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University of Trenčín, Ivana Krasku 491/30, 020 01 Púchov, Slovakia; juliana.vrskova@tnuni.sk

4 Automation, Informatics and Physics, Institute of Electrical Engineering, Faculty of Engineering, Slovak
University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; jan.valicek@uniag.sk (J.V.);
zuzana.palkova@uniag.sk (Z.P.)

5 Department of Mechanical Engineering, Faculty of Technology, Institute of Technology and Business in České
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Abstract: In this study, a new generalized regression neural network model for predicting the
curing characteristics of rubber blends with different contents of carbon black filler cured at various
temperatures is proposed for the first time The carbon black contents in the rubber blend and cure
temperature were used as input parameters, while the minimum and maximum elastic torque, scorch
time, and optimal cure time, obtained from the analysis of 11 rheological cure curves registered at 10
various temperatures, were considered as output parameters of the model. A special pre-processing
procedure of the experimental input and target data and the training algorithm is described. Less
than 55% of the experimental data were used to significantly reduce the total number of input and
target data points needed for training the model. Satisfactory agreement between the predicted
and experimental data, with a maximum error in the prediction not exceeding 5%, was found. It
is concluded that the generalized regression neural network is a powerful tool for intelligently
modelling the curing process of rubber blends even in the case of a small dataset, and it can find a
wide range of practical applications in the rubber industry.

Keywords: rubber blends; curing process; modelling; generalized regression neural network

1. Introduction

Rubbers are among the most remarkable materials and are used in an extremely
wide range of applications. However, to obtain their unique material properties—such as
elasticity, high damping, impact resistance, hardness, long-term stability, and many others—
the rubber compound or blend, which is generally a mixture of rubber, vulcanizing agent,
accelerator, fillers and several additional ingredients, needs to be vulcanized (cured or cross-
linked) to form an insoluble, cohesive, solid and shape-persistent rubber-based material.
In the majority of all cases, rubbers are used in their vulcanized state, as vulcanizates or
vulcanized rubbers above the glass transition temperature [1].

Traditionally, during vulcanization, the rubber blend is heated up to a temperature at
which chemical bonds (cross-links) are formed in the chemical reactions between the long
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polymer chains of rubber and the vulcanizing agent, usually elemental sulphur, resulting in
the formation of a spatial, 3D molecular network within the polymer matrix with different
types of junctions [2]. In addition to sulphur, which is the most commonly used cross-
linking agent for rubbers or elastomers in general, there are other vulcanizing systems,
such as peroxides [3], ultraviolet light [4], electron beam [5,6], microwaves [7], resins [8],
etc., which have become more important, in particular with the progressive development
of synthetic rubbers [9].

In the rubber industry, it is essential to know the method of rubber cross-linking, in
order to define its processability, curing time, and the final properties of the vulcanizate,
which can be ensured by measuring its curing characteristics [1].

1.1. Curing Characteristics

Currently, the most efficient way to identify the curing characteristics of rubber blends
(RBs) is to analyze the curing process using oscillating rheometers, which measure the
changes in stiffness of an RB sample over time during its periodic shear loading at a constant
frequency and cure temperature. The results are provided in the form of isothermal cure
curves of elastic torque versus time. From these cure curves, the curing characteristics,
such as minimum ML and maximum MH torque, scorch time ts01 and optimal cure time
tc90, can be determined directly, and several derivative characteristics, such as curing speed
ratio or cure rate coefficient, degree of cross-linking, thermo-plasticity, and others, can be
computed [10].

It is well-known that RB curing is a highly sophisticated process that involves many
influencing parameters. In terms of economic efficiency and processability, in addition to
the vulcanizing system, the most important of them are the cure temperature, filler type
and filler contents in the rubber matrix [1]. Nowadays, the curing process of RBs is most
often carried out at temperatures from 140 to 210 ◦C, with sulphur as a vulcanizing agent
and different types of carbon black (CB) in the role of a filler with contents ranging from 20
up to 400 phr in the blend [11].

In the context of the greening of the production, silica or its combinations with organic
polysaccharides, such as cellulose and its various modifications, are increasingly used as
fillers [12]. In most cases, organic fillers cannot be used as the majority filler in a rubber
compound, mainly due to the loss of the utility properties of the vulcanizate. However,
by the partial replacement of inorganic fillers with organic ones, the original properties
of the compound can be substantially improved, such as by partial replacement of the
commonly used inorganic CB filler by organic chitosan, which leads to an increase in the
thermo-oxidative stability of the vulcanizate [13].

