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differentiation, dedifferentiation, and transdifferentiation of SSCs and 
their potential applications in regenerative and reproductive medicine.

SELF‑RENEWAL AND DIFFERENTIATION OF 
SPERMATOGONIAL STEM CELLS
Spermatogonial stem cells undergo self-renewal to maintain the stem 
cell pool while they differentiate into sperm in mammalian testis.9,18 
Spermatogonia are classified into three types, including type  A, 
intermediate, and type  B cells, based upon their morphological 
characteristics.19 Type  A spermatogonia can be subdivided into 
Asingle  (As), Apaired  (Apr) and Aaligned  (Aal) cells.20,21 SSCs are very rare, 
with only approximately 0.02%–0.03% of all germ cells in adult testis;22 
nevertheless, thousands of spermatids are produced each day, reflecting 
an unlimited potential of SSC division and differentiation. We illustrated 
the self-renewal and differentiation of the rodent and human SSCs in 
Figure 1. In rodents, As spermatogonia can divide symmetrically to 
produce new As stem cells or they divide asymmetrically to give rise 
to As spermatogonia and Apr spermatogonia that are characterized by 
an intercellular cytoplasmic bridge. The Apr spermatogonia continue 
to divide and form chains of Aal spermatogonia (4, 8, 16, and 32 cells) 
that are able to differentiate into type A1 to A4, intermediate (In) and B 
spermatogonia. Type B spermatogonia further differentiate to primary 
spermatocytes, secondary spermatocytes, and eventually spermatids 
via two meiotic divisions. There are distinct cell types and biochemical 
phenotypes between rodent and human male germline stem (GS) cells. 

INTRODUCTION
The pluripotent properties of stem cells have attracted considerable 
interest in both basic research and clinical applications.1–3 There 
are three main types of stem cells, namely embryonic stem  (ES) 
cells, adult stem cells, and the induced-pluripotent stem (iPS) cells. 
However, ethical issues as well as tumorigenicity and immune rejection 
preclude the applications of ES cells in clinic.4–6 Similarly, the iPS 
cells encounter several severe hurdles, e.g.  viral transduction, low 
efficiency, and tumor-causing risk,7 although they can be induced to 
generate male germ cells.8 Due to these obvious drawbacks, scientists 
are devoting to seeking alternative sources of pluripotent stem cells 
from adult tissues. Notably, spermatogonial stem cells (SSCs) might 
become an ideal candidacy because of their unique and important 
plasticity, including self-renewal, differentiation, dedifferentiation 
and transdifferentiation.7,9,10 SSCs are a small subpopulation of type A 
spermatogonia in mammalian testis where they can self-renew and 
differentiate to produce sperm in the course of normal development 
throughout life. We have recently shown that SSCs from cryptorchid 
patients could be induced to differentiate into round spermatids with 
fertilization and developmental potentials.11 Strikingly, numerous 
studies by peer and us have recently demonstrated that SSCs can 
dedifferentiate to become ES-like cells with pluripotency and that 
SSCs are able to directly transdifferentiate into the cells of other 
lineages in vivo and in vitro.10,12–17 Here we discuss the self-renewal, 
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As spermatogonia are generally considered the actual stem cells with 
self-renewal capacity in the testis while Apr and Aal spermatogonia are 
suggested to be the potential stem cells that give rise to actual stem 
cells when the niche is emptied. In human, spermatogonia are classified 
into Adark, Apale and type B cells.23 The Adark spermatogonia are believed 
to be the reserve stem cells, while the Apale spermatogonia are thought 
to be the renewing stem cells that can divide into either new Apale or 
type B spermatogonia. Mouse and human SSCs share many, but not 
all phenotypic markers, as evidenced by the fact that both of them are 
positive for GPR125, ITGA6 (CD49f), UCHL1, GFRA1, PLZF, THY1 
and Lin 28.24,25 and that human SSCs don’t express POU5F1 that is a 
hallmark for rodent SSCs. In addition, rodent spermatogenic lineage 
development is different from human. Mouse spermatogenic cycle 
contains twelve stages, whereas there are only six spermatogenic cycle 
stages in human.18,26 Collectively, due to significant differences between 
species and limit investigations on human, studies are required to 
uncover the similarities and differences between rodent and human 
spermatogenesis.

