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The features of an image can be represented at multiple levels—from its low-level visual properties to high-level meaning.

What drives some images to be memorable while others are forgettable? We address this question across two behavioral

experiments. In the first, different layers of a convolutional neural network (CNN), which represent progressively

higher levels of features, were used to select the images that would be shown to 100 participants through a form of prospec-

tive assignment. Here, the discriminability/similarity of an image with others, according to different CNN layers dictated

the images presented to different groups, who made a simple indoor versus outdoor judgment for each scene. We found

that participants remember more scene images that were selected based on their low-level discriminability or high-level sim-

ilarity. A second experiment replicated these results in an independent sample of 50 participants, with a different order of

postencoding tasks. Together, these experiments provide evidence that both discriminability and similarity, at different

visual levels, predict image memorability.

[Supplemental material is available for this article.]

When faced with the option to dine at a new restaurant, we might
rely on the familiarity of a certain building, or the look of a specific
logo, perhaps from a commercial we once saw. Advertising and
marketing departments certainly hope this is the case, but what
makes certain places and pictures more likely to be remembered
than others? Determining why, when, and how images are mem-
orable is a necessary step formodeling the relationship between vi-
sual perception and memory, and applying research, such as to
select memorable health-related or educational images.

The particular images that are more likely to be remembered
than others are remarkably consistent across individuals
(Bainbridge et al. 2013; Isola et al. 2014; Bylinskii et al. 2015).
However, the exact reasons that some images are more memorable
than others remain to be determined. Simple visual features, such
as spatial frequency, hue, and saturation, struggle to predict an im-
age’s memorability (Isola et al. 2014; Dubey et al. 2015; Bainbridge
et al. 2017), as do participants’ own subjective predictions about
whether an image will be easily remembered (Isola et al. 2014).
Images that are visually distinctive have been shown to be particu-
larly memorable (Bartlett et al. 1984; Busey 2001; Huebner and
Gegenfurtner 2012; Lukavský and Děchtěrenko 2017), and some
form of high-level content plays a role, based on the negative con-
sequences of rearranging visual features (Lin et al. 2018) though
the nature of predictive low-level and high-level content remains
unclear.

The intrinsic visual properties of images play a more impor-
tant role in memorability than even individual differences in ob-
servers (Bylinskii et al. 2015). An image’s properties range from
low-level features such as color and edges, to high-level semantic
components such as a scene’s category (Epstein and Baker 2019).
Researchers have previously quantified how visual features relate

to memory with algorithms that account for the color and spatial
frequencies of images (Huebner and Gegenfurtner 2012) but
such algorithms are not able to simultaneously account for higher-
level properties.

Higher-level properties are thought to be central to memora-
bility, to the extent that it has been stated that “memorability is
not low-level vision” (Bainbridge et al. 2017). Such properties
have been suggested to relate to memorability even more so than
visual distinctiveness (Bainbridge 2019). It is plausible that a
scene’s semantic components could be useful for predicting mem-
ory, as prior work has shown that individual objects within an im-
age can be predictive of the overall image’s memorability (Isola
et al. 2014). Little is known, however, as to how semantic proper-
ties operate within contexts, and how this might relate to memo-
rability. Drawing on the schema and familiarity literature, we
might expect that shared semantic components that are particular-
ly important in forming a memory schema would aid memorabil-
ity (van Kesteren et al. 2013). Additionally, greater semantic
similarity between words (even without a visual component)
tend to be better remembered (Xie et al. 2020).

Recent neuroimaging research has also highlighted the rela-
tionship between higher-level semantic features and memorabili-
ty. An investigation by Bainbridge et al. (2017) identified that an
imagememorability-based similarity space is apparent in the activ-
ity patterns of higher-level visual processing regions, such as the
anterior ventral stream, as well as in more traditional
memory-related areas within themedial temporal lobe. High corre-
lations between memorability and neural activity within both the
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visual stream and medial temporal lobe suggest that similarity is
key for relating high-level properties of images to memorability.
The authors noted, however, that controlling for low-level visual
features in their stimulus set weakened the ability to find relation-
ships between memorability and lower-level visual processing
areas, such as early visual cortex. Thus, while these results support-
ed claims that higher-level representations play a role in memora-
bility, they do not necessarily rule-out a role for lower-level
representations. The question therefore remains as to how lower-
level and higher-level features (both of which are present in any
image) may play complementary (or even competing) roles in
memorability.