The cure temperature plays a crucial role in setting the technological parameters of
the production. In fact, by its targeted control, it is possible to influence not only the energy
intensity but also the ecological burden of the production process with minimal changes in
the values of the main curing characteristics of the processed RBs, and thus also the desired
utility properties of the vulcanizate [14]. The primary role of the filler is to cheapen RB
and improve its processability. Currently, due to the most favorable price–performance
ratio as well as the ability to directly influence the resulting values of curing characteristics
through the so-called overheating effect of the blend, this role is usually played by the CB
filler [15]. For these reasons, the influence of filler content and cure temperature on the
progress and results of the curing process has long been a subject of widespread interest for
many researchers and materials engineers. It is for these reasons that both of these factors
of the curing process are selected as input parameters for the predictive model of curing
characteristics of RBs, which is the main focus of the presented work.

1.2. Curing Process Modelling

Due to the large number of diverse parameters entering the curing process of RBs,
its complex modelling by classical analytical tools, which would ultimately provide an
accurate description of all parts of cure curves, is highly complicated. Some ad hoc models
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are well-described in the literature, e.g., in a doctoral thesis [16]. Most of these models are
focused on the different sides of RB curing, such as the evolution of material parameters,
the degree of curing, volume shrinkage, chemical composition, etc. However, in effect, a
complex analytical model that includes all the features of RB curing does not exist at present.

Progress in artificial intelligence and machine learning over the last few decades [17]
has shown that artificial neural networks (ANNs) are highly effective tools for the intelligent
modelling of complex processes, which undoubtedly also include curing RBs. Their great
advantage is that they are able to map any complex nonlinear relationship between process
variables without prior information about the process or system models [18]. However,
we found only three research papers published in prestigious journals dealing with this
issue. For instance, in [19], the ability of three selected ANN architectures to predict the
optimal cure time of 11 RBs at different cure temperatures in a model tire was studied.
In the follow-up study [20] from the same authors, three different types of ANN and
an adaptive neuro-fuzzy inference system (ANFIS) with an ANN architecture and the
ANN learning technique were successfully used to predict the optimal cure time of the
other 10 RBs at different cure temperatures. Another paper [21] developed a fast and
accurate ANN model for rheological cure curve prediction of NR/SBR blends at various
cure temperatures. In all three works, the whole cure curves were modelled using ANNs.
Unlike these studies, the present study is, for the first time, devoted to ANN prediction not
only of the optimal cure time, but of all of the four abovementioned curing characteristics
of RBs with different contents of carbon black (CB) filler, cured at different temperatures,
which is important for the rubber industry. At the same time, the whole cure curves
were not used in creating the ANN model; instead, only their critical points (i.e., curing
characteristics) determining the results of the curing process were employed. Such a novelty
approach significantly increases the practical benefits of the model by reducing the number
of necessary experimental measurements and increasing the efficiency of its creation and
the training process [22].

1.3. Artificial Neural Networks

Artificial neural networks are intelligent, biologically inspired information processing
systems consisting of many simple, densely interconnected, parallelly interacting process-
ing elements (neurons or nodes) that are tied by adaptive weight connections (synaptic
weights) and arranged in layers. The intelligence of ANNs lies in their ability to learn
from patterns, process and store information, and use the knowledge abstracted from
experiences to make their own decisions based on the data they have been exposed to. In
general, the ANNs were designed to study the behavior of real, nonlinear, complex systems,
and they are particularly effective in solving problems where the correlations between the
dependent and independent variables are well-known. However, their precise description
by classical mathematical methods is too complicated, too simplified, or impossible [22].

In the process of learning from representative patterns (training process), the ANN
maps any complex relationship between the independent (input) and dependent (output)
variables of the problem. The knowledge or rules abstracted from this mapping are
(similarly to the human brain) distributed in parallel in the network structure in the form
of weighted connections (weights), then generalized and subsequently used to predict or
simulate the outputs for input data that were not part of the dataset used in the learning
step. It is the set of distributed weights that represents the ANN model of the given
problem [23].

Generally, the architecture of the most often used ANNs consists of at least three
layers—one input layer, at least one hidden layer and one output layer—with an input,
hidden and output set of neurons (multi-layer architecture). Each neuron of each layer
is connected by the weights to all of the neurons in the higher layer and, through the
bias, directly to the external environment. However, there are no connections between the
neurons on the same layer, as with between the neurons, which are not in the adjacent
layers (fully connected architecture). The information coming from the input layer is
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mapped, in a forward direction, to the output layer through all the hidden layers located
between the input and output layers (feed-forward architecture). The formulation of the
given problem determines the number of neurons in the input as well as the output layer,
while the number of hidden layers and the number of hidden neurons (ANN topology)
determine the ANN‘s capacity to be tuned during the learning using various types of
learning algorithms (most often an error back-propagation algorithm, in which the weights
are updated backwards, from output to input) [24]. The various types of ANNs with
different neuron transfer or activation functions, which compute the output of a neuron
based on its inputs, their architecture, and many learning algorithms are described in
a number of available publications, e.g., in [25–27] or in our previous works [28–30].
Therefore, a generalized regression neural network (GRNN), which we used to model the
temperature-dependence of curing characteristics of RBs with different carbon black (CB)
filler contents, is briefly introduced in the next paragraph.

