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Abstract

This paper propose a direct generalization quantile regression estimation method (DGQR

estimation) for quantile regression with varying-coefficient models with interval censored

data, which is a direct generalization for complete observed data. The consistency and

asymptotic normality properties of the estimators are obtained. The proposed method has

the advantage that does not require the censoring vectors to be identically distributed. The

effectiveness of the method is verified by some simulation studies and a real data example.

Introduction

Varying-coefficient models are among popular models that have been proposed to reduce the

curse of dimensionality. They were natural extensions of classical parametric models and more

popular in data analysis. Thanks to their flexibility and interpretability. Varying-coefficient

models were frist introduced by Cleveland [1]. Hastie and Tibshirani [2] extended it to regres-

sion models and generalized regression models. Huang and Wu [3] proposed an inference

program based on the resampling subject bootstrap, which is based on the varying-coefficient

model. At present, there were many results of parameter estimation studies on quantile regres-

sion for varying-coefficient models, such as, Honda [4] considered varying-coefficient quantile

regression. Cai and Xu [5] studied quantile regression estimation for varying coefficients

dynamic models. Yuan and Ju [6] considered a varying-coefficient quantile regression model

in which some covariates random missing, and proposed a weighted estimate based on empiri-

cal likelihood. Tang and Zhou [7] used inverse probability weighted method in the varying-

coefficient composite quantile regression model with random missing covariates. Sun and Sun

[8] proposed optimal inverse probability weighted estimation of regression parameters when

selection probabilities were known in the quantile regression model with varying-coefficient.

We focus on the following varying-coefficient quantile regression model in this article:

Qtðyijxi;TiÞ ¼ x
>

i btðTiÞ; i ¼ 1; � � � ; n:

where τ 2 (0, 1), yi is the response variable of interest, which may represent the timing of the

occurrence of some events, such as the time of death or disease, or some transformation of the

time to the event [9], and xi is an observable covariate vector. Qτ(yi|xi) is the conditional
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quantile function [10] of yi given xi, and βτ(T) 2 Rm is the coefficient function vector depen-

dent on τ.
However, in some practical applications, yimay not be fully observed due to the occurrence

of censoring. For example, response variable yi is subjected to interval censoring: suppose one

does not observe yi, but censoring vector t1i, t2i, which satisfies P(t1i< yi� t2i) = 1. Interval

censored data is naturally produced in many clinical trials and longitudinal studies where indi-

viduals are tested regularly but not continuously. Interval censored data have been discussed

by Sun [11] discuss several important topics about interval-censored failure time data that can

occur in practice. Feng and Duan [12] studied a interval-censored data that distribution of or

the underlying mechanisms behind censoring variables may depend on the treatment method,

so it is different for subjects in different treatment groups. Chay and Powell [13], Ji and Peng

[14], Li and Zhang [15], Lin and He [16], concerned linear regression with interval censored

data. Zhou and Feng [17] propose an estimation method for quantile regression models with

interval censored data. For varying-coefficient quantile regression model with censored data,

Yin and Zeng [18] proposed a varying-coefficient quantile regression model subject to random

censoring. Xie and Zhou [19] adopted a weighted inverse probability approach to develop a

varying-coefficient model to the estimation of regression quantiles under random data censor-

ing. These studies have not considered the coefficient function estimation method of the inter-

val censored data.

The primary goal of this article is to develop a estimate method with interval censored data.

We will use methods to estimate the coefficient function vector βτ(T) for general τ 2 (0, 1). We

propose a direct generalization quantile regression(DGQR) estimation method and first to

develop theory and methodology of the quantile regression for varying-coefficient models

with interval censored data. Under some regularity conditions, obtain the asymptotic normal-

ity of b̂tðtÞ. The proposed estimator is defined as the optimal solution point of a minimization

problem with convex objective function. The property of asymptotic normality is established

with a bias converging to zero. We also compared the performance of our proposed method

with other methods in the quantile regression with varying-coefficient models.

The rest of this paper is arranged as follows. In Section 2, we put forward the DGQR estima-

tion method to quantile regression for varying-coefficient model with interval censored

response observations. In Section 3, establish asymptotic properties of the estimator. In Section

4, simulations are achieved to investigate the finite sample performance of the proposed meth-

ods, and simulation results show that the proposed methods work well for various τ 2 (0, 1).

Section 5 gives an example analysis. A conclusion are given in Section 6. In the appendix to

Section 7, technical proofs are given.

DGQR estimation

We consider the following varying-coefficient model:

Y ¼ X>bðTÞ þ ε; ð1Þ

where Y 2 R is a response variable, X = (X1, � � �, Xp)> 2 Rp is a p-dimensional covariate, β(�) =

(β1(�), � � �, βp(�))
> is an unknown vector-valued function with a smoothing variable T, the com-

ponents βj(�) (j = 1, 2, � � �, p) are all differentiable functions, ε is the random error whose τth
quantile is zero, i.e.,

Z 0

� 1

f ðεÞdε ¼ t;
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where f(ε) denotes the density function of ε. ε is also assumed to be independent with X and

T.

In what follows, we first briefly introduce the quantile regression (QR) estimates under

complete data. Then we discuss in detail the quantile regression method under the interval

censored data. Throughout the paper, we denote β0(t) the derivative function of β(t). Denote

k � k the L2 norm of the corresponding vector.