Recently, rather than considering stimuli in terms of indepen-
dent visual features, vision scientists have used convolutional neu-
ral networks (CNNs) with a hierarchical organization to
characterize images (Deng et al. 2009; Kriegeskorte 2015). These
object recognition CNNs often have similarities with the human
visual system (Lindsay and Miller 2018), in which visual features
are represented at increasingly high levels (Coutanche et al.
2016). Early CNN layers extract basic visual properties, which be-
come increasingly high-level in later layers, until the final layer
classifies the image (Krizhevsky et al. 2012; LeCun et al. 2015).
Although primarily used in the vision sciences, CNNs are not
only applicable to perception and vision, but also to the memory
field (though they are currently rarely used). Because CNNmodels
allow multiple feature representations to be extracted for a single
image, they make an excellent tool for measuring the impact
that varied visual features may have on behavioral outcomes,
such as memory performance.

In this set of experiments, we leverage the multiple layers of
object recognition CNNs to determine why certain images are
more memorable than others, at multiple visual stages. Uniquely,
we use a CNN model to select the images that participants will
view, in a prospective assignment design. Typically, research with-
in the memory field involves collecting measures of memory per-
formance, which are then related to others measures of interest
(e.g., visual properties; Dubey et al. 2015). However, by retrospec-
tively relatingmemory performance to the features of items, a caus-
al relationship between features and memory performance is not
established. In contrast, prospective assignment—common in
more clinical settings—provides stronger evidence of causality
and helps us on the path toward explaining (Cichy and Kaiser
2019) visual influences on memory, as opposed to reporting asso-
ciations between the two. Using this prospective assignment
framework allows us to better identify condition-driven behavioral
differences.

Across two behavioral experiments with independent sam-
ples of participants, we test how the hierarchy of visual properties
(asmeasured through the features at different layers within a CNN)
determine an image’s memorability. We used prospective assign-
ment to present participants with scene images frommultiple cat-
egories that were either similar or discriminable based on CNN
levels.

Results

We investigated how image memorability is influenced by visual
features at different levels.

Experiment 1
In the first experiment, we contrasted participants’ ability to re-
member both discriminable and similar images of scenes, com-
pared with foils, during a surprise recognition memory test.
Participants were prospectively assigned to one of four groups in
which they viewed images selected from one of four layers from

the CNN. These layers correspond to different levels of a hierarchy
of low-level to high-level visual features. First, we present results
from analyses across the entire sample of participants, and then an-
alyze the four groups of participants independently. On average,
the odds of identifying an image as having been seen before were
18.59 times greater for the previously presented images than for
matched foils (B =2.92, P<0.001, 95% confidence interval in
odds [17.24, 20.04]). Our key question of interest was how the
memory of previously presented images would differ based on
which CNN layer had been used to select them. A test for polyno-
mial effects across all 100 participants to predict memory perfor-
mance for both discriminable and similar images across the four
conditions (i.e., CNN layers: 1, 3, 5, or 8) revealed a significant lin-
ear interaction between image similarity (i.e., how similar an imag-
e’s features from the corresponding CNN layer are to other image’s
features from the same layer) and layer condition (B=0.33, odds =
1.39, P< 0.001, [1.16, 1.67]). This similarity x layer interaction was
key to detecting the relationship, as there was no main effect
of similarity when the layers were collapsed (B =0.02, odds=
1.02, P=0.742, [0.93, 1.11]). Neither a quadratic nor cubic function
fit the data better than linear (Ps > 0.197).

