immune development. Recent research indicates a role for milk fat and
MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the
lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to
support healthy digestion, brain development and immunity. Further work is warranted on the role
of these components in allergy development and the advantages of goat milk fat and MFGM for
infant nutrition and health.
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1. Breast Milk and Breast Milk Substitutes

Human breastmilk is the optimal source of nutrition for the human infant. While it is recommended
to exclusively breastfeed to 6 months of age [1], infant formulas are the most suitable breast milk
substitutes when breastfeeding is not possible. Cow milk ingredients have traditionally been used as
the source of proteins in the manufacture of infant, follow-on and young child formulas. The main
source of lipids in formulas is commonly a blend of vegetable oils, and lactose, vitamins and minerals
are added to match the macro- and micronutrient composition of human milk as outlined in local
regulations [2,3]. While whole cow milk can be used in the formulation of infant formulas, it is more
common to use skim milk and whey protein powdered ingredients to reach a whey:casein ratio of 60:40,
as in mature human milk, while providing an adequate amino acid supply within the allowed protein
levels in the regulations [4]. However, the whey protein adjustment limits the amount of milk fat in the
final infant formula. Other sources of cow milk fat could be added such as liquid or powdered cream
and anhydrous milk fat, but these ingredients are usually costly or not available in paediatric grade [3].

Human milk lipids are present as milk fat globules with a complex structure of triglyceride
droplets stabilized by a trilayered membrane, the milk fat globule membrane (MFGM) [5]. Human
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milk fat has a unique fatty acid profile, with a high level of palmitic acid [6]. To match the palmitic acid
concentration of human milk, infant formula manufacturers need to add unmodified or structured palm
oil or milk fat [2,3]. In the last decade, there has been increased criticism over the use of palm-derived
products and a push from consumers to limit the use of such ingredients [7]. In addition, vegetable oils,
and in particular palm oil, contain some contaminants such as 2- and 3-monochloropropane-1,2-diols
and their fatty acid esters formed during the oil refining process [8]. This has led to a resurgence in the
use of milk fat for infant formula products, particularly in Europe [3].

2. Infant Formula Made from Goat Milk

While the use of animal milk to feed infants has a long tradition, infant formula products are
usually based on cow milk ingredients or plant-based ingredients, e.g., soy or rice protein isolate
as a source of proteins and maltodextrin or other sugars as a source of carbohydrates [2]. Due to
increased consumer demand for alternatives to cow milk [9] and the recognition of the presence of
anti-nutritional factors, such as trypsin inhibitor and phytate, phytoestrogens and undesirable taste
in plant-based products [10,11], goat milk has been reintroduced in pediatric nutritional products in
the last 30 years. Goat milk is perceived to be easier to digest than cow milk, making it beneficial for
infant nutrition [12–14]. Milk from goats with a low αs1-casein genotype is favoured for manufacture
of infant formulas, as αs1-casein is a predominant milk allergen [15] and the milk forms a softer curd in
acidic environment such as in the stomach [16,17]. Other factors such as nutritive value (absence of A1
β-casein in goat milk [18]) and an association with tradition [19,20] make goat milk more attractive to
some consumers.

As with traditional infant formulas based on cow milk protein ingredients, some formulas based
on goat milk are whey-adjusted, i.e., using goat skim milk and whey protein ingredients to reach
a whey:casein ratio of 60:40 and therefore using mainly vegetable oils as the source of lipids [14].
This review will focus on the infant, follow-on and young child formulas based on whole goat milk
without adjustment of the whey:casein ratio (i.e., maintaining the natural 20:80 whey:casein ratio of
whole goat milk) and with clinical evidence that it supports healthy growth and development of the
infant [21–23]. The use of whole goat milk has two main advantages, it allows to match more closely
the diverse composition of human milk fat but also its complex structure.

3. Whole Goat Milk Fat to Supply a Variety of Fatty Acids and sn-2 Palmitate

Theαs1-casein genotype has an impact on the fatty acid profile of goat milk, with the lowαs1-casein
genotypes associated with increased level of unsaturated fatty acids [24]. Goat milk and cow milk
have a relatively comparable total fat content and fatty acid profile [25,26]. SCFAs, in particular C4:0,
are not always detectable or reported for human milk (Table 1), however a few studies have reported
levels of C4:0 in lower concentrations than in cow and goat milk fat ([27,28]; Table 1). Fat from goat
milk contains a higher amount (15%–18%) of the MCFAs C6:0, C8:0 and C10:0 compared to cow milk
(5%–9%) [26]. As MCFAs are more readily released and absorbed in the gastrointestinal tract (GIT),
this unique composition may contribute to a greater digestibility of goat milk fat compared to cow
milk fat [26]. Cow milk contains on average slightly more palmitic acid than goat milk (Table 1).
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Table 1. Fatty acid concentration (% of total fatty acids) in human milk, cow milk, goat milk and whole goat milk-based infant formula.

Human Milk 1

Europe
Human Milk 1

Asia Cow Milk 2 Goat Milk 2
Whole Goat

Milk-Based IF 3

48% MF

Whole Goat
Milk-Based IF 4

55% MF

Cow
Milk-Based IF
Vegetable Oil

Only 6

Cow
Milk-Based

IF MF 1

Butyric acid C4:0 ND ND 3.2–3.3 2.0–2.6 1.17 3.1 ND 2.4
Caproic acid C6:0 0.39 0.07 1.6–2.1 2.4–2.9 1.06 2.5 ND/0.2 1.3
Caprylic acid C8:0 0.19 (0.09–0.24) 0.17 (0.11–0.28) 1.2–1.3 2.7–2.7 1.11 2.0 1.2/2.5 1.7
Capric acid C10:0 1.29 (0.83–1.63) 1.31 (0.52–2.48) 3.0–3.1 8.4–9.7 3.43 7.3 1.1/1.8 2.2
Lauric acid C12:0 5.98 (4.15–8.33) 5.56 (2.97–13.82) 3.1–3.3 3.3–4.3 1.54 4.2 5.4/13.4 6.3

Myristic acid C14:0 6.44 (4.98–9.38) 5.70 (3.50–12.12) 9.5–12.1 9.6–10.3 3.68 7.0 4.6/5.2 7.2
Myristoleic acid C14:1 0.18 0.26 (0.03–1.11) 0.7–1.1 0.09–0.16 0.12 ND ND/ND 0.8

Pentadecanoic acid C15:0 0.25 (0.16–0.32) 0.20 (0.08–0.50) ND ND 0.35 0.6 ND/ND 0.6
Palmitic acid C16:0 21.93 (15.43–25.62) 21.78 (17.55–29.00) 26.5–32.2 24.6–27.7 12.30 17.0 26.3/7.7 18.9

Palmitoleic acid C16:1 n-7 1.98 (1.65–2.31) 2.44 (1.29–4.59) ND ND 0.39 ND 0.6/0.1 1.1
Heptadecanoic acid C17:0 0.29 (0.22–0.33) 0.28 (0.19–0.41) ND ND 0.29 0.4 ND/ND 0.3

Stearic acid C18:0 7.37 (5.58–9.52) 5.58 (3.90–6.79) 8.9–14.6 9.7–12.5 5.89 6.3 5.3/3.2 6.7
Oleic acid C18:1 n-9 36.30 (28.93–41.69) 30.80 (21.85–36.96) 19.3–24.1 19.4–24.0 40.65 31.0 37.6/43.3 28.1

Linoleic acid C18:2 n-6 13.99 (10.16–16.59) 16.90 (7.53–24.29) ND ND 10.79 14.0 14.0/20.5 16.7
Conjugated linoleic acid C18:2 c9, t11 0.27–0.49 5 ND 0.1–1.9 0.4–3.7 0.33 ND ND/ND ND

α-linolenic acid C18:3 n-3 0.76 (0.49–1.05) 1.47 (0.35–4.06) ND ND 1.58 1.2 1.6/1.8 1.5
Arachidic acid C20:0 0.21 (0.14–0.31) 0.32 (0.03–2.97) ND ND 0.24 0.3 ND/0.3 0.3