Note that βj(T) is differentiable. By Taylor’s expansion, we have [7]

bjðTÞ � bjðtÞ þ b
0

jðtÞðT � tÞ≔aj þ bjðT � tÞ; j ¼ 1; � � � ; p:

Thus, if all data yif g
n
i¼1

are observable, the QR estimator ~bðtÞ of β(t) [4] is defined as

~bnðtÞ ¼ arg min
Xn

i¼1

rtðyi � x
>

i ½aþ bðTi � tÞ�ÞK
Ti � t
h

� �( )

;

for some fixed τ 2 (0, 1), where a = (a1, � � �, ap)>, b = (b1, � � �, bp)>, K Ti � t
h

� �
is a kernel function

with bandwidth h, ρτ(s) = s(τ − I(s< 0)) is the loss function (see, e.g., Koenker (2001) [20].),

i.e.,

rtðyi � x
>

i ½aþ bðTi � tÞ�Þ ¼
tjyi � x>i ½aþ bðTi � tÞ�j; yi � x>i ½aþ bðTi � tÞ�;

ð1 � tÞjyi � x>i ½aþ bðTi � tÞ�j; yi < x>i ½aþ bðTi � tÞ�:

(

Next, we focus on the interval censoring case, i.e., yi can not be observed, and we can only

observe two point t1i and t2i satisfying t1i< yi� t2i. Suppose the length of interval t2i − t1i is
small. Then yi will be close to t1i and t2i. Under this assumption and some other regularity con-

ditions, the probability of Pðx>i ½aþ bðTi � tÞ� 2 ðt1i; t2i�Þ will be close to zero. Thereby, we can

modify the loss function rtðyi � x>i ½aþ bðTi � tÞ�Þ by using the method proposed by Zhou

and Feng [17]. Define this method as DGQR estimation, i.e.,

Ftðt1i; t2i; x
>

i ½aþ bðTi � tÞ�Þ ¼

tjt1i � x>i ½aþ bðTi � tÞ�j ; x>i ½aþ bðTi � tÞ� � t1i;

0 ; t1i < x>i ½aþ bðTi � tÞ� � t2i;

ð1 � tÞjt2i � x>i ½aþ bðTi � tÞ�j ; t2i < x>i ½aþ bðTi � tÞ�:

8
><

>:
ð2Þ

In 2), we use Fτ(�) instead of ρτ(�) to make the notation clearer. Based on 2), the DGQR estima-

tor b̂nðtÞ for interval censored varying-coefficient model 1) can be obtained by minimizing the

following criterion function

min
y2Y

Xn

i¼1

Ft t1i; t2i; x
>

i ½aþ bðTi � tÞ�
� �

K
Ti � t
h

� �( )

; ð3Þ

i.e.,

b̂nðtÞ ¼ argmin
y2Y

Xn

i¼1

Ft t1i; t2i; x
>

i ½aþ bðTi � tÞ�
� �

K
Ti � t
h

� �( )

: ð4Þ

Obviously, if yi are exactly observed, i.e. t1i = t2i holds for each i, the DGQR estimator b̂nðtÞ
defined in (4) will be reduced to quantile estimator ~bnðtÞ for the complete observed data.

PLOS ONE DGQR estimation for varying-coefficient models

PLOS ONE | https://doi.org/10.1371/journal.pone.0240046 November 10, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0240046


Asymptotic properties

To study the asymptotic properties of varying-coefficient DGQR estimator b̂nðtÞ, we first give

some assumptions.

C.1. The density function f(�) of ε has a continuous and uniformly bounded derivative,

namely 0< sups f 0(s) < B0.

C.2. ðx>
1
; t11; t21Þ; � � �; ðx>n ; t1n; t2nÞ are the independent and identically distributed (i.i.d.) sam-

ple from random vector ðX>i ; t1i; t2iÞ which is subject to the condition in Lemma 2.

C.3. Matrix EðXiX>i Þ is a positive definite matrix, and E(Xi) = 0.

C.4. Random variable T has a second-order differentiable density function fT(t)> 0 in some

neighborhood of t [7].

C.5. The kernel function K(�) is a symmetric density function with a compact support, whose

bandwidth h! 0, nh!1 as n!1 [7].

C.6. (t1i, t2i)(i = 1, � � �, n) are independent random vectors (not necessary to be indentically

distributed) which satisfy supi|t2i − t1i|� %n for some sequence of %n! 0 as n! 0.

Moreover, G1
i ð�Þ and G2

i ð�Þ are the marginal distribution functions of t1i and t2i, which

has continuous and bounded dervatives at the point x>i bðTiÞ � riðtÞ.

C.7. For each � > 0, there is a finiteM satifying

E
1

n

Xn

i¼1

kxik
2Iðkxik > MÞ

" #

< �;

which holds for all n large enough.

C.8. The sequence of the smallest eigenvalues of the matrices

Hn ¼ E
1

n

Xn

i¼1

x�i x
�>

i ð1 � tÞ
@G2

i ð‘Þ

@‘
j‘¼x>i bðTiÞ

þ t
@G1

i ðrÞ
@r

jr¼x>i bðTiÞ

� �( )

;

is bounded away from zero for some n large enough, where x�i ¼ ðx
>
i ; x

>
i ðTi � tÞ=hÞ

T
.

Now we are ready to state the consistency and asymptotic normality of the QR estimators

b̂nðtÞ.
Theorem 1. For any τ 2 (0, 1), under Assumptions C.1-C.8,

b̂ðtÞ� !
p
b0ðtÞ;

holds as n! +1, where “!
p
” stands for convergence in probability, and b̂ðtÞ ¼ ðâ>; b̂>Þ>,

β0(t) = (β(t), β0(t)).
Theorem 2. For τ 2 (0, 1), under Assumptions C.1-C.8,

~H � 1=2

n

ffiffiffiffiffi
nh
p

HnfTðtÞ
ðâ � bðtÞÞ>

ðb̂ � b0ðtÞÞ>h

 !

þ Ln

 !