1.4. Generalized Regression Neural Networks

GRNNs are memory-based, probabilistic feed-forward ANNs with a simple dynamic
structure. Due to their excellent features, such as a strong nonlinear mapping capability,
high fault tolerance and robustness, they are often employed in various fields, especially in
solving the function approximation or function regression problems. In general, GRNNs
can approximate any continuous function between input and output data based on a finite
number of training samples. Moreover, they share a favorable property, namely that they
do not require an iterative training procedure, and so the speed of their one-pass learning
algorithm is very high compared with the conventional, currently most commonly used
error back-propagation ANNs [31].

GRNNs were proposed as a special modification of radial basis neural networks,
and they are based on nonlinear regression analysis—namely, on the estimation of an
unknown probability density function of a continuous random independent vector variable
x ε RP and the corresponding random dependent vector variable y from a sequence of
sample data [32]. Using a Parzen–Rosenblatt density estimator with a Gaussian kernel of
specified width [33], the joint probability density function φi(x, y) between each pair of
scalar components x, y of the vectors x and y can be estimated from an observed sample
dataset (xi, yi) according to the formula

ϕi(x, y) =
1

(2π)
P+1

2 σP+1

1
M

M

∑
i=1

exp

[
− (x− xi)

T(x− xi)

2σ2

]
exp

[
− (y− yi)

2

2σ2

]
, (1)

where xi and yi are the ith sample data points, M is the number of samples, P is the
dimension of the variable x, σ is the standard deviation or width coefficient of the Gaussian
function, and the superscript T denotes the transpose operation of the vector [34].

The essence of GRNNs is to reconstruct the underlying regression function y(x) be-
tween input and target data from the training samples. The best reconstruction of y(x) with
minimum variance σ2, or the regression of y relative to x, which predicts the most probable
value of y(x) is given by the expected conditional mean value of y corresponding to the
specified value of x, and it can be computed as:

y(x) =
∫

yi ϕi(x, y)dyi∫
ϕi(x, y)dyi

. (2)
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After solving the integrals in Equation (2) and using Equation (1), the final expression
for the predicted y(x), which is also called the Nadaraya–Watson kernel regression estimator
due to its original statistical derivation [35], for a single-bandwidth GRNN is given by:

y(x) =
∑M

i=1 yi exp
(
− D2

i
2σ2

)
∑M

i=1 exp
(
− D2

i
2σ2

) , (3)

where

D2
i (x, xi) =

R

∑
k=1
‖xk − xik‖2 =

R

∑
k=1

(xk − xik)
T(xk − xik) (4)

is the squared Euclidean distance between the current input value xk and the corresponding
ith training sample xik, which is used as a measure of how well each training sample
xik can represent the position of the prediction point xk, and R represents the number of
elements x of input vector x [36]. It is obvious from Equation (3) and Equation (4) that the
predicted value y(x) is the nonlinearly weighted average of all training target values yi for
training input cases xi, where the weighting factor of each yi is the Gaussian radial basis
function (RBF)

ψi(x, xi) = exp

(
−

D2
i (x, xi)

2σ2

)
(5)

with a positive spread constant or smoothness parameter σ [37].
The spread constant σ, which directly affects the success of the GRNN in the prediction

and determines its generalization performance, is the only adjustable parameter and it
can be tuned by the training process to an optimum when the correlation between the
actual and predicted value is high and the error between them becomes very small. In
general, when the value of σ is moderate, all the training samples are taken into account,
and the samples close to the predicted point are added to the y(x) computation with more
weight. A larger σ may result in better generalization ability because the predicted y(x)
approximates the mean of all training samples yi. On the other hand, when σ tends to 0,
only a few training samples play a role in evaluating y(x) that is very close to them, so the
GRNN’s generalization ability is poor. Too small σ values thus cause overfitting, where the
model is able to predict data that it was trained on very well, but is unable to generalize
and accurately predict data it has not seen before. At the same time, too large σ values
cause underfitting of the model, where it is not even able to predict the data it was trained
on, let alone data it has not seen before, respectively [38].