Arachidonic acid C20:4 n-6 0.47 (0.37–0.64) 0.64 (0.30–2.57) ND ND 0.45 ND 0.3/0.3 ND
Eicosapentaenoic acid C20:5 n-3 0.09 (0.05–0.13) 0.31 (0.07–1.59) ND ND 0.12 ND ND/0.0 ND

Behenic acid C22:0 0.09 (0.05–0.13) 0.08 (0.05–0.14) ND ND 0.33 ND ND/0.4 0.1
Docosahexaenoic acid C22:6 n-3 0.28 (0.18–0.42) 0.55 (0.19–1.13) ND ND 0.44 ND 0.2/0.2 ND

Tetracosanoic acid C24:0 0.07 (0.03–0.16) 0.07 (0.01–0.14) ND ND 0.21 ND ND/0.1 ND
1 from [3]. 2 from [26]. 3 Measured using gas chromatography (n = 2). 4 from [25]. 5 from [29]. 6 from [3]; values (%/%) are for cow milk-based IF manufactured with a blend of vegetable
oils with palm oil/without palm oil. ND: not determined. IF: infant formula. MF: milk fat.
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Human milk has more oleic, docosahexaenoic (DHA), arachidonic acid (ARA), linoleic and
α-linoleic acids than goat or cow milk (Table 1). Hence, it is not possible to use goat or cow milk fat as
the only source of lipids for infant formulas. Therefore, vegetable oils and oils rich in DHA and ARA
must be added to match the fatty acid profile of human milk. The fatty acid profile of two examples
of infant formulas made from whole goat milk, one with a 48% and one with 55% of lipids as milk
fat, is given in Table 1. By using a combination of vegetable oils and milk fat from whole goat milk,
levels of unsaturated fatty acids comparable to human milk can be achieved. Most importantly the
use of milk fat in infant formula provides a more complex fatty acid profile similar to that found in
human milk (Table 1), with increased levels of short and medium chain fatty acids (SCFAs and MCFAs,
respectively), presence of fatty acids typical of milk fat such as C15:0, C16:1 n-7, C17:0, conjugated
linoleic acid (CLA) and branched-chain fatty acids (BCFAs), and comparable levels of palmitic acid.
A similar compositional effect can be obtained by using milk fat from cow milk-derived ingredients to
manufacture cow milk-based infant formulas (Table 1). Indeed, more common cow milk-based infant
formulas are manufactured using skim milk and whey protein powders blended with vegetable oils
with or without palm oil. As the lipid composition of infant formulas is influenced by the source of
vegetable oils and the type of dairy ingredients used in the formulation, the fatty acid profile of three
cow milk-based infant formulas is given for comparison in Table 1.

Early reports indicate that goat milk contains 280 mg β-keto acids/kg of fat, in particular those of
16 and 18 carbon chain length [30]. In addition, rapid absorption and β-oxidation of dietary MCFAs
result in the release of plasma ketones, a source of energy and acetyl-CoA for the brain of the growing
infants [31]. Breastfed infants have higher levels of plasma ketones than formula-fed infants [31]. Thus,
an infant formula made from whole goat milk provides a source of MCFAs and β-keto acids, which
may contribute to brain development. In addition, goat milk contains BCFAs, such as 4-methyl- and
4-ethyl-octanoic acid [32]. BCFAs are also found in human milk and their concentration is influenced
by maternal diet [33]. BCFAs are essential to bacterial membrane functions and have been shown in
limited animal and human studies to alter the gut microbiota [33]. CLA (c9, t11) levels in goat milk and
infant formula based on whole goat milk are within the same range as found in human milk (Table 1).
A study looking at CLA levels in human milk and a range of cow milk-based formulas found that
human milk contained significantly more CLA and some infant formulas did not contain any detectable
levels [34]. While CLA is considered an anticarcinogen, its role in infant nutrition remains unclear.

As seen in Table 1, both goat milk and cow milk are good sources of palmitic acid. The use of
vegetable oils as the only source of lipids in infant formulas results in levels of palmitic acid below
(7.7%), when palm oil is not used, or similar (26.3%), when palm oil is used, to that of human milk
(15.4%–29.0%) (Table 1). Depending on the level of milk fat used, the use of whole goat milk as a source
of milk fat in infant formula results in infant formulas with a level (12.3%–17.0%) of palmitic acid close
to the lower end of the concentration in human milk (15.4%–29.0%) (Table 1). Similarly the use of cow
milk fat in infant formulas results in comparable levels of palmitic acid (Table 1).

Human milk is quite unique in the way that up to 70% of its palmitic acid is found in the sn-2
position of the triglyceride molecules [6]. Reports on the sn-2 palmitic acid content in human milk
(Table 2) vary in the literature partly due to different analytical methods used but the sn-2 palmitic acid
content does not seem affected by maternal diet or geographical location [31]. Palm oil is commonly
added in infant formulas to reach a palmitic acid level within the range found in human milk (Table 1).
However most of the palmitic acid in palm oil is in the sn-1,3 position, unless it has been enzymatically
or chemically interesterified to result in structured palm oil rich in 1,3-dioleyl-2-palmitoylglycerol,
also called OPO or Betapol [7]. Cow milk-based infant formulas have therefore a variable sn-2 palmitic
acid content depending on the type of added vegetable oils (Table 2). Goat milk and cow milk are
natural sources of sn-2 palmitic acid (Table 2). By using whole goat milk without modification of
the whey:casein ratio, an infant formula can contain up to 31% of palmitic acid in the sn-2 position,
so about half the level in human milk (Table 2), but more than the level in infant formulas (as low as 8%)
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manufactured with vegetable oils only [2]. The advantage of the stereospecifity of palmitic acid for
infant nutrition, beyond mimicking the triglyceride structure of human milk fat, will be discussed later.

Table 2. sn-2 palmitic acid percentage in human milk, cow milk, goat milk and whole goat milk-based
infant formula.

Human
Milk 1,2

Cow
Milk 2,3

Goat
Milk 3

Whole Goat
Milk-Based
IF 4 48% MF

Whole Goat
Milk-Based
IF 3 55% MF

Cow Milk-Based
IF Vegetable Oils

Only 2

% sn-2 palmitic acid 51–88 37–45 35 29.5 31 10–20/39–47 5

1 from [6,35]. 2 from [3]. 3 from [25]. 4 Measured with ISO 6800 by ITERG, France (n = 6). 5 Values (%/%) are given
for cow milk-based IF manufactured with a blend of vegetable oils without structured palm oil/with structured
palm oil. IF: infant formula; MF: milk fat.

4. Whole Goat Milk as a Source of Cholesterol

Human, cow and goat milk fats contain similar levels of cholesterol (Table 3), present in both
the core and the membrane of fat globules and about 90% in the free state (vs. 10% as cholesterol
esters) [30,36]. Infant formulas, with vegetable oils as the only source of lipids, contain very little
cholesterol deriving from residual levels in skim milk and whey protein ingredients [3]. Raising
the level of cholesterol of infant formula close to that of human milk can be achieved by adding
anhydrous milk fat or cream as sources of lipids but also by adding MFGM-rich ingredients [3,37–39].
In Timby et al. [37], a concentration of 80 mg of cholesterol/L was achieved by supplementing the
experimental infant formula with an MFGM-rich whey ingredient. Claumarchirant et al. [38] analysed
a range of commercial infant formulas and reported levels of total animal sterols between 17.1 and
54.6 mg/L and cholesterol between 14.6 and 51 mg/L, with the highest levels found in infant formulas
supplemented with cow milk fat and an MFGM-rich whey ingredient. Using unmodified whole goat
milk as a source of native milk fat globules (i.e., core and MFGM) is another way to increase the level
of cholesterol in infant formula to about half the average cholesterol level of human milk (Table 3).