The microenvironment or the niche precisely regulates the fate 
decisions of SSCs.27 There are differences in the roles of signaling 
pathways in controlling SSCs between species. For instance, JAK/STAT 
signaling pathway has been demonstrated to stimulate the self-renewal 
and maintenance of Drosophila SSCs;28 in contrast, STAT3 signaling 
pathway is shown to be required for the differentiation of mouse SSCs.29 
Sertoli cells, a key component of the niche, produce certain growth 
factors, e.g.  glial cell line-derived neurotrophic factor  (GDNF),30 
fibroblast growth factor 2  (FGF2),31 bone morphogenetic protein 
4  (BMP4)32 and stem cell factor  (SCF),33 that play important roles 
for the self-renewal and/or differentiation of SSCs. GDNF has been 
demonstrated to be essential for the survival and proliferation of 
SSCs in vivo and in vitro.30,34–36 We have revealed that GDNF activates 
CREB/ATF-1 family members and c-fos transcription via the Ras/
ERK1/2 pathway to promote DNA synthesis and proliferation of SSCs.30 
Mouse SSCs proliferate over a 5-month period when cultured with 
basic fibroblast growth factor (bFGF) (also known as FGF2), GDNF, 
leukemia inhibitory factor (LIF), and epidermal growth factor (EGF),37 
and both bFGF and GDNF stimulate Ras pathway via Src family 
kinases.38,39 Additionally, FGF2 is required for the survival and 
proliferation of mouse SSCs.31 On the other hand, BMP4 and SCF have 
been shown to promote the differentiation of SSCs.27 Although BMP4 is 

unimportant for the survival of undifferentiated spermatogonia,32 it can 
induce SSC differentiation through changing cell adhesion properties 
and activation of Smad1/5/8 pathway by up-regulation of c-KIT 
expression.40,41 Deletions or mutations of SCF or its receptor c-KIT 
result in sterility in mice due to lack of differentiating spermatogonia,42 
implicating that SCF/c-KIT pathway is essential for SSC differentiation. 
SCF also contributes to the proliferation of primary spermatogonia 
in culture, and the division of type  A1 and A4 spermatogonia is 
c-KIT-dependent.43 It has been reported that SCF induces mouse 
spermatogonial cell line to differentiate into spermatocytes and 
spermatids without somatic cells in vitro,33 which suggests that SCF 
plays a crucial role for the differentiation of SSCs and gametogenesis 
in vitro. Retinoic acid (RA) induces meiosis of germ cells via increasing 
c-KIT expression.44 We have recently shown that SCF and RA effectively 
induces SSCs from cryptorchid patients to differentiate into haploid 
spermatids with fertilization and developmental capacity.11 It has been 
demonstrated that RA promotes the differentiation of SSCs through 
various kinds of mechanisms.45,46 For example, the receptor RARα of 
RA can increase SCF and BMP4 expression, whereas it reduces GDNF 
secretion.47 However, currently little is known how SSCs balance the 
self-renewal and differentiation. To unveil more signaling molecules 
and pathways or targets regulating SSC self-renewal and differentiation 
would contribute to a better understanding the fundamental principles 
of stem cell biology and treatment of male infertility.