� !
d Nð0; EmÞ;

holds as n! +1, where Em denotes the identity matrix of orderm, “!d ” stands for
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convergence in distribution, and

~Hn ¼
1

n

Xn

i¼1

Ex�i ðx
�

i Þ
>
½t2P1i þ ð1 � tÞP2i þ 2tðt � 1ÞPi�fTðtÞ;

P1i ¼ Pðx
>

i bðTiÞ � t1ijXi;TiÞPðx
>

i bðTiÞ > t1ijXi;TiÞ þ oð1Þ;

P2i ¼ Pðx
>

i bðTiÞ > t2ijXi;TiÞPðx
>

i bðTiÞ � t2ijXi;TiÞ þ oð1Þ;

Pi ¼ Pðx
>

i bðTiÞ > t2ijXi;TiÞPðx
>

i bðTiÞ � t1ijXi;TiÞ þ oð1Þ;

Ln ¼
1
ffiffiffiffiffi
nh
p

Xn

i¼1

E x�i ð1 � tÞIðx
>

i bðTiÞ � riðtÞ > t2iÞ � tIðx
>

i bðTiÞ � riðtÞ � t1iÞ
� �

KiðtÞ
� �

:

Simulations

In all simulations, we always use the Uniform kernel [21], that is KðtÞ ¼ 1

2
I j T� th j � 1
� �

, and

use the bandwidths h = 0.5n−1/3. For each scenario, we report the BIAS and mean-squared

error (MSE) of parameter estimators based on 500 replications, which is defined as

BIAS ¼
1

n

Xn

j¼1

b̂ðtjÞ � bðtjÞ
n o

;

MSE ¼
1

n

Xn

j¼1

b̂ðtjÞ � bðtjÞ
n o2

:

Example 1. In this example, we adopt a data generation process similar to Kim et al [22].

With the regression model yi ¼ x>i bðTiÞ þ εi where coefficient function is β(Ti) = Ti, the

observed data {(t1i, t2i, xi, Ti)} are generated as follows:

(1) Sample covariate {xi} from a standard normal distribution with Normal(0,1).

(2) Generate {Ti} from Uniform(0.9,1.1).

(3) For each i, to generate censoring interval (t1i, t2i], firstly we let ui = min{yi} − 0.3 + ri,
with ri* Uniform(0, 0.3). Then choose ðui þ

Pk� 1

j¼0
lj; ui þ

Pk
j¼0
ljÞ as (t1i, t2i), where

l0 = 0, lj is generated from Uniform(0,0.3) independently for j = 1, � � �, k, and k is a non

negative integer which satisfies ui þ
Pk� 1

j¼0
lj < yi � ui þ

Pk
j¼0
lj.

(4) {εi} are generated independently from the following four distributions:(a) Normal

(0,0.1); (b) Logistic(0,0.3); (c) Lognormal(0,0.1); (d) Weibull(2.0,1.0).

Since the method proposed by Zhou and Feng [17] (Zhou estimation) can also be directly

applied to quantile regression with varying-coefficient models. We are mainly interested in

comparing the performance of the method proposed by Zhou and Feng [17] and ours

(DGQR) in the quantile regression with varying-coefficient models. Frist we do simulations to

compare these two methods for models with τ = 0.5 and sample size n = 200. The simulation

results of quantile regression with varying-coefficient models, Zhou estimation, and DGQR

estimation, including BIAS and MSE, are presented in Table 1.

PLOS ONE DGQR estimation for varying-coefficient models

PLOS ONE | https://doi.org/10.1371/journal.pone.0240046 November 10, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0240046


Example 2. The performance of the proposed method for interval censored quantile regres-

sion with varying-coefficient models with different τ 2 (0, 1), generate random data {(t1i, t2i,
xi} from the same models as in Example 1 except that coefficient function is β(Ti) = sin(2πTi)
and {Ti} from Uniform(0,1). We focus on comparing the BIAS and MSE(in brackets) with

sample size n = 100, 200 and 300. Then calculation BIAS and MSE of varying-coefficient mod-

els for τ takes four different values: 0.2, 0.4, 0.6, 0.8.

Example 3. We generate random data {(t1i, t2i, xi, Ti)} from the same models as in Example

2 except that coefficient function is β(Ti) = 2T2 + 6T, and calculat BIAS and MSE for τ takes

four different values: 0.2, 0.4, 0.6, 0.8.

Example 4. We generate random data {(t1i, t2i, xi, Ti)} from the same models as in Example

2 except that {xi} are derived independently from the distribution Exp(1), and calculat BIAS

and MSE for τ takes four different values: 0.2, 0.4, 0.6, 0.8.

We summarize our findings below:

(1) From Table 1, we can see that the estimation method (DGQR) we proposed in terms of

BIAS and MSE is superior than the method proposed by Zhou and feng [17], for the

quantile regression for varying-coefficient models.

(2) As is seen in Tables 2–4, all the biases and MSE decrease as n increases with different

values of τ, the estimates seem to be unbiased. This implies our estimates are consistent

for all the parameters.

Table 1. BIAS and MSE of two methods simulation results for Example 1.

ei Method BIAS MSE

Normal(0, 0.1) DGQR 0.0004 0.0002

Zhou −0.0007 0.0034

Logistic(0, 0.2) DGQR 0.0011 0.0021

Zhou −0.0011 0.0041

Lognormal(0, 0.3) DGQR 0.0007 0.0017

Zhou 0.0009 0.0041

Weibull(3.0, 1.0) DGQR 0.0016 0.0022

Zhou −0.0011 0.0040

https://doi.org/10.1371/journal.pone.0240046.t001

Table 2. BIAS and MSE (in parentheses) of four distribution simulation result for Example 2.

n τ Normal(0, 0.1) Logistic(0, 0.2) Lognormal(0, 0.3) Weibull(3.0, 1.0)

100 0.2 0.0012 (0.0038) −0.0032 (0.0237) −0072 (0.0133) −0.0062 (0.0207)

0.4 0.0028 (0.0038) −0.0002 (0.0163) −0.0012 (0.0124) −0.0012 (0.0156)

0.6 0.0062 (0.0039) −0.0041 (0.0169) −0.0041 (0.0139) −0.0027 (0.0199)

0.8 −0.0060 (0.0044) −0.0127 (0.0272) 0.0048 (0.0251) −0.0030 (0.0223)