Table 3. Cholesterol concentration (mg/L) in human milk, cow milk, goat milk and whole goat
milk-based infant formula.

Human
Milk 1

Cow
Milk 2

Goat
Milk 3

Whole Moat
Milk-Based IF 4

Cow Milk-Based
IF 5

Cholesterol (mg/L) 90–200 100–300 100–200 58 14.6–51
1 from [40,41]. 2 from [3,41]. 3 from [30]. 4 Measured using gas chromatography with flame ionization detector
(AOAC 970.51) (n = 6). 5 from [38] from a range of commercial IFs with or without the addition of cow milk fat and
MFGM. IF: infant formula.

5. The Secretion of Goat Milk

Another advantage of using fresh unmodified whole goat milk is the addition of native milk fat
globules with MFGM. The secretion mechanism of fat globules in cows, goats and humans have been
shown to be similar, involving secretion of fat globules surrounded by the secretory cell membrane [30,42].
While the structure of MFGM in milks of most species is similar, a few reports showed an increased
presence of cytoplasmic crescents attached to goat milk fat globules compared to cow milk fat globules,
a thicker goat MFGM and a more filamentous human MFGM glycocalyx [30,43–45]. The amount of
MFGM polar lipids appears higher in mid-lactation milk from goats with a null genotype for αs1-casein
than those with a strong genotype for αs1-casein, potentially explained by a smaller fat globule diameter
in the former [46]. An upregulation of MFGM lactadherin and stomatin was observed in early-lactation
milk from goats with a null genotype for αs1-casein. Furthermore, Cebo et al. [46] reported an increase
in total phospholipids, in particular phosphatidylinositol (PI) and sphingomyelin (SM), in milk fat from
goats with a null genotype for αs1-casein.
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While the mechanism of milk secretion has been studied for over 150 years and a clear consensus
has not been reached, the secretion of goat milk and human milk is considered to be apocrine, while cow
milk is secreted through a merocrine process [43]. The presence of large numbers of cytoplasmic
fragments in goat milk and human milk has been hypothesised to be due to a greater emphasis on
apocrine secretion [42,44]. Cellular fragments are also common in human milk but are less abundant
in cow milk [47], suggesting goats and humans share similar secretion mechanisms. In goats, at least,
there is evidence that the normal secretion process for casein proteins is perturbed at low αs1-casein
levels, resulting in proteins being secreted by the apocrine process [16,48].

Apocrine secretion results in cytoplasmic material from the mammary cell being released in
the milk in the alveolar lumen and an increased number of milk fat globules with cytoplasmic
crescents [16,47]. Cytoplasmic crescents are known to enclose various vesicles and miRNA, which may
benefit the infant’s immune system [5]. In several studies, it was demonstrated that only 1% of cow
milk fat globules were associated with cytoplasmic crescents, while up to 5% of goat milk fat globules
and 7.2% of human milk fat globules were associated with cytoplasmic crescents [43–45]. Despite
identification of cytoplasmic material in the milk and associated with the MFGM decades ago, their role
for the health of the offspring or as marker of the health of the mammary gland remains undetermined.

6. Whole Goat Milk as a Source of MFGM Polar Lipids

As with cow milk, it is estimated that about 60% of goat milk phospholipids are associated with
the MFGM and 40% are found in skim milk, which migrate from the MFGM after secretion of the
milk fat globules into the alveolar lumen of the mammary cell [30]. Goat milk contains 30–40 mg
phospholipids/100 g milk or 8–10 mg phospholipids/g fat. Similar to human milk and cow milk
(Table 4), the main goat milk phospholipids are phosphatidylcholine (PC), phosphatidylethanolamine
(PE), SM, phosphatidylserine (PS) and PI. Phospholipid levels in human, goat and cow milk vary with
genetics, lactation stage and diet, but reports in the literature also vary with methods of extraction and
analysis [26,49]. Phospholipid measurement with 31P-NMR allows the distinction between SM and
dihydrosphingomyelin (DHSM) unlike chromatographic methods but SM and DHSM are commonly
summed [50]. By using whole goat milk to manufacture infant formula, it is possible to supply
phospholipids, and in particular SM, to levels and proportion close to that of human milk (Table 4).
Infant formulas based on vegetable oils as the main source of lipids or not enriched with MFGM
usually will contain a limited amount of phospholipids, mainly derived from soy or sunflower lecithin
used as an emulsifier [3,39], therefore with lower levels of SM and PS and higher proportion of PC, PE
and PI than in human milk [49].

Table 4. Total phospholipid concentration (mg/L) and percentage of phospholipid species (% of total
phospholipids) in human milk, cow milk, goat milk and whole goat milk-based infant formula.

Human Milk 1 Cow Milk 3 Goat Milk 3 Whole Moat Milk-Based IF 4

Total PL (mg/L) 286.6 (98–474 2) 294–400 5 276 5 169.2
PL (mg/L)

PI 2.2–21 0.5–26.7 6 21.1 4 17.5
PC 32–124 18.2–128.0 6 93.7 4 51.6
PS 11–45 2.5–56.5 6 38.7 4 18.3
PE 26–103 19.2–143.0 6 91.6 4 40.2
SM 25–177 11.9–98.9 6 91.2 4,7 38.7 7

% of total phospholipids
PI 1.1–10 0.1–9.0 2.21–9.4 11
PC 19–38 25.9–33.2 27.4–31.6 31
PS 3.7–17 0.12–9.1 2.41–14.0 11
PE 5.9–36 23.4–46.7 26.9–46.1 24
SM 29–43 19.8–25.4 16.1–27.3 23 7

1 from [38]. 2 from [49]. 3 from [26]. 4 Measured using 31Phosphorus-nuclear magnetic resonance (n = 3 for goat
milk and n = 5 for IF). 5 from [51]. 6 from [52]. 7 sum of SM and DHSM (dihydrosphingomyelin). PL: phospholipids;
PI: phosphatidylinositol; PC: phosphatidylcholine; PS: phosphatidylserine; PE: phosphatidylethanolamine;
SM: sphingomyelin.
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There are only limited reports on the other minor MFGM lipids in goat milk, such as cerebrosides
(2.50 mg/100 mL milk), glucosyl ceramide (0.97 mg/100 mL) and lactosyl ceramide (1.53 mg/100 mL) [30].
Total goat milk gangliosides, sialic acid-rich glycolipids mainly present in the MFGM, have only
been reported as lipid-bound sialic acid (LBSA) and individual gangliosides separated by thin layer
chromatography [53,54]. Gangliosides were reported to be unaffected by heat treatment [53]. The level
of total goat milk gangliosides is about 2.5 mg/kg colostrum (day 1) and 0.4 mg/kg mature milk, about
2–10 times lower than in cow milk depending on the stage of lactation. GM3, GD3 and GT3 represent
66%–92% of LBSA and contain sialyllactosylceramide [53]. The ratio of N-glycolylneuraminic acid
(Neu5Gc) to N-acetylneuraminic acid (Neu5Ac) increased from 30% to 60% in the first 2 months
of lactation [53]. Neu5Gc and Neu5Ac sialic acid contents in goat milk was shown to vary across
lactation, with the total sialic content varying between 12.2 and 63.1 mg/100 g milk and a constant 60:40
Neu5Gc:Neu5Ac ratio [55]. Unfortunately, ganglioside levels measured using more accurate techniques
or taking into consideration the increased proportion of Neu5Gc in goat milk are lacking. The mean total
gangliosides (mainly measured as GD3: aNeu5Ac(2–8)aNeu5Ac(2–3)bDGalp(1–4)bDGlcp (1–1)Cer) in
growing-up milk powders (also known as stage 3 or young child formulas) based on cow or goat milk
varied from 0.03 to 11.0 mg/100 g powder [56]. Goat milk-based powders had the lowest ganglioside
levels (0.03–0.2 mg/100g). However, Neu5Gc-based gangliosides were not measured. Indeed, analytical
methods are usually tailored to quantify milk Neu5Ac-gangliosides, which is the only type present in
human milk and the main type in cow milk. Neu5Gc and Neu5Ac differ by a single oxygen and are
the two major mammalian sialic acid forms in glycoproteins and glycolipids. It is unclear what impact
xeno-immunization resulting from consumption of dietary Neu5GC has on human health [57].