Each of the four conditionswere then separately examined us-
ing individual regressionmodels. Within images selected based on
the earliest layer (layer 1), more similar images were less likely to be
correctly recognized as old than were more discriminable images
(B =−0.26, odds =0.77, P=0.005, [0.64, 0.93], Cohen’s d=0.39).
For ease of interpretability, this means that the odds of correctly
recognizing an image as having been seen before were 1.30 times
greater for images categorized as discriminable, than for images cat-
egorized as similar. Within the images selected based on the last
layer (layer 8), the odds of correctly recognizing an image as old
were 1.26 times greater for images categorized as similar, than for
images categorized as discriminable (B =0.23, P=0.012, [1.05,
1.52], Cohen’s d=0.44). No differences were observed between
similar and discriminable images in the middle two layers (3 and
5) (Ps > 0.581). Mean hit rates (correctly recognizing an image as
old) are shown in Figure 1.

We next examined whether the rate of false alarms and cor-
rect rejections of the unseen foil images differed based on the sim-
ilarity/discriminability of the images for each layer. Because these
foil images were not prospectively assigned in the same manner
as the seen images, we assigned each foil image to have the same
“similar”/“discriminable” status as its corresponding seen image
(from the same category). Where seen images from a category

Figure 1. Mean hit rates for previously presented images categorized as
discriminable or similar based on the four layers of the CNN for experiment
1. Error bars reflect standard error of the mean. (*)P<0.05.
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were split in being similar versus discriminable (i.e., there was no
clear status to transfer to corresponding foils), the category’s foils
(one category in layer 5 and four in layer 8) were removed from
analysis.

Generally speaking, image similarity had opposing effects on
false alarm rates as it did on hit rates. For the foils of layer 1 images,
more similar images were more likely to be falsely judged as seen
before, than their discriminable counterparts (B = 0.33, odds =
1.39, P=0.004, [1.11, 1.74]). The similarity status of layer 3 foils
did not affect false alarm rate (P= 0.195). In contrast to layer 1, layer
5 and 8 foils were more likely to be falsely judged as seen before
when they were discriminable, than when they were similar (layer
5: B =−0.49, odds =0.61, P<0.001, [0.48, 0.78]; layer 8: B =−0.66,
odds=0.51, P<0.001, [0.40, 0.66]). See Supplemental Figure 1 for
a depiction of mean false alarm rates.

We also implemented regression models with continuous
(rather than similar/discriminable categorical) predictors of image
similarity. For every one standard deviation decrease in similarity
(Fisher-Z r-values) in layer 1, the odds of correctly recognizing
an image as old were 1.14 times greater (β=−0.13, odds =0.88,
P =0.006, [0.80, 0.96]). For layer 8, for every one standard deviation
increase in similarity, the odds of correctly recognizing an image as
old were 1.12 times greater (β= 0.11, P=0.018, [1.02, 1.22]).
No differences were observed for the middle two layers (3 and 5;
Ps > 0.674).

Experiment 2
We next asked whether these relationships between discriminabil-
ity and memorability would generalize to an independent sample
of participants that did not have a verbal free recall task prior to
testing recognition memory (as was the case for experiment 1).
For this second experiment, we followed the same approach as in
experiment 1, but only recruited and assigned new participants
to either layer 1 or layer 8, as these were the only two layers that
had significant effects in the first experiment. Experiment 2 analy-
ses therefore only investigated the lowest (layer 1) and highest (lay-
er 8) level features, and not layers 3 or 5 (because participants were
not assigned to view images from either of those layers in this sec-
ond experiment). As expected based on the results from experi-
ment 1, participants were able to correctly recognize images that
had been seen before, compared with the novel foils, with the
odds of identifying an image as old being 21.98 times greater for
previously presented images than for matched foils (B =3.09, P<
0.001, [19.67, 24.57]).