200 0.2 0.0034 (0.0015) 0.0039 (0.0125) −0.0040 (0.0069) −0.0061 (0.0095)

0.4 −0.0012 (0.0013) 0.0002 (0.0078) 0.0015 (0.0059) 0.0007 (0.0077)

0.6 −0.0045 (0.0013) 0.0352 (0.0104) −0.0034 (0.0083) −0.0046 (0.0083)

0.8 −0.0134 (0.0017) −0.0350 (0.0128) −0.0048 (0.0134) 0.0013 (0.0121)

300 0.2 0.0048 (0.0010) 0.0109 (0.0045) 0.0172 (0.0026) 0.0165 (0.0038)

0.4 −0.0006 (0.0008) −0.0015 (0.0030) 0.0046 (0.0024) −0.0039 (0.0030)

0.6 −0.0097 (0.0010) −0.0117 (0.0031) −0.0082 (0.0031) −0.0120 (0.0034)

0.8 −0.0118 (0.0011) −0.0230 (0.0049) −0.0207 (0.0054) −0.0258 (0.0045)

https://doi.org/10.1371/journal.pone.0240046.t002
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(3) Table 2 shows the BIAS and MSE of different residual distributions under the parameter

settings of Example 2. We see that the values of bias do not differ much from their corre-

sponding MSE, indicating that the estimators converge fast. Compared with Tables 2 to

4, all simulation result performs well, regardless the distrubution type of the covariates

and the coefficients.

(4) Figs 1 and 2 show the DGQR estimator b̂ðtÞ based on the Example 2 and Example 3 in

the case of τ = 0.5, respectively. From Figs 1 and 2, we can see that the biases of the esti-

mator b̂ðtÞ is very small. This further confirms that our proposed estimation method is

effective.

Empirical analysis

In this section, we will use the proposed DGQR estimation and interval generation mechanism

procedure to analyze the air pollution data set collected by the Norwegian Public Roads

Administration. The data set consists of 500 observations and can be found in StatLib. The

data includes the concentration of NO2(yi) per hour of the day, the number of cars per hour

(x1i), the wind speed (x2i) and the hour (Ti). We use varying-coefficient model based quantile

Table 4. BIAS and MSE (in parentheses) of four distribution simulation result for Example 4.

n τ Normal(0, 0.1) Logistic(0, 0.2) Lognormal(0, 0.3) Weibull(3.0, 1.0)

100 0.2 0.0055 (0.0050) −0.1067 (0.1130) −0.0062 (0.0054) 0.0923 (0.0201)

0.4 0.0026 (0.0033) −0.0974 (0.0246) 0.0002 (0.0044) 0.0181 (0.0169)

0.6 −0.0174 (0.0024) −0.0405 (0.0137) −0.0065 (0.0040) −0.0907 (0.0195)

0.8 −0.0234 (0.0050) −0.0546 (0.0373) 0.0071 (0.0031) −0.0756 (0.0164)

200 0.2 0.0058 (0.0015) 0.0251 (0.0145) 0.0128 (0.0019) 0.0227 (0.0061)

0.4 −0.0133 (0.0018) 0.0293 (0.0149) 0.0008 (0.0012) 0.0233 (0.0068)

0.6 −0.0024 (0.0011) −0.0278 (0.0058) −0.0032 (0.0013) 0.0108 (0.0052)

0.8 −0.0160 (0.0014) −0.0184 (0.0129) −0.0049 (0.0019) −0.0660 (0.0090)

300 0.2 0.0123 (0.0009) 0.0321 (0.0080) −0.0022 (0.0008) 0.0044 (0.0028)

0.4 −0.0062 (0.0009) −0.0261 (0.0081) −0.0002 (0.0008) −0.0010 (0.0036)

0.6 −0.0146 (0.0008) −0.0272 (0.0044) 0.0024 (0.0004) 0.0055 (0.0027)

0.8 −0.0175 (0.0008) −0.0680 (0.0098) −0.0127 (0.0007) −0.0560 (0.0085)

https://doi.org/10.1371/journal.pone.0240046.t004

Table 3. BIAS and MSE (in parentheses) of four distribution simulation result for Example 3.

n τ Normal(0, 0.1) Logistic(0, 0.2) Lognormal(0, 0.3) Weibull(3.0, 1.0)

100 0.2 0.0027 (0.0012) 0.0158 (0.0306) 0.0077 (0.0028) −0.0971 (0.0301)

0.4 0.0034 (0.0013) 0.0945 (0.0245) 0.0191 (0.0031) 0.0964 (0.0379)

0.6 0.0004 (0.0014) 0.0914 (0.0249) −0.0163 (0.0012) 0.0621 (0.0283)

0.8 −0.0100 (0.0013) 0.0512 (0.0547) 0.0405 (0.0029) 0.0612 (0.0584)

200 0.2 0.0153 (0.0008) −0.0058 (0.0218) 0.0067 (0.0007) 0.0387 (0.0144)

0.4 −0.0109 (0.0006) −0.0045 (0.0114) −0.0034 (0.0003) −0.0204 (0.0091)

0.6 −0.0182 (0.0006) 0.0506 (0.0196) 0.0047 (0.0007) 0.0731 (0.0163)

0.8 −0.0205 (0.0006) 0.0076 (0.0048) −0.0012 (0.0020) −0.0020 (0.0120)

300 0.2 −0.0004 (0.0004) 0.0237 (0.0149) 0.0016 (0.0005) −0.0103 (0.0059)

0.4 0.0044 (0.0004) 0.0523 (0.0090) 0.0022 (0.0002) 0.0195 (0.0027)

0.6 0.0057 (0.0003) −0.0381 (0.0081) 0.0180 (0.0007) −0.0204 (0.0095)

0.8 −0.0111 (0.0002) 0.0121 (0.0073) −0.0003 (0.0007) 0.0514 (0.0096)

https://doi.org/10.1371/journal.pone.0240046.t003
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regression method to fit the data. We establish the following varying-coefficients model:

yi ¼ log ðx1iÞ
>
b1ðTiÞ þ log ðx2iÞ

>
b2ðTiÞ þ εi: ð5Þ

We use the interval generation mechanism in the simulation which generates interval (t1i, t2i]
with yi.