To induce the differentiation of SSCs and their precursors with 
an objective to generate male germ cells in vitro, as we summarized in 
Table 1, might provide male gametes for treating male infertility.48,49 
Early in 1910s, scientists started to examine spermatogenesis process 
using testicular tissue culture,50 and male germ cells could enter 
meiotic prophase in vitro.51 Notably, pachytene primary spermatocytes 
were observed after 11 days of culture from neonatal mouse testes.52 
Gas-liquid interphase organ culture system was developed53 and it 
was optimized with culture parameters, e.g. temperature, incubation 
atmosphere, pH, nutriments (pyruvate, vitamin A, E, and C), for the 
differentiation of rat and human spermatogonia from testis tissues 
into pachytene spermatocytes.54–57 Cell culture and coculture methods 
were employed to probe the differentiation of SSCs in vitro.58 It has 
been reported that preleptotene spermatocytes progress toward 
later stages of meiotic prophase in association with Sertoli cells that 
provide necessary microenvironment in vitro.59 Immortalized mouse 
type  A spermatogonial cell line was induced to generate haploid 
spermatids in vitro;60  however, whether these spermatids have function 
of fertilization remains unknown. Several groups have reported 
that rodent type A spermatogonia and early male germ cells could 
differentiate into haploid cells when co-cultured with Sertoli cells.61,62 
However, gene expression patterns of spermatids derived from the 
type A spermatogonia were abnormal and no offspring was obtained 
by micro-insemination. Furthermore, the fertilization potential of 
those round spermatids was not tested, and the efficiency was very 
low. Human spermatogonia derived from nonobstructive azoospermic 
patients were coaxed to differentiate into haploid cells.63 Although 
the efficiency of differentiation was low, the round spermatid-like 
cells possessed normal chromosome status and could activate human 
oocytes after injection into the cytoplasm. Recently, a breakthrough 
has been reported that SSCs from freshly and cryopreserved neonatal 
mouse testes could produce spermatids and sperm with serum-free 
culture media.58,64 It is worth noting that this sperm could give rise 
to healthy and reproductively competent offspring. We have recently 
induced SSCs from cryptorchid patients to differentiate into haploid 
spermatids with fertilization and developmental potentials,11 which 

Figure 1: Schematic diagram showed the self‑renewal and differentiation of 
spermatogonial stem cells (SSCs). SSCs reside on the basal membrane of the 
seminiferous tubules. SSCs self‑renew and differentiate into spermatocyte, 
spermatid, and eventually spermatids. As: a single spermatogonia; 
Apr: a paired spermatogonia; Aal: an aligned spermatogonia; Adark: type A 
spermatogonia with dark nuclei; Apale: type A spermatogonia with pale nuclei; 
In: intermediate spermatogonia; Pl: preleptotene spermatocytes.
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would provide an invaluable source of autologous male gametes for 
treating male infertility of azoospermia patients. Since gene expression 
patterns of human SSCs are different after short-  and long-term 
culture,65 it is of great significance to develop efficient approaches for 
maintaining self-renewal and differentiation of SSCs.

DEDIFFERENTIATION OF SPERMATOGONIAL STEM CELLS 
TO EMBRYONIC STEM‑LIKE CELLS
Spermatogonial stem cells have previously been considered unipotent 
because they are only committed to produce sperm in the course of 
normal development.7 However, several lines of evidence suggest 
that SSCs can acquire pluripotency. First, teratomas which contain 
derivatives of all three germ layers occur exclusively in the gonads,66 
and ES-like cells derived from SSCs in culture with certain growth 
factor could form teratomas; second, primordial germ cells (PGCs) 
which differentiate into gonocyte and subsequently into SSCs can 
produce embryonic germ cells that are similar to ES cells in potency.67,68 
Pluripotency of germ cells can be maintained postnatal. Therefore, 
investigators propose that SSCs are pluripotent. Great efforts from 

a number of pioneering studies have proven this notion. Lastly and 
more importantly, numerous groups have demonstrated that SSCs both 
from mouse and human testis could be induced to become ES-like 
cells that differentiated into derivatives of three embryonic germ 
layers  (Table 2).10,12–14,17 In 2004, pluripotent ES-like cells were first 
generated from SSCs of neonatal mice by Dr. Shinohara and colleagues 
when they cultured SSCs in GS cells medium with addition of GDNF, 
bFGF, EGF, and LIF.10 Notably, These ES-like cells could differentiate 
into various types of cells, e.g. hematopoietic cells, vascular cells, and 
spontaneously beating myocytes. Interestingly, more neural lineage cells 
and heart muscle cell colonies from ES-like cells were found than from 
ES cells. Typical teratomas and chimerism were seen in ES-like cells 
derived from SSCs and there were no significant histological differences 
from teratomas derived from ES cells. These findings strongly implicate 
that neonatal mouse SSCs can acquire pluripotency. ES-like cells 
derived from adult mouse testis were also successfully achieved.12 Their 
phenotypic characteristics and gene expression profiles were similar 
to ES-like cells induced by Dr. Shinohara group. ES-like cells derived 

Table 1: The differentiation of SSCs and other male germ cells in vitro

Species Approaches Major findings References

Newborn mice Watch‑glass method on the surface of a clot: equal parts of fowl 
plasma and fowl embryo extract