As in experiment 1, each of the two conditions were sepa-
rately examined using individual regression models. Within the
images based on the earliest layer (layer 1), more similar images
were less likely to be correctly recognized as old than were images
that were more discriminable (B =−0.71, odds =0.49, P<0.001,
[0.41, 0.59], Cohen’s d=1.53). The odds of correctly recognizing
an image as old were 2.04 times greater for images categorized as
discriminable, than categorized as similar. In contrast, for images
selected based on the last layer (layer 8), the odds of correctly rec-
ognizing an image as old were 1.62 times greater for images catego-
rized as similar, than as discriminable (B =0.48, P<0.001, [1.35,
1.94], Cohen’s d=0.85). Mean hit rates (correctly recognizing an
image as old) for experiment 2 are shown in Figure 2. As in exper-
iment 1, we also investigated false alarm rates. Using the same
framework as described above, we again found that more discrim-
inable layer 8 foils were more likely to be falsely judged as seen be-
fore, compared with the similar foils (B =−0.73, P<0.001, odds =
0.48, [0.37, 0.62]. Unlike experiment 1, more similar images in lay-
er 1 were not more likely to be falsely judged as seen before (B =
0.12, P=0.351, odds =1.13, [0.88, 1.45]). These false alarm analyses
only investigated the lowest (layer 1) and highest (layer 8) layers

because (as discussed in the Materials and Methods), participants
were only prospectively assigned to images selected from these lay-
ers. See Supplemental Figure 2 for a depiction of mean false alarm
rates.

As in experiment 1, we also implemented regression models
with continuous (instead of categorical) predictors of image simi-
larity. For every one standard deviation decrease in similarity
(Fisher-Z r-values) based on layer 1, the odds of correctly recogniz-
ing a previously presented image as old were 1.41 times greater (β=
−0.34, odds =0.71, P< 0.001, [0.65, 0.78]). In the model using fea-
tures from layer 8, for every one standard deviation increase in sim-
ilarity, the odds of correctly recognizing a previously presented
image as old were 1.27 times greater (β= 0.24, P<0.001, [1.16,
1.39]).

Discussion

We have investigated how image discriminability at multiple visu-
al levels predicts the likelihood that an image will be remembered.
In experiment 1, we found—in a prospective assignment paradigm
—that participants remembered more scene images if the images
were selected based on high discriminability in low-level visual
properties (earliest CNN layer), or high similarity in higher-order
properties (final CNN layer). Experiment 2 replicated these results
in an independent sample when the recognition test was the first
test of memory after image presentation.

Our findings that similarity and discriminability can support
memorability at different levels help to reconcile several seemingly
conflicting findings. For instance, in some prior research, image
memorability has been associated with the presence of discrimina-
ble features (Bartlett et al. 1984; Bruce et al. 1994; Lukavský and
Děchtěrenko 2017). This is in line with our evidence that discrim-
inability within the early lowest visual level is related to better
memory. Other investigations, however, have found an associa-
tion between similarity (Bainbridge et al. 2017; Bainbridge and
Rissman 2018) and increased memory, which is more in line
with our evidence that similarity within higher-level semantic fea-
tures is related to increases in memory. Therefore, our evidence
suggests that both are true—discriminability and similarity are
each important predictors for whether an image will be remem-
bered, though they operate at different stages of visual processing.
Given these results, we emphasize the importance of considering
the multitude of visual levels in images.

It is possible that our finding of increased memorability for
images that are similar in high-level visual features could derive

Figure 2. Mean hit rates for previously presented images categorized as
discriminable or similar based on the four layers of the CNN for experiment
2. Error bars reflect standard error of the mean. (*) P<0.05.
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from links to idiosyncratic memory as suggested by Charest et al.
(2014) Such images could be the types of images that evoke the
most personal episodic memories among people, thus resulting
in increased memorability. Additionally, our finding is in line
with recent neuroimaging evidence from Bainbridge et al. (2017),
which showed that later regions within the visual ventral stream
were sensitive to differences in imagememorability. These authors
suggest that their findings could be in part due to feedback from
memory regions within the medial temporal lobe.

The consistent results of similarity at the highest level and dis-
criminability at the lowest level predicting memorability across
both behavioral experiments highlights the robustness of these ef-
fects. Therefore, it is not likely that our findings are driven by dif-
ferences in additional forms of memory testing prior to the
recognition task of interest.