Fig 1. Parameter setting based on Example 2 and τ = 0.5. The solid curves true function β(t); dotted line estimated

function b̂ðtÞ.

https://doi.org/10.1371/journal.pone.0240046.g001

Fig 2. Parameter setting based on Example 2 and τ = 0.5. The solid curves true function β(t); dotted line estimated

function b̂ðtÞ.

https://doi.org/10.1371/journal.pone.0240046.g002
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In order to test whether the coefficient function really time varying, we consider the follow-

ing test questions:

H0 : bðTiÞ ¼ bVSH1 : bðTiÞ 6¼ b;

where β = c(β1, β2) is a constant vector. Based on 200 bootstrap resampling, we analyze interval

censored data and give estimated functions of β1(T) and β2(T), along with the 95% bootstrap

confidence bands, respectively. The p-values of test Tn are both 0.00. Therefore, we should

reject null hypothesisH0 at a significance level of 0.05. Prove that model (5) is a varying-coeffi-

cient model.

Fig 3 plots the confidence intervals for β1(T) and β2(T) of the quantile regression for vary-

ing-coefficient models with completed data. Fig 4 plots the confidence intervals for β1(T) and

β2(T) with interval censored data. The result in Fig 3 show that β1(T) and β2(T) are significant

time varying with completed data and Fig 4 also show that β1(T) and β2(T) are significant time

varying with interval censored data. Furthermore, we can also see that the DGQR estimators

confidence intervals with the completed data as long as with the interval censored data. Basi-

cally, we can see that β1(T) and β2(T) of completed data and interval censored data the results

are consistent in the confidence interval. And there is no loss effect.

To further illustrate the effect of fitting, we perform the following residual analysis. Fig 5

plots the residual histogram (a) and AFC plot (b) of the model fitted to the data. We can see

the residual histogram plot(a) it is close to the normal distribution, and the residual sequence

cannot be seen to be correlated in the corresponding AFC chart (b). This fitting result also

confirms the advantage of the varying-coefficient quantile model in fitting interval censored

Fig 3. Estimates and the corresponding pointwise confidence interval of β1(t), β2(t) for complete data.

https://doi.org/10.1371/journal.pone.0240046.g003

Fig 4. Estimates and the corresponding pointwise confidence interval of β1(t), β2(t) for interval censored data.

https://doi.org/10.1371/journal.pone.0240046.g004
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data. As shown in the above results, when the data cannot be fully observed, our proposed

method can well estimate the coefficient function.

Conclusions

In this paper, firstly proposes a coefficient function estimation method (DGQR estimation)

for interval censored quantile regression with varying-coefficient model, which creatively

solves the problem of interval censoring of response variables under the model. The property

of asymptotic normality is established with a bias converging to zero and asymptotic normal-

ity are given a strict proof. We proposed methods do not require the interval censoring vec-

tors to be identically distributed, and can be applied to models with fixed, discrete random,

or continuous random design covariates. An other important advantage of the proposed

methods is their computational simplicity, and all objective functions of the minimization

problems involved in the proposed methods are simple, convex, and easy to treat. In the sim-

ulation, we put in the Uniform kernel, our simulation results support the validity of our

methods. Finally, a real data sets analysis show that intervel censored of quantile regression

with varying-coefficient model for the air pollution data set. The empirical analysis results

are significant. Therefore the DGQR estimation for interval censored quantile regression

with varying-coefficient models can be applied to alleviate the curse of dimensionality

application.

Appendix

Nothing that Ftðx>i ½aþ bðTi � tÞ�Þ is free of a and the minimization in problem (3) is taken

over a, we rewrite problem (3) in the following:

min
Xn

i¼1

Ft t1i; t2i; x
>

i ½aþ bðTi � tÞ�
� �

� Ft t1i; t2i; x
>

i ½bðtÞ þ b
0
ðtÞðTi � tÞ�

� �� �
K
Ti � t
h

� �

:

In order to prove the theorem, we establish the following four lemmas under the assump-

tion C.1–C.8 for any τ 2 (0, 1).

Lemma 1. If S(u1, u2) = (1 − τ)|t2 − max(t2, u2)| + τ|t1 − min(t1, u2)| − (1 − τ)|t2 − max(t2,

u1)| − τ|t1 − min(t1, u1)|, u2 = u1 + a, t1 < t2, P(t1 < u1 < t2)! 0, and define t1 and t2 cannot

Fig 5. Residual histogram (a) and AFC (b) plot.

https://doi.org/10.1371/journal.pone.0240046.g005
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belong to Λ = [u1, u2) at the same time, then we can obtian

Sðu1; u2Þ ¼ Sðu1; u2ÞsgnðaÞ½Iðt2 2 LÞ þ Iðt1 2 LÞ þ Iðt1; t2=2LÞ�

¼ A1 þ A2 þ A3 þ A4 þ A5;

where

sgnðaÞ ¼
1; a > 0;

� 1; a < 0:

(

A1 ¼ ð1 � tÞðu1 � t2ÞsgnðaÞIðt2 2 LÞ;

A2 ¼ t � ðu1 � t1ÞsgnðaÞIðt1 2 LÞ;

A3 ¼ ð1 � tÞ � a � sgnðaÞIðt2 2 LÞ;

A4 ¼ t � a � sgnðaÞIðt1 2 LÞ;

A5 ¼ a � ½ð1 � tÞIðu1 > t2Þ � tIðu1 � t1Þ�:

Lemma 2.