7. Whole Goat Milk as a Source of MFGM Proteins

The MFGM is also a rich source of membrane specific proteins, including glycosylated proteins
and enzymes [58]. The human and bovine MFGM proteomes have been extensively studied but the
goat MFGM proteome is being increasingly studied [59–61]. Quantitative analysis remains challenging
and mainly focuses on relative abundance and function of proteins.

While the caprine MFGM proteome is less diverse than the bovine MFGM proteome (520 vs. 1012
proteins, respectively), they are both dominated by the same eight MFGM proteins: mucin 1 (MUC1),
butyrophilin (BTN), xanthine oxidase, lactadherin (also called periodic acid Schiff 6/7 or MFGE8), fatty
acid binding protein, perilipin-2, CD36 and mucin 15 [26,59]. O-glycans were found on goat MFGM
fatty acid synthase and xanthine oxidase [59]. A comparison of the MFGM proteins between cow, goat,
sheep, camel and horse species revealed some similarities but also some differences, in particular for
butyrophilin and lactadherin, likely due to varying glycosylation [62]. Goat MUC1 is larger than MUC1
form sheep and cow milk. Goat BTN (67kDa) is slightly larger than cow milk BTN (64 kDa) but smaller
than horse milk BTN (70 kDa). Goat lactadherin is made of one single polypeptide chain of 54 kDa
unlike cow lactadherin with two polypeptide chains. Lactadherin, an antiviral protein involved in the
maintenance of the intestinal epithelium, is also more abundantly expressed in goat milk than in human
milk [63]. Goat lactotransferrin, an antipathogenic protein in the MFGM, is expressed at a lower level
than its human counterpart but their structures are highly homologous [63]. Using whole goat milk to
manufacture infant formula is a way to potentially improve the protein composition of infant formula
by supplying MFGM proteins, known to play a protective role against pathogens, as described later.
Unfortunately, qualitative and quantitative methods, including isolation or extraction and analysis,
to measure MFGM proteins have not been applied to infant formulas yet.

8. The Relevance of the Fat Microstructure in Infant Nutrition

With the amount of research over the last two decades, we now have a better understanding of the
importance of food beyond nutrient content and supply and the role of the food matrix as a key driver
of food digestion, nutrient delivery, and digestive and physiological outcomes [36,64]. Human milk
is more than just the sum of its nutrients; some nutrients are packaged in a way to enhance nutrient
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digestion, absorption or delivery within the infant GIT [36]. As such, the milk fat globule provides
more than just energy, with the MFGM structural complexity likely optimized for the digestion of milk
fat, the metabolism of MFGM components and their physiological effects [36].

Transmission electron microscopy was used to reveal the fat and protein structures in raw whole
goat milk (Figure 1), whole goat milk powder (Figure 2) and infant formula based on whole goat milk
with unmodified whey:casein ratio (Figure 3). As mentioned previously, goat MFGM in raw goat
milk can have a thickness of up to 50-100 nm and be thicker (Figure 1A) than commonly observed for
MFGM of other species [42] and may enclose cytoplasmic crescents (Figure 1B). Figure 1A,B also show
that casein micelles in raw goat milk vary in size and are less than 500 nm in diameter.
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Figure 1. Transmission electron microscopy images of raw goat milk. (A) showing goat milk caseins
and fat globules with a thick MFGM. (B) showing a milk fat globule with a cytoplasmic crescent (white
arrow). Black arrows point at the MFGM surrounding fat globules. Goat milk was collected from a
single goat in a New Zealand goat farm and kept at room temperature until processing within 2 h using
the same method as in Gallier et al. [5]. Scale bar = 0.5 µm.

Whole goat milk powder is obtained by pasteurization, homogenization and spray-drying of
whole goat milk. As for cow milk, this results in interaction of milk proteins with the MFGM, disruption
of the MFGM, and reduction of the size of the milk fat globules [64]. The size distribution of the casein
micelles in whole goat milk powder (Figure 2) was heterogenous and similar to that in raw whole goat
milk (Figure 1). MFGM fragments were present in the aqueous phase of goat milk, while some goat
milk fat globules were mainly or partially stabilized by the MFGM (Figure 2). Processing also resulted
in interfaces stabilized by milk proteins, and an increased number of milk fat globules with interfaces
stabilized by caseins were observed, as compared with raw goat milk fat globules (Figure 1).

Manufacturing infant formula with whole goat milk and some vegetable oils involving
pasteurization and homogenization leads to an oil droplet structure (Figure 3) similar to the structure of
a standard (60:40 whey:casein ratio) infant formula oil droplet [5], despite having a 20:80 whey:casein
ratio. Indeed, the oil droplets (Figure 3) are stabilized by a thin layer, likely composed of whey proteins
and milk phospholipids from whole goat milk, and a few adsorbed small casein micelles. However,
a few droplets (Figure 3B) presented a slightly thicker interface, composed of remnants of the native
MFGM from milk fat globules in whole goat milk. In addition, as seen in Figure 3A,B, some intact
MFGM fragments of various lengths were observed in the aqueous phase. Cytoplasmic crescents and
their content were still found associated with MFGM fragments (Figure 3B). The presence of MFGM
fragments, with a near-intact structure in the aqueous phase or at the interface of formula droplets and
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associated with cytoplasmic crescents, in infant formula based on whole goat milk may help delivering
key MFGM components to the infant by matching more closely the composition but also the structure
of human milk fat globules, as discussed later.Nutrients 2020, 12, x FOR PEER REVIEW 9 of 24 
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Figure 2. Transmission electron microscopy images (A and B) of reconstituted whole goat milk
powder (Dairy Goat Co-operative, Hamilton, New Zealand) processed using the same method as in
Gallier et al. [5]. Black arrows point at the MFGM surrounding fat globules (A) or as fragments in
the serum phase (A and B). White arrows point at fat globules with adsorbed small casein micelles
(A and B). Scale bar = 0.5 µm.
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Figure 3. Transmission electron microscopy images (A and B) of reconstituted whole goat milk-based
infant formula (Dairy Goat Co-operative, Hamilton, New Zealand) processed using the same method
as in Gallier et al. [5]. Black arrows point at MFGM fragments in the serum phase (A and B). Full white
arrow points at an MFGM fragment with attached cytoplasmic crescent filled with electron-dense
material (B). Dashed white arrows point at droplets with thicker interface (B). Scale bars = 200 nm (A)
and 1 µm (B).

9. Role of Milk Fat and MFGM in Infant Nutrition, Growth and Development

To be suitable as the sole source of nutrition for infants up to the age of 6 months and in
combination with complementary foods thereafter, formulas based on goat milk must adhere to similar
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strict compositional regulations as formulas based on cow milk to supply suitable levels of proteins,
carbohydrates, fat, vitamins and minerals for optimal growth of the infant [30]. As the clinical research
in pediatric populations consuming goat milk-based infant formulas is scarce at present, most of our
knowledge on the role of milk fat to support healthy growth and development of the infant is based on
studies with breastfed infants and infants fed cow milk-based formulas. The reader is referred to several
recent reviews of preclinical and clinical research on the role of milk lipids on digestion, metabolic
programming, immunity and cognitive development in early life [3,36,39,49,64,65]. The following
section provides a snapshot of the potential for whole goat milk-based infant formula to support lipid
digestion and metabolism and the development of the brain, cognition and immunity, and its possible
influence on the development of allergy in early life.

9.1. Influence of Lipid Composition and Structure on Lipid Digestion and Metabolism

Human milk lipids are considered to be digested and absorbed more easily than infant formula
lipids [66,67]. This is not only because of its specific composition, but also its triglyceride structure and
microstructure of the milk fat globule [36].