Our findings are in line with previous research concluding
that memorability is an intrinsic property of images (Bainbridge
2019). Both faces (Bainbridge et al. 2013) and scenes (Isola et al.
2011) have been shown to reliably elicit similar memory perfor-
mances across independent groups of people. In the present study,
we have shown that certain images are reliably predictive of recog-
nitionmemory across two independent samples. To hone in on the
images that are most memorable, we used similarity and discrimi-
nability to specifically target images at the extremes of their respec-
tive visual features (low-level and high-level). These features can be
measured through the use of CNNs, which extract representations
of low-level and high-level features after being trained on millions
of images.

An aspect of the design worth highlighting is the prospective
assignment performed in experiments 1 and 2. Typically, experi-
ments of memorability test how memory for a large set of inter-
mixed images varies with several metrics, such as visual
properties. This approach can be valuable for identifying potential
underlying predictors ofmemorability, but by retrospectively relat-
ing features to memory performance, the relationship is necessar-
ily correlational. In contrast, prospective assignment—common
in clinical trials—provides stronger evidence of causality because
the hypothesized dimension of interest (here, CNN layer discrim-
inability) is used to allocate participants to different conditions
in advance, and allows for greater confidence in the reason for dif-
fering outcomes (memory performance) across the groups. In addi-
tion to giving us greater confidence in the cause of differences in
image memorability, prospectively assigning images to different
groups also minimizes any potential interference that could other-
wise occur when participants view images from multiple sets
(Tulving 1972; Konkle et al. 2010a). Future memorability research
might consider prospectively partitioning presented items based
on hypothesized features of interest, as opposed to the more com-
mon method of retrospectively relating memory performance to
stimulus-level features in a large set of presented stimuli.

Our exploratory analyses of false alarm rates based on CNN
layers provide an intriguing avenue for future research. We found
that discriminability of lower-level visual features not only aids rec-

ognition of previously seen images, but also aids in successfully re-
jecting images that had not been seen before (though only in
experiment 1, not experiment 2). Additionally, higher-level
semantic features showed a positive relationship between similar-
ity and successful rejection of unseen images. We note that these
results should be interpreted with caution as they were not the pri-
mary focus of these studies, and therefore were not as controlled as
the analyses of the previously seen images.

The use of CNNs in the field of cognitive psychology, and spe-
cifically relating to memorability, remain underused. For the scope
of these experiments, we were interested in the underlying levels
that are represented by the layers of a given CNN (in this case,
AlexNet), although we note that other CNNs have shown greater
similarity with human brain activity. Future research may attempt
to more closely link the specific representations between CNNs
and neural activity in relation to memorability, however, the spe-
cific modeling of visual processing within the human brain, while
interesting, is beyond the scope of our analyses here. The present
work builds on prior research that has shown the promise of adapt-
ing CNNs to identify features relevant for memorability (Khosla
et al. 2015). Our work contrasts the representations at multiple in-
dividual layers, as a way to examine the contribution of each level
to memorability.

Materials and Methods

Participants
In experiment 1, participants were recruited until 100 contributed
usable data (25 in each condition), in linewith prior research inves-
tigating recognition memory for scenes (Konkle et al. 2010a,b).
Participants were native English speakers with normal or
corrected-to-normal vision, without a learning or attention disor-
der, and from the University of Pittsburgh community (49 females,
51 males, mean [M ] age = 19.6 yr, standard deviation [SD] = 1.7 yr).
Four participants’ data were not analyzed after the initial encoding
phase due to low task accuracy (described in more detail below), so
were removed and excluded from the target of 100 participants.

For experiment 2, participants were recruited until 50 contrib-
uted usable data (25 in each condition). Participants were recruited
using the same criteria as experiment 1, but were an independent
sample (25 females, 25 males, M age =19.7 yr, SD=1.8 yr). Three
participants’ data were not analyzed after the initial encoding
phase due to low task accuracy (described in more detail below),
so were removed and excluded from the target of 50 participants.

All participants across the two studies were native English
speakers with normal or corrected-to-normal vision, and without
a learning or attention disorder. The institutional review board
(IRB) at the University of Pittsburgh approved all measures prior
to all experiments. Participants were compensated through course
credit for their participation.