ESnðzðtÞÞ ¼
1

2
fTðtÞz

>ðtÞzðtÞ þ z>ðtÞH� 1=2

n Ln þ oð1Þ;

holds uniformly in n and uniformly over ||z(t)||�v with v! 0.

where

zðtÞ ¼ H1=2

n

ffiffiffiffiffi
nh
p
½ða � bðtÞÞ>; ðb � b0ðtÞÞ>h�>;

Ln ¼
1
ffiffiffiffiffi
nh
p

Xn

i¼1

E x�i ð1 � tÞIðx
>

i bðTiÞ � riðtÞ > t2iÞ � tIðx
>

i bðTiÞ � riðtÞ � t1iÞ
� �

KiðtÞ
� �

;

KiðtÞ ¼ K
Ti � t
h

� �

:

Proof Lemma 2. We provide Ftðt1i; t2i; x>i ½aþ bðTi � tÞÞ as

Ftðt1i; t2i; x>i ½aþ bðTi � tÞÞ ¼ ð1 � tÞjt2i � max ðt2i; x>i ½aþ bðTi � tÞ�Þj

þtjt1i � min ðt1i; x>i ½aþ bðTi � tÞ�Þj:

Hence if we let

riðtÞ ¼ x
>

i ½bðTiÞ � bðtÞ � b
0
ðtÞðTi � tÞ�;

x�ni ¼ H
� 1=2

n x�i ;

DiðtÞ ¼ x
�

i H
� 1=2

n zðtÞ=
ffiffiffiffiffi
nh
p

¼ z>ðtÞx�ni=
ffiffiffiffiffi
nh
p

:

We can decompose

x>i ½aþ bðTi � tÞ� ¼ x
>
i bðTiÞ þ x

>
i ½a � bðtÞ� þ x

>
i ðTi � tÞ½b � b

0
ðtÞ� � riðtÞ

¼ x>i bðTiÞ � riðtÞ þ DiðtÞ;

x>i ½bðtÞ þ b
0
ðtÞðTi � tÞ� ¼ x>i bðTiÞ � riðtÞ:
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Then we have rewrite Sn(a, b, t) as Sn(z(t))

SnðzðtÞÞ ¼
Xn

i¼1

Ft½t1i; t2i; x
>

i bðTiÞ � riðtÞ þ z
>ðtÞx�ni=

ffiffiffiffiffi
nh
p
� � Ft½t1i; t2i; x

>

i bðTiÞ � riðtÞ�
n o

KiðtÞ:

For notational convenience, let

fniðzðtÞÞ ¼ Ft½t1i; t2i; x
>

i bðTiÞ � riðtÞ þ z
>ðtÞx�ni=

ffiffiffiffiffi
nh
p
� � Ft½t1i; t2i; x

>

i bðTiÞ � riðtÞ�
n o

KiðtÞ:

By Lemma 1 rewrite x>i bðTiÞ � riðtÞÞ as u1, x>i bðTiÞ � riðtÞ þ Z
>ðtÞx�ni=

ffiffiffiffiffi
nh
p

as u2,

z>ðtÞx�ni=
ffiffiffiffiffi
nh
p

as a, than let Λi be the interval with x>i bðTiÞ � riðtÞÞ and x>i bðTiÞ � riðtÞ þ
z>ðtÞx�ni=

ffiffiffiffiffi
nh
p

as two end point, thus

SnðzÞ ¼ I1 þ I2 þ I3 þ I4 þ I5;

where

I1 ¼ ð1 � tÞ
Xn

i¼1

½ðx>i bðTiÞ � riðtÞ � t2iÞsgnðz
>ðtÞx�ni=

ffiffiffiffiffiffi
nh
p
ÞIðt2i�LiÞKiðtÞ�;

I2 ¼ t
Xn

i¼1

½ðx>i bðTiÞ � riðtÞ � t1iÞsgnðz
>ðtÞx�ni=

ffiffiffiffiffiffi
nh
p
ÞIðt1i�LiÞKiðtÞ�;

I3 ¼ ð1 � tÞ
Xn

i¼1

½ðz>ðtÞx�ni=
ffiffiffiffiffi
nh
p
Þsgnðz>ðtÞx�ni=

ffiffiffiffiffiffi
nh
p
ÞIðt2i�LiÞKiðtÞ�;

I4 ¼ t
Xn

i¼1

½ðz>ðtÞx�ni=
ffiffiffiffiffi
nh
p
Þsgnðz>ðtÞx�ni=

ffiffiffiffiffiffi
nh
p
ÞIðt1i�LiÞKiðtÞ�;

I5 ¼
Xn

i¼1

KiðtÞðz
>ðtÞx�ni=

ffiffiffiffiffi
nh
p
Þ½ð1 � tÞIðx>i bðTiÞ � riðtÞ > t2iÞ � tIðx

>

i bðTiÞ � riðtÞ � t1iÞ�:

Noting that P(t1i< t2i) = 1, by Assumptions C.1–C.8, it is also easy to show that

EðI1Þ ¼ E½EðI1jTiÞ� ¼ ð1 � tÞ
Xn

i¼1

E KiðtÞE½ðx
>

i bðTiÞ � riðtÞ � t2iÞIðt2i�LiÞjTi�
� �

:

Using mean value theorems for definite integrals, we have

E ðx>i bðTiÞ � riðtÞ � t2iÞIðt2i 2 LiÞjTi
� �

¼ f ðmÞ z>ðtÞx�ni=
ffiffiffiffiffi
nh
p� � @G2

i ð‘Þ

@‘
j‘¼x>i bðTiÞ

þ oð1Þ;

where f ðmÞ ¼ x>i bðTiÞ � riðtÞ � m. By a Taylor expansion, f ðmÞ ¼ � 1

2
z>ðtÞx�ni=

ffiffiffiffiffi
nh
p� �

þ oð1Þ:

Thus, we can obtain

EðI1Þ ¼ �
1

2
ð1 � tÞfTðtÞz

>ðtÞ
1

n

Xn

i¼1

Ex�nix
�>

ni
@G2

i ð‘Þ

@‘
j‘¼x>i bðTiÞ

( )

zðtÞ þ oð1Þ:
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Imitating the calculation process of E(I1), we have