9.1.1. Kinetics of Digestion

In early life, gastric lipase plays a key role in the digestion of lipids due to low output of intestinal
digestive enzymes. Gastric lipase initiates the digestion of triglycerides at the sn-1 or sn-3 position
in the stomach and remains active under intestinal conditions [64]. SCFAs and MCFAs at the sn-1,3
positions are quickly released in the stomach, absorbed as free fatty acids (FFAs) in the intestine and
rapidly degraded by mitochondrial β-oxidation in the liver [6]. Fatty acids at the sn-2 position are
released in the intestine by combined action of lipases from pancreatic secretion and gastric lipase
(and bile salt-stimulated lipase in human milk) as sn-2 monoglycerides (MAG), which are more polar
than FFAs and thus more easily absorbed. LCFAs in the sn-1,3 positions are released as free fatty acids,
solubilized into bile salt micelles and absorbed in the small intestine.

Vegetable oils do not contain SCFAs and MCFAs (with the exception of coconut oil) nor odd-chain
fatty acids, therefore having a less diverse fatty acid and triglyceride range than human, goat and
cow milk ([3]; Table 1). In animal models, consumption of MCFAs in early life reduced the negative
impact of a high-fat diet, in particular insulin sensitivity and fat accumulation, in adulthood [3]. In a
prospective birth cohort, human milk SCFA concentration was associated with a beneficial effect on
weight gain, adiposity and its related metabolic functions up to 2 years of age [27].

Using whole goat milk as a source of goat milk fat results in a more diverse fatty acid profile
in infant formulas compared with formulas including only vegetable oils as the source of lipids.
This diversity may alter lipid digestion kinetics in the stomach and small intestine to provide a
sustained delivery of energy. In particular, the supply of goat milk SCFAs and MCFAs, easily digested
and absorbed, may provide a rapid source of fuel as does human milk [6].

9.1.2. Triglyceride Structure

Although saturated fatty acids are considered to have undesired health effects in adults, palmitic
acid is a key component of membrane, secretory and transport lipids and plays an essential part
in protein palmitoylation and signal molecules [31]. The replacement of milk fat by vegetable oils
and avoidance of the use of palm oil leads to formulas low in palmitic acid, which may modify the
composition of developing tissues and lowers plasma cholesterol levels [31].

While MCFAs, and in particular SCFAs, have a good solubility in water under gastric and intestinal
conditions, saturated LCFAs, and in particular palmitic acid released as FFAs, are less soluble, have a
melting point above body temperature and can form insoluble crystalline acid soaps [31]. Palmitic
acid-calcium soaps were reported to cause gastrointestinal discomfort and associated symptoms in
infants fed an infant formula containing vegetable oils rich in palmitic acid at the sn-1,3 positions such
as palm oil [31]. These soaps result in lower absorption of palmitic acid and calcium and tend to harden
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stools and cause constipation [68]. Other symptoms, such as crying and sleep disruption, that could be
a result of gastrointestinal discomfort caused by constipation, were reported to improve or be prevented
by consumption of formula with increased levels of sn-2 palmitic acid. Other mechanisms may involve
signal acylated molecules, such as palmitoyl and oleoyl ethanolamides, of the endocannabinoid system
that contribute to regulation of sleep and pain sensitivity [68].

To reduce the risk of formation of palmitic acid-calcium soaps and constipation synthetic fat
blends have been developed to more closely resemble the triglyceride structure of human milk, with
palmitic acid predominantly at the sn-2 position [68]. With goat milk having nearly three times more
palmitic acid in the sn-2 position than some vegetable oils [3], inclusion of goat milk fat to formula
is an alternative and natural way to increase the level of sn-2 palmitic acid. In a small double-blind
randomised controlled trial, stool frequency, measured as bowel motions per day, was greater in
infants fed a whole goat milk formula compared with a whey-adjusted cow milk formula [21]. Another
larger double-blind randomised controlled trial reported no difference in stool frequency in infants
fed a whole goat milk formula with 60% milk fat and 40% vegetable oils or a whey-adjusted cow
milk formula with vegetable oils only [23]. Stool frequency was lower in both formula groups than
in the breastfed reference group, however neither formula was supplemented with prebiotics. In a
prospective cohort study, infants fed goat milk formula had similar stool frequency, and to some extent
similar stool consistency, to that of breastfed infants and higher stool frequency than infants fed cow
milk formula between 0 and 4 months of age [69]. In a case series study, infants with symptoms of
constipation when fed cow milk formula experienced less crying, and had less fat excreted in stools
and a change in stool consistency after switching to a whole goat milk formula with 55% of goat milk
fat [70]. Another small study looked at feeding goat milk formula or cow milk formula from 0-3 months
to 6 months of age and reported no difference in fecal characteristics and bowel motion between the
groups [71]. However, the goat formula used was a whey-dominant formula with vegetable oils
only and no goat milk fat but included higher levels of sn-2 palmitic acid and prebiotics. In another
randomised equivalence trial, infants fed a formula supplemented with 48% cow milk fat and MFGM
had more watery stools than infants fed a formula with vegetable oils only but closer to the stool
consistency of breastfed infants [72]. While limited, the evidence points to a positive impact of milk fat
on gastrointestinal health.

9.1.3. Cholesterol and Its Importance in Early Life

Cholesterol is a key component of cellular membranes and its role in infant nutrition has been
overlooked. Cholesterol is a precursor for steroid hormones, oxysterols, vitamin D and bile acids [73,74].
Bile, synthesized in the liver, is a fluid composed of bile acids and cholesterol and plays a key role in fat
digestion and absorption in the small intestine [74]. Dietary and endogenous cholesterol is absorbed in
the upper part of the small intestine [73]. Some lactic acid bacteria such as Lactobacillus present in the
small intestine can metabolize cholesterol into coprostanol, which has a poor intestinal absorption.
Cholesterol metabolism by gut bacteria, mainly Eubacterium and Bacteroides, into coprostanol is most
efficient in the colon and contributes to increased excretion of cholesterol and therefore reduced
blood cholesterol levels [73,74]. Most of the bile acid pool is absorbed and recycled back to the
liver, but 5% is not reabsorbed and passes to the large intestine to be biotransformed by gut bacteria.
There is an increased need for de novo synthesis of bile acids from cholesterol due to bacterial
metabolism of bile acid contributing to cholesterol excretion. Entrapment of cholesterol by gut bacteria
is another pathway, whereby gut bacteria utilise cholesterol for growth or incorporate it into their cell
membrane [73,74]. The combined pathways, i.e., cholesterol absorption and recycling, secretion in bile,
microbial metabolism of cholesterol and bile acids and microbial entrapment of cholesterol, coordinate
the regulation of blood cholesterol level and the cholesterol balance between absorption, excretion and
synthesis in the body.

Milk cholesterol is mainly present in the free state and in the MFGM bilayer complexed with SM
in tightly packed domains. Surprisingly SM, and particularly milk SM, has been shown to reduce
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cholesterol absorption [64,75]. The microstructure of the MFGM and the digestion of SM in the lower
small intestine and large intestine [75] may be a way to limit cholesterol absorption in the small intestine
and deliver cholesterol to the large intestine for microbial metabolism. The unique composition and
structure of human milk, rich in cholesterol complexed with sphingomyelin, may have a programming
effect to regulate cholesterol homeostasis throughout life.

With the shift to use only vegetable oils as the source of lipids in infant formulas, most formulas
contain far less cholesterol than human milk [38] but also lower SM levels [49]. Infants fed formulas
with low cholesterol levels have lower serum levels of total cholesterol, low-density lipoprotein
cholesterol and higher rate of cholesterol synthesis than breast-fed infants [76,77]. Therefore, the use of
whole goat milk as a source of milk fat and MFGM, including SM, may help regulate the cholesterol
balance as human milk does. Indeed, simply adding cholesterol to infant formula did not significantly
change cholesterol metabolism in early life [78]. In contrast, the supplementation of formula with an
MFGM-rich whey ingredient led to an increase in total serum cholesterol level comparable to levels in
the breastfed group but did not affect low-density lipoprotein to high-density lipoprotein ratio [79].