The typical GRNN topology structure, based on the above theory, consists of four
neuron layers, including the input, pattern, summation, and output layer. GRNNs are
feed-forward ANNs, so the signals always propagate from the first neuron layer to the last
one. The number of neurons in the input and output layers corresponds to the number of P
independent and Q dependent variables of the GRNN, respectively. The role of the input
layer is to transport the received input data to all of the neurons in the fully connected
pattern layer, where the number of neurons is equal to the number of training samples.
The pattern layer processes the data in such a manner as to memorize the relationship
between the input and target training samples (memory-based ANN [39]). The radial basis
activation function is centered on a training sample xi for each neuron i, and its output is
a measure of the distance Di of x from the xi according to Equation (4). However, before
entering the RBFs, the distances Di are scaled by multiplication of their values by a bias
b, usually the same for each neuron in the pattern layer (single-bandwidth GRNN). After
scaling of each Di, the activation function ψi (Equation (5)) takes the form of [40]:
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ψi(x, xi) = exp
[
−(Di(x, xi) × b)2

]
(6)

The neuron bias that plays the role of the variance σ2 of ψi Gaussian allows the
sensitivity of the pattern layer neurons to be adjusted, and it can be computed directly from
the GRNN parameter σ according to the formula [41]:

b =

√
− ln(0.5)

σ
=

0.8326
σ

. (7)

Each pattern layer neuron is connected to the two types of neurons in the summation
layer: the SN-summation neuron, which computes the sum of the weighted outputs of the
pattern layer:

SN =
M

∑
i=1

yiψi, (8)

and the SD-summation neuron, which simply computes the unweighted sum of the output
of each pattern layer neuron:

SD =
M

∑
i=1

ψi. (9)

The connection weight between the ith neuron in the pattern layer and the SN-
summation neuron is the target output yi corresponding to the ith input sample xi, while
for the SD-summation neuron, the connection weight is unity.

The output layer just performs the division between the output of the SN-summation
neuron and that of the output of the SD-summation neuron, yielding the predicted y(x) as:

y(x) =
SN
SD

. (10)

Unlike error-back-propagation ANNs, which must be trained iteratively for many
rounds to determine the connection weights between the neurons in different layers, the
architecture and weights of GRNNs are determined when the input to the network is
given. During GRNN training, each data sample is catered for as the average of normal
distribution, and the output can be expressed according to Equation (10). Therefore, the
training of GRNN represents the optimization of its spread constant σ, which is the only
free parameter of the network [42]. Various optimization methods are currently used to
find the optimal σ, such as the trial-and-error method, cross-validation, hold-out, hill-
climbing, conjugate gradient, and others, including so-called soft computing methods
of artificial intelligence, such as genetic algorithms [43]. The present work used the first
of the named methods for its sufficiently high efficiency in solving the given function
approximation problem.

2. Materials and Methods
2.1. Materials

The composition of the RBs was the following: 100 phr of styrene-butadiene rubber
(SBR) grade SBR 1500 (Synthos Kralupy a.s., Kralupy nad Vltavou, Czech Republic); 3 phr
of zinc oxide (ZnO) vulcanization activator (SlovZink a.s., Košeca, Slovakia); 1 phr of stearic
acid vulcanization activator (Setuza a.s., Ústí nad Labem, Czech Republic); 1.75 phr of
vulcanizing agent sulfur (S) type Crystex OT33 (Eastman Chemical company, Kingsport, TN,
USA); 1 phr of N-tert-Butyl-2-benzothiazole-sulphenamide (TBBS) vulcanization accelerator
(Duslo a.s., Šal’a, Slovakia); and 0 phr and 30–75 phr (with a steady increase of 5 phr) of CB
filler grade N550 (Makrochem Sp. z o.o, Lublin, Poland).
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2.2. Samples Preparation

The RBs were prepared by means of a two-stage mixing method. In the first step of
mixing, the SBR was masticated for 3 min at a temperature of 90 ± 1 ◦C and rotor speed
of 50 ± 1 rpm in a laboratory mixer Brabender Plastograph EC Plus (Brabender GmBH
& Co.KG, Duisburg, Germany) with a mixing chamber volume of 80 cm3. Then, the ZnO
was incorporated and mixed for 45 s, and subsequently, the CB was added and mixed
for 3 min. Subsequently, the stearic acid was added and mixed for 30 s. The additional
homogenization of prepared masterbatches (MBs) was carried out using a laboratory two-
roll mill LaboWalz W150 (Voght Labormaschinen GmBH, Berlin, Germany) with 200 mm
diameter and 400 mm working distance between the rolls at a temperature of 70 ± 1 ◦C.
The speed of a slow roll was 24 rpm, and the gear ratio was 1:1.4. After allowing the MBs
to cool for 24 h at room temperature, in the second step of the mixing procedure, they were
initially blended for 3 min, then the S and TBBS were added and each one mixed for 1.5 min
in the laboratory mixer with a rotor speed of 50 ± 1 rpm at temperature 90 ± 1 ◦C. The
blended RBs were homogenized in the two-roll mill in the same conditions as in the first
step of the mixing procedure, and then left to rest for 24 h at room temperature before the
upcoming rheological analysis.