EðI2Þ ¼ E½EðI2jTiÞ� ¼ �
1

2
tfTðtÞz

>ðtÞ
1

n

Xn

i¼1

Ex�nix
�>

ni
@G1

i ðrÞ
@r

jr¼x>i bðTiÞ

( )

zðtÞ þ oð1Þ;

EðI3Þ ¼ E½EðI3jTiÞ� ¼ ð1 � tÞfTðtÞz>ðtÞ
1

n

Xn

i¼1

Ex�nix
�>

ni
@Gi

2
ð‘Þ

@‘
j
‘¼x>i bðTiÞ

( )

zðtÞ þ oð1Þ;

EðI4Þ ¼ E½EðI4jTiÞ� ¼ tfTðtÞz>ðtÞ
1

n

Xn

i¼1

Ex�nix
�>

ni
@Gi

1
ðrÞ

@r
jr¼x>i bðTiÞ

( )

zðtÞ þ oð1Þ:

Obviously, EðI5Þ ¼ z>ðtÞH� 1=2
n Ln hold true, where

Ln ¼
1
ffiffiffiffiffi
nh
p

Xn

i¼1

E x�i ð1 � tÞI x
>

i bðTiÞ � riðtÞ > t2i
� �

� tIðx>i bðTiÞ � riðtÞ � t1iÞ�KiðtÞ
� �

:
�

Based on the above result, we have

ESn ¼ EI1 þ EI2 þ EI3 þ EI4 þ EI5

¼
1

2
fTðtÞz

>ðtÞzðtÞ þ z>ðtÞH� 1=2

n Ln þ oð1Þ;

holds uniformly in n and uniformly over ||z(t)|| < v with v! 0. This complete the proof of

Lemma 2.

Define

Dni ¼ ½ð1 � tÞIðx
>

i bðTiÞ � riðtÞ > t2iÞ � tIðx
>

i bðTiÞ � riðtÞ � t1iÞ�x
�

niKiðtÞ;

which is the derivative of fni(z(t)) at z(t) = 0 expect x>i bðTiÞ � riðtÞ ¼ t1i or

x>i bðTiÞ � riðtÞ ¼ t2i.
Lemma 3. Let RniðzðtÞÞ ¼ fniðzðtÞÞ � ðnhÞ

� 1
D
>

nizðtÞ. Then

jRniðzðtÞÞj � jz>ðtÞx�ni=
ffiffiffiffiffi
nh
p
j½ð1 � tÞIðjt2i � x>i bðTiÞ þ riðtÞj < jz

>ðtÞx�ni=
ffiffiffiffiffi
nh
p
jÞ

þ tIðjt1i � x>i bðTiÞ þ riðtÞj < jz
>ðtÞx�ni=

ffiffiffiffiffi
nh
p
jÞ�KiðtÞ:

Proof of Lemma 3. It follows directly from Lemma 2 in [17].

Lemma 4. For any τ 2 (0, 1)

sup
Z2;
jSnðzðtÞÞ � ESnðzðtÞÞj ¼ opð1Þ;

holds for any bounded subset Ø 2 <m as n!1;

�
1

n

Xn

i¼1

RniðzðtÞÞ � ERniðzðtÞÞ½ � ¼ op
kzðtÞk
ffiffiffiffiffi
nh
p

� �

;

holds uniformly in n and uniformly over 0< ||z(t)|| < Z as v! 0.

Proof of Lemma 4. It follows directly from Lemma 3 in [17].
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Proof of Theoren 1: Note that

kLnk
2
�

1
ffiffiffiffiffi
nh
p

Xn

i¼1

kx�i KiðtÞk
2
½ð1 � tÞP x>i bðTiÞ � riðtÞ > t2i

� �

� tPðx>i bðTiÞ � riðtÞ � t1iÞ�
2
;

holds for n large enough. By the fact P(t1i< y� t2i) = 1, we have

Pðt2i < x
>

i bðTiÞ � riðtÞÞ ¼ Pðyi < x
>

i bðTiÞ � riðtÞÞ � Pðyi < x
>

i bðTiÞ � riðtÞ � t2iÞÞ;

Pðt1i � x
>

i bðTiÞ � riðtÞÞÞ ¼ Pðyi > x
>

i bðTiÞ � riðtÞÞÞ � Pðyi > x
>

i bðTiÞ � riðtÞ > t1iÞÞÞ:

By Assumption C.1−C.8, we can get the following results

½ð1 � tÞPðx>i bðTiÞ � riðtÞ > t2iÞ � tPðx
>
i bðTiÞ � riðtÞ > t1i�

2

� ½Pðt1i < x>i bðTiÞ � riðtÞ � ti þ %nÞ�
2

� ½Pðt1i � %n < x>i bðTiÞ � riðtÞ � ti þ %nÞ�
2

¼ ½Pðjt1i � x>i bðTiÞ þ riðtÞj � þ%nÞ�
2

¼ Oð%2
nÞ:

Under the Assumption C.8 we know kLnk
2
¼ Oð%2

nÞ, kLnk!
P0; and we knowHn is bounded

away from zero for n large enough. Then we show that for any v> 0, kH� 1=2
n Lnk < v

4
; holds for

all n large enough, and v small enough.

By Lemma 2 we know for any v> 0 small enough, there is � > 0 such that

ESnðzðtÞÞ �
1

2
fTðtÞv

2 � v �
v
4
þ oðv2Þ � �;

holds for any ||z(t)|| = v and n large enough. By Lemma 3 we have that for any δ> 0,

ð1 � dÞ � P sup
kzðtÞk<v

jSnðzðtÞÞ � ESnðzðtÞÞj <
�

2

 !

� P sup
kzðtÞk¼v

jSnðzðtÞÞ � ESnðzðtÞÞj <
�

2

 !