Another aspect in favour of increasing the levels of milk fat, and thereby reducing the levels
of vegetable oils, in infant formula is the effect of vegetable oil-derived plant sterols on cholesterol
absorption [38]. Plant sterols are known to reduce cholesterol absorption in adults. Plant sterols
are present in trace amounts in human milk, likely derived from the maternal diet. Infant formulas
manufactured with vegetable oils as the sole source of lipids contain much higher concentrations of
plant sterols [38]. The role of plant sterols in infant nutrition is not yet known. While it is not possible
to manufacture infant formula with 100% milk fat, blending goat milk fat and vegetable oils offers a
way to maximise the level of cholesterol while minimizing the level of plant sterols.

9.1.4. Size and Microstructure of the Milk Fat Globules

The complex structure of human milk fat globules likely plays a role in the digestion, absorption
and targeted delivery of lipids within the infant’s GIT [36,68]. Most infant formulas have a different
lipid structure as vegetable oils are homogenized with milk proteins resulting in milk protein-stabilised
droplets with a smaller average diameter and more uniform size distribution than human milk fat
globules [5]. The digestion of lipids is an interfacial process, whereby access to triglycerides is controlled
by the size and the interfacial composition and structure of the lipid droplets [36]. In preterm infants,
gastric lipolysis of human milk lipids was greater than that of infant formula lipids, likely due to
the structure and composition of human milk fat globules facilitating access to the gastric lipase [66].
The presence of milk phospholipids at the interface of emulsions was shown to modulate both lipid
and protein hydrolysis under in vitro gastric digestion and in piglets [36,80].

Improving the structure of infant formula lipid droplets by increasing their average diameter,
stabilizing their interface with MFGM components and retaining some MFGM fragments within the
aqueous phase [5] has been shown to modify the metabolic phenotype in infancy. Consumption of
such formula in infancy resulted in an attenuation of excessive body fat accumulation induced by a
western-style diet in adulthood in animal models, a finding yet to be confirmed in humans [72].

Many clinical studies investigating the role of the MFGM in early life have been published in the
last decade. The studies have all been conducted using MFGM-enriched fractions from cow milk [65]
and therefore may have different microstructures and phospholipid ratios as found in human milk [39].
However, one remaining question is whether the MFGM components play the same role when present
at the interface of fat globules, as intact MFGM fragments in the aqueous phase or pulled apart after
processing of MFGM-rich ingredients or infant formulas [39]. The accumulating evidence of an effect
on outcomes such as metabolic, immune and cognitive development suggests that MFGM components
retain their bioactivity during manufacturing and gastrointestinal processing [39,65].
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9.2. The Role of Milk Lipids in Cognition and Brain Development

Breastfeeding, including mother-infant bonding and the nutritional value of human milk, has been
shown to improve brain and cognitive development. While a lot of research has focused on the DHA
content in human milk and its role in the development of the growing brain and cognitive functions,
recent studies demonstrated that other milk lipids are involved [39,49,65]. The brain is a lipid-rich
organ and the infant brain consumes up to 74% of the daily dietary energy intake [81], suggesting that
the quality and quantity of dietary lipids are critical to optimal brain development in early life.

9.2.1. The Role of Milk Lipids

MCFAs are oxidised rapidly and may prevent oxidation of (long chain)-polyunsaturated fatty
acids ((LC)-PUFAs) and increase the conversion of PUFAs to LC-PUFAs, promoting increased LC-PUFA
accumulation in the brain [2]. In a clinical study where infants were either breastfed or fed a formula
with vegetable oils only or with a mixture of vegetable oils and dairy lipids, Gianni et al. [82] showed
that the addition of dairy lipids led to an increased endogenous conversion of omega-3 LC-PUFAs
from PUFAs, with higher total omega-3, DHA and DPA levels in red blood cells. They speculated that
the higher levels of dairy lipid SCFAs and MCFAs, being rapidly absorbed and oxidised, may spare
oxidation of PUFA precursors, favouring endogenous conversion to LC-PUFAs. They also hypothesized
that it may support accretion of DHA, neuroplasticity and neurogenesis in the brain, as observed in
animal models [82].

Infant plasma samples from the study by Zhou et al. [23] were analysed for glycerophospholipid
species [83]. The breastfed group had higher levels of PC(16:0/16:0) and PC(18:0/16:0), reflective of
the higher levels of sn-2 palmitic acid in human milk, and higher glycerophospholipids containing
LC-PUFAs than goat and cow milk formula groups. The whole goat milk formula group had
higher levels of glycerophospholipids containing myristic and palmitoleic acid and slightly higher
PC(18:0/16:0) and glycerophospholipids containing LC-PUFAs than the cow milk formula group.
It may be interesting to note that palmitoleic acid levels were found in greater concentration in human
milk of mothers whose infant had cold-like symptoms [84]. Both formulas used in Zhou et al. [23]
were not supplemented with LC-PUFAs, demonstrating that endogenous synthesis of LC-PUFAs from
PUFAs alone was not sufficient to attain levels in breastfed infants. Of note, in this study plasma
samples were analysed and are known to be more influenced by recent dietary intake than red blood
cell membranes. Interestingly, while there were some differences between the breastfed, cow milk
formula and goat milk formula groups, serum albumin, urea, creatinine, hemoglobin, ferritin and
folate levels were within the normal range for 4 month-old infants and plasma amino acid levels in the
formula-fed groups were comparable to that of the breastfed group [23].

A high ketone body turnover is observed within less than 8–10 h of fasting in infants [31]. Saturated
MCFAs absorbed in the small intestine are rapidly transported to the liver where they are β-oxidized
to acetyl-coA, an intermediate substrate in the biosynthesis of other fatty acids and ketone bodies
(Novak and Innis, 2011). MCFAs are potential substrates for ketone bodies contributing to ketogenesis
to support the growing brain between feeds [31,85]. Oxidation of C16:0 and C16:1n-7 (present in goat
milk) can also potentially be converted to ketones to contribute to the development of the growing
brain [31].

In the study by Zhou et al. [23], 4-month plasma samples with higher SM levels were observed
in the breastfed group. However, SM(d18:1/17:0) concentrations were higher in the goat formula
group, reflective of the presence of C17:0 in goat milk fat [86]. Carnitine ester levels were similar in the
three groups, but the breastfed group had lower levels of butyl-carnitine, due to lower protein intake.
C18-1-carnitine levels were similar in the goat formula and breastfed groups. Of note, the plasma SM
species included mainly endogenously-synthesized SCFAs and MCFAs, which may be modulated by
substrate preference of ceramide synthases [86].

The study by Timby et al. [37], where infants were either breastfed or fed a formula supplemented
with an MFGM-enriched whey ingredient or a standard formula from 2 to 6 months of age,
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demonstrated that, while both formula-fed infant groups had a metabolic phenotype skewed towards
protein metabolism, the metabolic phenotype of MFGM-enriched formula-fed infants had greater
concentrations of fatty acid oxidation products [81]. Breastfed infants had even greater levels of fatty
acid oxidation products, confirming a preference for fat metabolism. The higher levels of LCFAs,
MCFAs, acylcarnitine species and ketone bodies in the serum of breastfed infants are indicative
of elevated ketogenesis to support the rapidly growing brain. The differences between groups
disappeared once complementary foods were introduced, suggesting an early metabolic programming
effect partially directed by the MFGM [81].

The above results suggest that adding goat milk fat with high levels of SCFAs, MCFAs and sn-2
palmitic acid and MFGM to infant formulas could direct the metabolic phenotype of infant towards a
preference for fat metabolism and ketogenesis, with potential beneficial effects for brain development.