Stimuli and materials
Stimuli for experiments 1 and 2 were drawn from 1000 images
from the scenes collection within the BOLD5000 data set (Chang

Table 1. Percentage of overlapping images

Similar Discriminable

Layer 1 Layer 3 Layer 5 Layer 8 Layer 1 Layer 3 Layer 5 Layer 8

Layer 1 100% 0% 0% 0% 100% 0% 0% 0%
Layer 3 0% 100% 46% 16% 0% 100% 72% 40%
Layer 5 0% 46% 100% 14% 0% 72% 100% 44%
Layer 8 0% 16% 14% 100% 0% 40% 44% 100%

Note. Values represent the number of images overlapping between layers (as a percentage of the total number of possible images). The table shows the percent-
age of overlapping images within those images categorized as similar, and within those images categorized as discriminable between each pair of layers.

Image memorability is predicted by CNN layers
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et al. 2019). Scenes ranged across semantic categories (e.g., airport,
restaurant, and soccer field) and included atmost four images from
one semantic category (e.g., four images of different soccer fields).

Procedure

CNN metrics
Prior to the experiments, each scene image was submitted to the
pretrained AlexNet CNN model (Deng et al. 2009; Krizhevsky
et al. 2012) through the MatConvNet MATLAB toolbox (http://
www.vlfeat.org/matconvnet; Vedaldi and Lenc 2015). This CNN
is one of themost well-known and accessible convolutional neural
networkmodels, andhad been trained usingmore than 1.2million
images as part of the ImageNet object classification challenge. For
each image, the CNN’s feature weights were extracted from four
different layers of the CNN: earliest (convolutional layer 1), early
middle (convolutional layer 3), late-middle (convolutional layer
5), and last (fully connected layer 8).

We focused on image discriminability (the inverse of similar-
ity) by measuring the similarity between the presented images at
eachCNN layerwith pairwise correlations between their sets of fea-
ture weights, giving a 1000×1000 matrix of image similarity for
each layer. We Fisher-Z transformed the resulting correlation coef-
ficients (r-values), and averaged these for each image to give a value
reflecting its average similarity (or discriminability) with other im-
ages in the stimulus data set, according to each of the CNN stages.

Participant assignment
For experiment 1, participants were randomly assigned to one of
four conditions. Participants in each condition were presented
with images selected based on a CNN layer (layer 1, 3, 5, or 8).
This subset of layers from the CNN was selected so that a diverse
group of images could be presented to separate samples of partici-
pants. By spacing the layers throughout the CNN we hoped to in-
crease the diversity of images, as representations within sequential
layers will be more correlated with each other than with alternate
layers.

Condition assignment dictated which set of images would be
presented to a participant. The above CNN metrics of image simi-
larity/discriminability (in each layer) were used to determine the
images that were presented to each group. Each group was present-
ed with the 50most similar (highest r-values) and 50most discrim-
inable (lowest r-values) images based on its corresponding layer.
See Tables 1 and 2 for a breakdown of image overlap between layers
as well as similar/discriminable categorization, and Figure 3 for ex-
ample images. To allow for foils from the same semantic category
(defined in the stimulus data set) to be used in the subsequent rec-
ognition task (described below), the 50 images included a maxi-
mum of two images from the same semantic category, so that a
third image from the same semantic category could be used as a
foil. For experiment 2, participants were randomly assigned to
one of two conditions (layer 1 or layer 8).

Paradigm
Experiment 1 consisted of three key phases: initial encoding, free
recall, and final recognition test, depicted in Figure 4. During the
encoding phase, participants were presented with each of the 50
similar and 50 discriminable images of scenes from the correspond-
ing layer (intermixed in a randomorder). Participantswere asked to
indicate whether the image was indoor or outdoor. Images re-
mained onscreen for 4 sec regardless of a participant’s response,
to allow equal encoding time across all images. A 2-sec intertrial in-
terval followed each presented image. Upon completion of the en-
coding phase, participants played a game of Tetris for 5 min to
prevent visual rehearsal. After Tetris, the free recall phase consisted
of participants describing as many scenes as they could remember
by typing as much detail as possible (not analyzed in this paper).
Last, during a surprise recognition memory test, participants
judged whether an image was old (seen previously in the experi-
ment) or new (not seen in the experiment), and rated their confi-
dence in the judgment. The stimuli included the 100 previously
seen images and 100 novel foils randomly drawn from the same
semantic category as the old images (e.g., one igloo scene foil if
an igloo scenewas initially presented). The recognition test images
were shown in a random order, and remained onscreen until par-
ticipants responded (maximum 4 sec). A 2-sec intertrial interval