Gonocytes→pachytene spermatocytes 52

Adult men Gas‑liquid interphase method: EMEM, pyruvate, NEAA, glutamine, FCS Preleptotene→pachytene spermatocytes 55

Adult men Tissue culture: Parker 199 supplement fructose, coconut milk, FBS, 
FSH, LH, testosterone

Preleptotene spermatocytes→telophase II 
spermatocytes

56

Prepubertal rats Co‑culture: EMEM, pyruvate, glutamine, NEAA, FBS, FSH, 
testosterone, transferrin, EGF, retinol

Preleptotene→pachytene spermatocytes 59

Mouse SSC lines Cell culture: DMEM, NEAA, sodium pyruvate, glutamine, FCS Spermatogonia→round spermatids 60

Mouse SSC line Cell culture: DMEM+SCF Type A spermatogonia→spermatids 33

Adult men Co‑culture: Vero cell condition medium, FSH and testosterone Type A spermatogonia→spermatids 61

Neonatal rats Co‑culture: DMEM, FBS, glutamine, pyruvate, NEAA, EGF, 
IGF, FSH, insulin, transferring, retinol, retinal, testosterone, 
dihydrotestosterone, nucleosides solution, human growth hormone

Type A spermatogonia→round spermatids 62

Neonatal mouse Organ culture: aMEM, FBS Type A spermatogonia→functional sperm 64

Azoospermic patients Co‑culture: Ko‑DMEM, KSR, FSH, GDNF, testosterone, RA Type A spermatogonia→haploid cells 63

SSC: spermatogonial stem cell; NEAA: nonessential amino acids; EMEM: Eagle’s minimum essential medium; FCS: fetal calf serum; LH: luteinizing hormone; FBS: fasting blood 
sugar; FSH: follicle stimulating hormone; RA: retinoic acid; GDNF: glial cell line‑derived neurotrophic factor; KSR: knockout serum replacement; EGF: epidermal growth factor; 
DMEM: Dulbecco’s modified Eagle’s medium; SCF: stem cell factor; IGF: insulin‑like growth factor; aMEM: a‑minimal essential medium

Table 2: The dedifferentiation and transdifferentiation of SSCs

Species Starting cells Induction protocol Pluripotency References

Neonatal mice Early type of 
spermatogonia

GS medium+GDNF+EGF+bFGF+LIF Derivatives of three germ layers, teratoma formation, 
EBs and chimaeras

10

Adult mice STRA8+ cells Basic medium+GDNF Derivatives of three germ layers, teratoma and EBs 12

Adult mice GPR125+ germline 
progenitors

GS medium+GDNF Derivatives of three germ layers, teratomas fromation, 
EBs and chimaeras

17

Human CD49f+ cells with collagen 
and laminin selection

Basic medium+LIF and/or GDNF Derivatives of three germ layers and teratomas 13

Human Testicular cells ES medium on MEF Derivatives of three germ layers, EBs, no large teratoma 70

Human Testicular cells DMEM+bFGF+TGF‑β Derivatives of three germ layers, no large teratoma 71

Human Testicular cells GS medium+GDNF+EGF+bFGF+LIF Derivatives of three germ layers, no teratoma 14

Adult mice Testicular cells SSCs mixed with mammary epithelial 
cells in mammary fat pads

Functional mammary epithelial cells 74

Neonatal mice Early type of 
spermatogonia

Combined with inductive 
mesenchymes in vivo

Tissues of three germ layers, e.g., prostatic, uterine, 
and skin epithelium

15

Neonatal mouse SSCs Step 1: Nodal+Wnt+bFGF
Step 2: HCM+EGF+HGF
Step 3: HCM+OSM+HGF+Dex