9.2.2. The Role of MFGM Lipids

The preclinical and clinical evidence for a role of MFGM polar lipids, with or without the addition
of milk fat, in the development of the brain and cognitive function in infancy has dramatically
increased in the last decade [37,39,49,87]. The hypothesis stems from the fact that MFGM and neuronal
membranes share a similar composition, rich in phospholipids, sphingolipids and cholesterol. Thus,
MFGM lipids have the potential to provide building blocks for the rapidly growing brain in the first
years of life [39]. About 25% of cholesterol in the body is found in the brain, mainly in the form of
myelin [88]. Cholesterol synthesis is an active process in the first weeks postpartum, contributing to
neurite outgrowth, synaptogenesis, myelination and other key neurocellular processes. Sphingolipids
are also key for optimal synaptogenesis, neurogenesis and myelination in early life [88,89]. Cholesterol
and SM together promote brain maturation through myelination. Gangliosides represent 10% of lipids
in the brain, principally in the cerebral cortex [90]. In a clinical study [91] where infants were fed
an MFGM ganglioside-enriched formula, a standard formula or breast milk in the first 6 months of
life. Supplementation with MFGM gangliosides resulted in cognitive development scores and serum
ganglioside levels similar to those of the breastfed group and greater than those of the control group.

Supplying MFGM from 2 to 6 months of age raised serum myo-inositol and choline and
downstream products and LysoPCs [81]. Serum choline was also increased after supplementation with
MFGM in 6-11 month-old infants [92]. SM and PC are a source of choline, an important nutrient in
brain cell membranes and for the synthesis of neurotransmitters such as acetylcholine, neurogenesis
and synaptogenesis [40]. MFGM supplementation between 2 and 6 months of age resulted in higher
concentration of SM, PC and ceramide species in plasma at 6 months of age, higher concentration of
SM and PC species in serum at 4 months of age but not at 12 months of age, and higher concentrations
of SM, PE and PC species in erythrocyte membranes at 6 months of age but not at 12 months of age [93].
These results support a role for MFGM lipids in immune and cognitive outcomes reported by [37,58].

While having different study designs and MFGM-rich ingredients with or without other
formulation differences (e.g protein levels or addition of specialty ingredients), several clinical
studies in infants have demonstrated an improvement in cognitive functions after supplementation
of formula with MFGM fractions in the first 6-12 months of life [37,39,49,65,87]. It is however not
possible to associate the improvement in cognition to a single MFGM component and it is more likely
that the effect is due to a combination of MFGM components, in particular PC, PS, SM, gangliosides
and cholesterol.

9.3. Development of the Immune System

The mucosal immune system of infants is immature at birth. Human milk, being the sole source
of nutrition in the first 4–6 months of life, plays a critical role in training the immune system and
the maturation of the gut, such as the development of the gut microbiome. The composition and
structure of the human milk fat globules not only provide a quick release of energy but also a controlled
hydrolysis of the milk fat globules for a delivery of bioactive components along specific sites of the GIT
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to contribute to immune education and primo-colonization [36]. Milk lipids and in particular MFGM
lipids further contribute to the improvement of the intestinal epithelial barrier functions and structural
integrity by providing building blocks for mucosal cell membranes [40].

9.3.1. Milk Lipids Have Antimicrobial Properties

In vitro and in vivo studies have highlighted antimicrobial properties of SCFAs and MCFAs
against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus [3]. Supplementation of formula
with gangliosides, present in the MFGM, decreased levels of fecal Escherichia coli and increased levels of
Bifidobacteria in preterm newborns [94]. As demonstrated for human milk, lipolytic products from milk
fat digestion have detergent-like properties and a protective role against viruses, bacteria, fungi and
protozoa through disruption of their lipid membranes [67].

9.3.2. The Role of MFGM

Despite cow and goat MFGM proteins having a less diverse profile than human MFGM, they
include the same major proteins. While MFGM proteins represent only up to 4% of total milk
proteins, they have biologically relevant functions, including membrane and protein trafficking,
cell signaling and immune functions [58,65]. Glycans on glycosylated proteins act as decoy receptors
for pathogens and viruses within the GIT, limiting their adherence to the GIT wall but also preventing
their proliferation [64,67]. Xanthine oxidase, butyrophilin, MUC1, lactadherin, CD14, and toll-like
receptor 1 and 4 have antimicrobial properties [58]. MFGM proteins have been shown to regulate
gut inflammation. For example, osteopontin was demonstrated to balance the Th1 and Th2 immune
responses by controlling cytokine production [40]. In addition, thanks to their high degree of
glycosylation, the glycoproteins MUC 1 and lactadherin are resistant to digestion in the infant’s
stomach and to some extent in the infant’s intestine, meaning they can reach the small intestine to
exert their protective function [67]. Lactadherin, abundant in the goat MFGM, has potential effects in
the maintenance of intestinal epithelial homeostasis and mucosal repair [63] and as potent antiviral
agent [62].

MFGM sphingolipids such as sphingomyelin, gangliosides and glycosphingolipids, either
directly or through their metabolites, have immunomodulatory effects and a protective effect against
pathogens [89]. Sphingolipids are not digested in the upper gastrointestinal tract [36]. For example,
sphingomyelin is hydrolysed into ceramide and sphingosine by sphingomyelinase in the lower half of
the small intestine, resulting in sphingomyelin and its metabolites being active in the small intestine
and the colon, where they exert bactericidal and anti-inflammatory activity [36,89]. Protection against
pathogens is mainly driven by the presence of glycans on MFGM glycolipids, decreasing pathogens
adherence to the intestinal mucosa [89].

Le Huërou-Luron et al. [80] demonstrated that maturation of the immune system in piglets
fed an infant formula with milk fat and MFGM was more similar to that of piglets fed sow milk
than a formula with vegetable oils only. The enrichment in milk fat and MFGM also led to an
increase in fecal Proteobacteria and Bacteroidetes, a decrease in Firmicutes and a higher abundance of
Parabacteroides, Escherichia/Shigella and Klebsiella compared with the standard formula. Supplementation
with MFGM in infancy and childhood was shown to reduce the incidence of acute otitis media,
the number of episodes of bloody diarrhea, the number of days with fever and the use of antipyretics
and to lower the concentration of serum immunoglobulin G against pneumococcus vaccine [58].
Lower incidences of respiratory adverse events and diarrhea were reported in Chinese infants fed a
formula supplemented with MFGM and lactoferrin for 12 months compared to a non-supplemented
formula [87]. 6–11 month-old Peruvian children whose diet was supplemented with MFGM for
6 months had lower prevalence of diarrhea and reduction in episodes of bloody diarrhea, and a
decreased Th1 immune response due to reduced serum interleukin-2 levels than the non-supplemented
group [92,95]. The preclinical and clinical effects indicate that formulas with both milk fat and MFGM
can support a healthy immune system in infancy when breastfeeding is not possible.
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9.3.3. Modulation of the Gut Microbiota

A few hypotheses, namely the hygiene hypothesis, the old friends hypothesis and the biodiversity
hypothesis, have been brought forward to explain the rise in allergies and have in common the impact
of the environment, diet and lifestyle on the microbiota [96]. Several studies point to the critical
contribution of early life microbial exposure and colonization in the development of food allergy,
cutaneous and respiratory allergic diseases [97].

As described previously, some milk lipids, such as cholesterol, polar lipids and fatty acids,
can modulate the composition of the gut microbiota. A 6-week consumption of an infant formula
with increased level of sn-2 palmitic acid resulted in increased fecal abundance of Lactobacilli and
Bifidobacteria [40]. Fermentation in the gut by Bifidobacteria leads to the release of metabolites, such
as SCFAs, with immune-modulating and allergy-protective effects [96]. The fatty acid chain length
and degree of saturation influence the gut microbiota. C10:0 and C12:0, present in human milk lipids,
can inhibit the growth of food-borne pathogens, and the release of lipolytic products with detergent-life
properties during digestion of human milk contribute to the antimicrobial effect of milk fat [40].