� P inf
kzðtÞk¼v

SnðzðtÞÞ �
�

2

� �

;

holds for any n large enough. Nothing that Sn(z(t)) is convex and Sn(0) = 0, we can conclude

that kẑnk < v holds true with probability tending to 1 as n!1.

Proof of Theorem 2. LetWn ¼
1ffiffiffi
nh
p
Pn
i¼1
Dni, and SnðzðtÞÞ ¼

Pn
i¼1
fniðzðtÞÞ.

SnðẑnðtÞÞ ¼ ESnðẑnðtÞÞ þ ðnhÞ
� 1=2W>

n ẑnðtÞ � EðnhÞ
� 1=2W>

n ẑnðtÞ

þ ½SnðẑnðtÞÞ � ESnðẑnðtÞ � ðnhÞ
� 1=2W>

n ẑnðtÞ þ EðnhÞ
� 1=2W>

n ẑnðtÞ�;
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where

SnðẑnðtÞÞ � ESnðẑnðtÞ � ðnhÞ
� 1=2W>

n ẑnðtÞ þ EðnhÞ
� 1=2W>

n ẑnðtÞ

¼
Xn

i¼1

RniðẑnðtÞÞ � ERniðẑnðtÞÞ½ � ! op
kẑnðtÞkffiffiffiffiffi
nh
p

� �

:

According to above conclusions and Lemma 2 we have

SnðẑnðtÞÞ ¼
1

2
fTðtÞẑ

>

n ðtÞẑnðtÞ þ ẑ
>

n ðtÞH
� 1=2

n Ln þ ðnhÞ
� 1=2W>

n ẑnðtÞ

� E ðnhÞ� 1=2W>
n ẑnðtÞ

h i
þ op

kẑnðtÞkffiffiffiffiffi
nh
p

� �

þ oð1Þ:

Since ẑnðtÞ is the minimization point of SnðẑnðtÞÞ, then

@SnðẑnðtÞÞ
@ẑnðtÞ

¼ fTðtÞẑnðtÞ þH
� 1=2

n Ln þ ðnhÞ
� 1=2W>

n � E ðnhÞ
� 1=2W>

n

h i
:

Let
@Snðẑ nðtÞÞ
@ẑ nðtÞ

¼ 0, by direct calculation we know

ẑnðtÞ ¼ �
H� 1=2
n Ln þ ðnhÞ

� 1=2
ðW>

n � EW
>
n Þ þ opððnhÞ

� 1=2
Þ

fTðtÞ þ oð1Þ
;

then

ffiffiffiffiffi
nh
p
½ðâ � bðtÞÞ>; ðb̂ � b0ðtÞÞ>h�>

¼ �
1

fTðtÞ
H� 1

n Ln þ ðnhÞ
� 1=2H� 1=2

n W>

n � E ðnhÞ
� 1=2H� 1=2

n W>

n

h in o
;

where

W>
n ¼

1
ffiffiffiffiffi
nh
p

Xn

i¼1

ð1 � tÞI x>i bðTiÞ � riðtÞ > t2i
� �

� tIðx>i bðTiÞ � riðtÞ � t1iÞ�H
� 1=2

n x�i KiðtÞ:
�

Let Ci ¼ ½ð1 � tÞIðx>i bðTiÞ � riðtÞ > t2iÞ � tIðx
>
i bðTiÞ � riðtÞ � t1iÞ�, thenW>

n ¼

1ffiffiffi
nh
p
Pn
i¼1
CiH� 1=2

n x�i KiðtÞ: Thus

ffiffiffiffiffi
nh
p

HnfTðtÞððâ � bðtÞÞ
>
; ðb̂ � b0ðtÞÞ>hÞ> þ Ln

¼ ðnhÞ� 1E
Xn

i¼1

Cix
�

i KiðtÞ � ðnhÞ
� 1
Xn

i¼1

Cix
�

i KiðtÞ:

Then calculate the variance of ðnhÞ� 1Pn
i¼1
Cix�i KiðtÞ,

Var ðnhÞ� 1
Xn

i¼1

Cix
�

i KiðtÞ

 !

¼ ðnhÞ� 1
Xn

i¼1

EðC2

i x
�

i K
2

i ðtÞx
�>

i Þ � E½Cix
�

i KiðtÞ�E½Cix
�

i KiðtÞ�
� �

¼ ðnhÞ� 1
Xn

i¼1

E x�i x
�>

i ½ð1 � tÞ
2P2i þ t

2P1i þ 2tðt � 1ÞPi� fTðtÞ
� �

þ opðhÞ

¼ ~Hn þ opðhÞ;
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where

P1i ¼ Pðx
>

i bðTiÞ � t1ijXi;TiÞPðx
>

i bðTiÞ > t1ijXi;TiÞ þ oð1Þ;

P2i ¼ Pðx
>

i bðTiÞ > t2ijXi;TiÞPðx
>

i bðTiÞ � t2ijXi;TiÞ þ oð1Þ;

Pi ¼ Pðx
>

i bðTiÞ > t2ijXi;TiÞPðx
>

i bðTiÞ � t1ijXi;TiÞ þ oð1Þ;

~Hn ¼ ðnhÞ
� 1
Xn

i¼1

E x�i x
�>

i ½ð1 � tÞ
2P2i þ t

2P1i þ 2tðt � 1ÞPi� fTðtÞ
� �

:

Noting the fact that ðnhÞ� 1Pn
i¼1
Cix�i KiðtÞ � EðnhÞ

� 1Pn
i¼1
Cix�i KiðtÞ � Nð0; ~HnÞ: Then

ffiffiffiffiffi
nh
p

~Hn
� 1=2
HnfTðtÞððâ � bðtÞÞ

>
; ðb̂ � b0ðtÞÞ>hÞ> þ ~Hn

� 1=2
Ln� !

d Nð0;EmÞ:

Therefore, we have Theorem 2 holds true.
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