Functional hepatocytes 16

GS medium: the culture medium published by Kanatsu‑Shinohara et al.;37 Basic medium: DMEM, 15% FCS, 1% NEAA, 1% L‑glutamine, and b‑mercaptoethanol. GDNF: glial cell 
line‑derived neurotrophic factor; EGF: epidermal growth factor; LIF: leukemia inhibitory factor; GS: germline stem; bFGF: basic fibroblast growth factor; MEF: mouse embryonic 
fibroblast; EBs: embryoid bodies; SSC: spermatogonial stem cell; ES: embryonic stem; DMEM: Dulbecco’s modified Eagle’s medium; TGF‑β: transforming growth factor beta; 
EGF: epidermal growth factor; HGF: hepatocyte growth factor; HCM: hepatocyte culture medium; OSM: oncostain M; NEAA: nonessential amino acids
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from adult mice could different into ectodermal-, mesodermal- and 
endodermal-derived tissues and they produced mature teratomas and 
chimaeric mice with live offspring, a gold standard for pluripotency. In 
2007, ES-like cells were induced from GPR125+ germline progenitors of 
adult mice, and they produced cells and tissues of three germ layers and 
could contribute to chimera embryos.17 Although different induction 
protocols were used, ES-like cells were uniformly formed from neonatal 
and adult mouse testes, reflecting that SSCs become pluripotent ES-like 
cells. On the other hand, due to no specific and unique marker for SSCs, 
highly purified SSCs were rather hard to obtain, which pose several 
questions, such as the origin of ES-like cells and the dedifferentiation 
mechanism. Kim et al. identified three transitional stages during SSC 
dedifferentiation to ES-like cells, including SSC stage, intermediate 
state SSCs, and ES-like morphology stage,69 which might be helpful for 
better understanding the mechanisms controlling the dedifferentiation 
of SSCs to ES-like cells.

A number of groups attempted to obtain autologous ES-like cells 
from human SSCs.13,14,70,71 Excitingly, Conrad et al. first demonstrated 
the successful establishment of pluripotent ES-like cells derived from 
spermatogonial cells of adult human testis.13 They obtained a highly 
pure SSC population by using CD49f and followed by sequential matrix 
selection with collagen and laminin, which has important significance 
to define the origin of ES-like cells. Human ES-like cells were generated 
from human SSCs with pluripotent characteristics and expression 
profiles similar to human ES cells when they were cultured with 
LIF.13 Human ES-like cells derived from SSCs could form a teratoma. 
Derivation of human ES-like cells has also been achieved from a 
testis biopsy or donor testes.70,71 Although these human ES-like cells 
expressed markers of pluripotency and formed embryoid bodies (EBs), 
they didn’t produce large teratomas. It is speculated that human 
ES-like cells may not have been reprogrammed sufficiently to produce 
teratomas, which might be a great merit to clinical application of SSCs. 
As such, human SSCs derived ES-like cells can be used to generate 
various kinds of cells for cell-based therapy and tissue engineering for 
human diseases. Importantly, the dedifferentiation of SSCs to ES-like 
cells doesn’t involve virus vectors and ethical issues, which is much 
safer compared to human iPS cells or human ES cells.

DIRECT TRANSDIFFERENTIATION OF SPERMATOGONIAL 
STEM CELLS TO THE CELLS OF OTHER LINEAGES
Spermatogonial stem cells arise from PGCs and they share similar 
expression of certain key genes (e.g. Oct-4 and Nanog) for ES cells.72 
This indicates that the closest equivalent of ES cells in vivo is probably 
SSCs. Since SSCs can acquire pluripotency to become ES-like cells that 
subsequently differentiate into other lineage tissues, it is reasonable to 
presume that SSCs can directly transdifferentiate into other cell types 
without the pluripotent status. Boulanger and colleagues direct the 
transdifferentiation of testicular stem cells into functional mammary 
epithelial cells.73 However, the prerequisite is that they must mix 
spermatogenic cells with dispersed mammary epithelial cells, followed 
by transplanting them into the mammary fat pad. Engraftment of SSCs 
alone cannot form mammary epithelium, which suggests that SSCs 
can’t transit to the mammary epithelium de novo. It has been reported 
that SSCs-enriched cells alone from neonatal mice transdifferentiate 
directly into tissues of all three germ layers, including prostatic, 
uterine, and skin epithelium.15 Furthermore, the organs and tissues 
transdifferentiated from SSCs expressed molecular, histological, and 
functional markers of the appropriate epithelium. Engraftment of SSCs 
can promote recovery in a rat Parkinson’s disease model, and rat SSCs 
transdifferentiate to functional dopaminergic neuron-like cells via 