Glycosylated lipids and proteins from the MFGM are able to, at least partially, resist digestion in
the upper GIT and therefore can be utilised as prebiotics by commensal gut bacteria in the distal gut [40].
However, in the study by Timby et al. [37], there were only minor differences in the fecal microbiome
of infants fed either the lower-protein, MFGM-supplemented formula or the standard formula, and
both groups had lower abundance of Bifidobacteria than the breastfed group before the introduction of
solid foods [81]. In addition, the breastfed group had a more heterogenous fecal metabolome and the
lower-protein, MFGM-supplemented formula group had lower levels of fecal amino acid and their
derivatives, lactate and succinate than the standard formula group [81]. This indicates that MFGM
supplementation alone is not sufficient to shift the fecal microbiome and metabolome closer to that of
breastfed infants and that a combination of milk fat and MFGM may be more advantageous.

The stool microbiota of infants fed whole goat milk formula from birth was more similar to
that of breastfed infants than was that of infants fed cow milk formula at 2 months of age [98].
As expected, the stool samples of breastfed infants had greater abundance of Bifidobacteriaceae than
stools from formula-fed infants. Vaginal delivery also correlated with greater Bifidobacteriaceae
abundance. B. longum, B. breve and B. bifidum were the most abundant bifidobacterial in all three
groups. Goat formula-fed infants and breastfed infants had a simpler composition of Lachnospiraceae
than cow formula-fed infants [98].

9.3.4. Can Milk Lipids Mediate the Development of Allergies?

To date, there have been only animal studies or small clinical studies in pediatric populations
providing some evidence for a role of goat milk in the reduction of allergy risk in infancy [99–101].
Some children previously sensitised to cow milk showed less severe reactions to goat milk [99,102].
The development of allergy involves several mechanisms, and, while the type of proteins may underlie
the differential response to goat and cow milk, the role of proteins will not be covered in this review.
Instead, we focus on the evidence that lipids may play a role in the prevention or reduction of the risk
of allergy in early life as proposed for human milk lipids [90].

There is emerging evidence of a role of fatty acids in the development of allergy in early life.
For example, SCFAs, either dietary, from carbohydrate fermentation by gut bacteria or delivered via
the placenta during pregnancy, have been shown in animal models and in humans to lower the risk of
developing allergic and atopic diseases [28]. After absorption in the GIT, SCFAs contribute to various
functions such as regulatory T cell responses and tolerance, synthesis of dendritic cell precursors in
the bone marrow, and secretion of mucus and promotion of epithelial barrier integrity in the gut.
Interestingly, it was reported that atopic mothers had lower concentration of the SCFAs, acetate and
butyrate, in mature milk than non-atopic mothers [28]. A lower exposure of dietary SCFAs in infancy
could contribute to atopy and overweight risk in later life.
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Trans fatty acids (TFAs) are a controversial type of fatty acids but are naturally occurring in human
milk and ruminant milk, such as goat milk. Vaccenic acid and CLA are the two most studied milk TFAs.
Milk TFAs are different from TFAs formed during hydrogenation of vegetable oils [103]. Higher TFA
levels in human milk or circulating levels during pregnancy have been correlated with lower risk of
atopic diseases. CLAs have also been shown to have immunomodulatory properties, such as production
of cytokines and nitric oxide, which may influence the development of atopy [103]. Vaccenic acid and
CLA from ruminant milk can potentially reduce allergic inflammation and sensitization, via reduction
of eicosanoid precursors and PPAR-gamma-related mechanism [104]. Current international regulations
on the composition of formulas for infants and young children only allow a maximum TFA level of 3%,
without distinction between milk TFAs and industrial TFAs.

MCFAs, by preventing oxidation of PUFAs and enhancing their bioconversion into LC-PUFAs,
could also indirectly contribute to the incorporation of essential omega-3 and omega-6 fatty acids
and their metabolites in the lipid-rich extracellular matrix of the stratum corneum [104]. Dietary
supplementation with PUFAs, and especially with DHA, in animal models showed beneficial effects
on allergic symptoms in the gut, skin and lung. There is also increasing evidence of a preventive effect
of supplementation with n-3 (LC)-PUFAs with or without n-6 (LC)-PUFAs against allergic diseases in
infants [104]. Thus, inclusion of MCFAs in infant formula, with or without LC-PUFAs, may have an
indirect preventive effect against allergy.

A continuous lipid structure, rich in ceramide, cholesterol and FFA, in the stratum corneum act as
skin barrier to xenobiotics [89]. Alteration to this lipid structure results in compromised epidermal
functions and skin diseases such as atopic dermatitis. A strong skin barrier is required to prevent the
penetration of microbes, allergens and irritants, and the subsequent activation of type-2 immune and
inflammatory responses [105]. Clinical observations have concluded that skin lipid metabolism is
critical in atopic dermatitis independent of the filaggrin genotype [105]. Skin lipids are critical for skin
barrier integrity but also as antimicrobial and anti-inflammatory agents. Skin lipids in atopic dermatitis
subjects tend to have disorganized lamellar membrane structures, different classes of ceramides as
well as reduced fatty acid chain length in ceramides, and polar lipids [105]. Such disruption in the
skin lipid structure leads to transepidermal water loss and xerosis in atopic dermatitis skin. Several
studies have reported the role of dietary sphingolipids, ceramides and phospholipids, including from
milk, to promote skin barrier functions and integrity, such as hydration, elasticity, lipid composition,
reduced inflammatory status and transepidermal water loss [89,106–108].

In a recent lipidomics study [109], goat milk was found to contain higher levels of phospholipids
than human and bovine milk, in particular greater levels of PC, SM, ceramide and hexosylceramide.
Of note, human milk had more SM with ultra-long chain-fatty acids (ULCFAs) than cow milk but less
than goat milk. Ceramides with ULCFAs are prevalent in healthy skin [105]. Milk glucosylceramides,
galactosylceramides and lactosylceramides are hydrolysed to ceramides in the gut. Thus SM, ceramides,
glycosphingolipids and gangliosides can be utilised for the maturation of the mucosal brush border
membrane and brain cells but also as a potential source of ceramides in the skin [75]. Optimal absorption
of palmitic acid from human milk provides an excess of palmitic acid for de novo synthesis of
dihydrosphingosine, which is further converted to ceramides [75]. N-myristoylation and palmitoylation
depend on the bioavailability of myristic and palmitic acids respectively and are critical for various T
cell functions [104].

10. Conclusions

The composition and structure of the human milk fat globules for infant growth and development
are now better understood and are drivers for the improvement of breast milk substitutes. Using whole
goat milk in the manufacture of infant formulas supplies both milk fat and MFGM components thereby
providing a lipid composition and structure closer to that of human milk fat and the potential to match
more closely the physiological outcomes provided by human milk lipids. Clinical research in pediatric
nutrition on goat milk-based formulas is very limited and mainly on infant formulas manufactured
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from fresh whole goat milk with a 20:80 whey:casein ratio. Further research is warranted to confirm
or understand the potential of whole goat milk for infant nutrition. In addition, one must note the
difference in goat milk-based formulas available on the market, whether there are made from fresh
whole goat milk without adjustment of the whey:casein ratio (i.e., providing milk fat and MFGM)
or from goat milk-derived powdered ingredients often with an adjustment of the whey:casein ratio
(i.e., with low to no milk fat and MFGM). The increasing number of studies demonstrate the advantage
of supplying both milk fat and/or MFGM in early life to promote the healthy development of the
metabolic response, the gut and its microbiota, but also for the optimal development of the brain and
cognitive functions. The inclusion of whole goat milk as a source of both milk fat and MFGM in infant
formula has the potential to contribute to the optimal gut–brain axis in early life. There is promising
evidence that it may also play a part in modulating the gut–skin axis. Large clinical studies are required
to confidently ascertain the preventive effect of a formula against the development of allergic diseases.
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