Table 2. Percentage of mixed overlapping images

Discriminable

Layer 1 Layer 3 Layer 5 Layer 8

Similar

Layer 1 0% 32% 42% 34%
Layer 3 26% 0% 0% 0%
Layer 5 24% 0% 0% 0%
Layer 8 12% 0% 0% 0%

Note. Values represent the number of images overlapping between layers (as
a percentage of the total number of possible images) in different similar/dis-
criminable categorizations. As an example, the value representing 26% indi-
cates that 26% of the images categorized as similar within layer 3 were
categorized as discriminable within layer 1. In contrast, the value representing
32% indicates that 32% of the images categorized as discriminable within
layer 3 were categorized as similar within layer 1.

Figure 3. Example images matching the criteria for being selected as
either “similar” or “discriminable” during experiment 1 (layers 1, 3, 5,
and 8) and experiment 2 (only layers 1 and 8). Images were categorized
as either similar or discriminable from each other based on visual features
extracted from a CNN. All images are freely publicly available or are being
used under creative commons licenses to be reused and distributed for
commercial purposes. Images were resized. Attributions for images:
Image of Hubbard Glacier provided via https://commons.wikimedia.org/
wiki/File:Hubbard_Glacier_02.jpg; author: James C. Space. Image of
guitar store provided via https://pixabay.com/photos/guitar-store-rock-
1586130/; author: Pierre Prégardien. Image of pantry provided via https
://www.flickr.com/photos/mullica/5637645692; author: Bob. Image of
Hampton Classic provided via https://commons.wikimedia.org/wiki/File
:Hampton-classic1.jpg. Image of Freddy’s Bar provided via https://www
.pikrepo.com/fcelk/freddy-s-bar-with-neon-lights-turned-on-and-red-stools.
Image of Georgia Aquarium provided via https://www.flickr.com/photos/
66087561@N08/7136330423; author: Irish American Mom. Image of
Georgia Aquarium provided via https://commons.wikimedia.org/wiki/File
:Male_whale_shark_at_Georgia_Aquarium.jpg; author: Zac Wolf. Image
of church provided via https://www.publicdomainpictures.net/en/
view-image.php?image=5588&picture=church; author: Bobby Mikul.
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followed each image. Upon completion of this final recognition
memory test, participants were debriefed about the purposes of
the experiment.

Experiment 2 followed the same procedures as described
above, except that participants did not complete a free recall phase
following the game of Tetris, and insteadmoved directly to the sur-
prise recognition memory test, in order to ensure that the experi-
ment 1 recognition memory effects were not being affected by
the prior free recall test.

Analyses
We first calculated participants’ accuracy during the initial encod-
ing phase task (indoor vs. outdoor). Data from four participants
from experiment 1, and three from experiment 2, were not ana-
lyzed further due to having accuracy scores that were more than
two standard deviations below the mean of the full group.
Behavioral results are reported based on signal detection theory im-
plemented through logistic mixed effects regression models
(Baayen et al. 2008). In each regression model, the dependent var-
iable was the participant’s judgment as to whether or not they had
previously seen the image during the encoding phase.We included
fixed effects terms for image type (i.e., whether or not the image
was shown during the encoding phase, and if shown, whether it
was in the top 50 most similar or top 50 most discriminable for
that layer), as well as the participant’s group (i.e., fromwhich layer
of the CNN the images were drawn). Additionally, a variable for
participant was included as a random effect. Trials with no re-
sponse were removed prior to conducting the regression models.
We report unstandardized coefficient estimates (B) in logits for
models with categorical predictors and standardized coefficient es-
timates (β) for models with continuous predictors, as well as
odds and 95% confidence intervals (on the odds) as a measure of
effect size.
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