mesenchymal–epithelial interactions.74 Importantly, we have recently 
demonstrated that mouse SSCs are able to transdifferentiate directly 
into morphological, phenotypic, and functional hepatocyte-like cells 
when they are cultured with several growth factors in vitro.16 SSCs first 
converted into hepatic stem-like cells which subsequently differentiate 
into small hepatocytes and mature hepatocyte-like cells. Notably, we 
did not detect the gene expression for ES cells in the whole transition 
process, such as SSEA-1, SSEA-4, Nanog and TRA-1-81, which suggests 
that no ES-like cells was formed during the transdifferentiation process. 
Very recently, we have induced the transdifferentiation of mouse SSCs 
into functional dopaminergic neurons in vitro (unpublished data).

As illustrated in Figure 2, SSCs can give rise to a wide range of other 
type cells directly, which implies that they have important significance 
in regenerative medicine. First of all, the direct transdifferentiation 
of SSCs to mature and functional cells without the process of 
de-differentiation to ES-like cells and EB formation could simplify 
the reprogramming procedure of cells. Secondly, the conversion of 
SSCs using growth factors without gene modification could be much 
safer to generate mature cells for cell therapy and tissue engineering 
for human disease. Nevertheless, there are several issues to be defined 
prior to the application of cells derived from SSCs in clinic. First, the 
mechanisms of direct transdifferentiation are poorly understood. One 
concept is that there is a distinct subpopulation of pluripotent SSCs 
that can direct transdifferentiate into cells of another lineage. Izadyar 
et al. have identified two distinct populations in the GS cells, and only 
the POU5F1+/c-KIT+  cells are pluripotent.75 Another viewpoint is 
that all SSCs are capable of becoming pluripotent once removed from 
their niche. It is possible that the pluripotency of SSCs is repressed 
by the seminiferous tubular microenvironment in which they reside. 
Once outside of this niche, they recover original characteristics and 
convert to another lineage depending on the particular niche in 
which they are placed. Third, the necessary prerequisite to clinical 
application is to obtaining sufficient numbers of highly purified SSCs 

Figure 2: The origin, dedifferentiation and transdifferentiation of 
spermatogonial stem cells (SSCs). SSCs are derived from primordial germ 
cells whose precursors are formed in the epiblast. Human and rodent 
SSCs can dedifferentiate to become embryonic stem‑like cells that give 
rise to numerous cells of all three germ layers, e.g. neurons, pancreatic 
cells and muscle cells. Notably, SSCs from neonatal mice can directly 
transdifferentiate into a variety of cell types including prostatic, uterine, 
skin epithelium, and mature hepatocyte‑like cells. However, whether human 
and adult mouse SSCs can directly transdifferentiate to other lineage cells 
remains to be defined (as indicated as question marks).
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from human testis. Therefore, it would be crucial to identify specific 
and unique SSC markers. We have isolated human SSCs using 2-step 
enzymatic digestion and magnetic-activated cell sorting,24 and 
notably, the isolated SSCs can be cultured in an undifferentiated state 
for 2 weeks. Nevertheless, culture condition needs to be optimized 
for long-term survival and expansion of human SSCs. Finally, it is 
important to explore the optimal induction protocols with higher 
transdifferentiation efficiency of SSCs to mature and functional cells. 
Enough transition cells from a limited number of SSCs are necessary 
for cell-based transplantation therapy. Therefore, extensive studies are 
required to eliminate those hurdles.

PERSPECTIVES AND CONCLUDING REMARKS
As addressed above, SSCs represent a novel and significant cell source 
for both reproductive and regenerative medicine, due to their unlimited 
potentials including pluripotency, self-renewal, differentiation, and 
transdifferentiation. Generation of mature and functional cells from 
SSCs have certain advantages over ES cells and iPS cells, including no 
ethical concern, lower frequency of tumorigenesis, and no immune 
rejection. On the other hand, certain issues await to be clarified, 
e.g. the dedifferentiation and transdifferentiation mechanisms, optimal 
induction protocols, and origin of the ES-like cells. Due to no specific 
and unique marker available for SSCs, the true cellular origin of 
ES-like cells remains controversial.76–78 Given the rapid progress in SSC 
research, it is no doubt that SSCs would be eventually utilized from 
the bench to bedside in the near future.
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