2.3. Rheological Analysis

An oscillating-disk rheometer RPA 2000 (Alfa Technologies Ltd., Akron, OH, USA)
was utilized to obtain the cure curves and to determine the curing characteristics, such as
minimum ML and maximum MH elastic torque values, scorch time ts01 and optimal cure
time tc90 values for each RB with different contents of CB, as well as for an unfilled RB
sample, individually. The rheological measurements were performed at cure temperatures
of 165–210 ◦C with a steady increase of 5 ◦C, at an oscillating frequency of 1.67 Hz, and
an oscillating angle of 1◦. Subsequently, the acquired experimental data were subjected to
ANN analysis in order to create a reliable model for predicting the curing characteristics
of RBs.

2.4. Artificial Neural Network Modelling

The implementation of the ANN model for predicting the curing characteristics of
RBs with different contents of CB filler at various cure temperatures was performed in the
MATLAB® software package, Version 9.0.0.341360 R2016a 64-bit, equipped with a Neural
Network Toolbox (Math Works, Natic, MA, USA), that provides a number of built-in tools
for sufficiently powerful and user-friendly work with ANNs of a wide range of types and
architectures. The GRNN was used to solve the given function approximation problem, in
particular for its extremely high learning rate and rapid convergence to optimal regression
levels, even in the case of a small amount of training data [31].

3. Results and Discussion
3.1. Experimental Results

The results of the analysis of the experimental cure curves in the form of dependences
of minimum ML and maximum MH elastic torque values, scorch time ts01 and optimal
cure time tc90 values on CB contents C of 0 phr and in the range of 30–75 phr, and cure
temperature T in the range of 165–210 ◦C are presented in Figures 1–4, respectively.

From Figure 1, it can be seen that the ML, expressing the stiffness of the blend heated
to a constant cure temperature at a constant pressure maintained in the measuring chamber
of the rheometer, increases with the increase in the CB content in RB due to the limiting
effect of the filler on the movement of the polymer chains of the rubber, which is the cause
of the growth of its viscosity [44]. However, simultaneously with this effect of the CB filler,
there is also an effect of a polymer matrix containing a pendant styrene group, which also
increases its viscosity by restricting the movement of rubber chains [45]. At the same time,
the increasing ML or the increasing viscosity of the rubber with increasing CB filler contents
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causes the deterioration of the processability of the blend at higher CB filler contents in
it [46].
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reactions and earlier onset of the beginning of the vulcanization process [53]. 

The values of ts01 decrease with increasing cure temperature due to the decrease in 
the viscosity of the rubber (Figure 1)—the higher mobility of its chains at higher temper-
atures thus contributes to the faster onset of the cross-linking reaction [54]. In the temper-
ature interval of 200–210 °C and filler contents higher than 45 phr, a slighter decrease in 
ts01 values can be observed due to the overheating of the blend [55]. 

Figure 2. Maximum elastic torque values MH for rubber blends with carbon black filler C contents at
various cure temperatures T.

The ML value for CB contents up to 55 phr and cure temperatures up to 205 ◦C shows
a decreasing trend, which is due to the increasing plasticization speed of the polymer
matrix or decrease in its viscosity. At 210 ◦C and higher CB contents, a slight increase
in ML can be observed due to the flocculation of CB particles as a result of the so-called
overheating of the blend and the oscillating motion of the rheometer disc, which allows
their higher mobility, limiting the movement of the polymer chains of the rubber, leading
to the observed increase in the ML [47].
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The dependence of MH on CB contents (Figure 2) shows a similar trend as in the case
of ML—with increasing CB filler contents in the blend, the MH increases as a consequence
of increasing its stiffness [48]. In contrast to ML, the MH depends not only on the filler
contents and the viscosity of the rubber matrix, but mainly on the number of cross-links
formed in the vulcanization process. At the same time, the difference between the MH
and ML determines the relative network density, which quantifies the number of cross-
links formed [46]. In this case, the number of cross-links and relative network density of
the blend can be attributed mainly to the effect of the vulcanization system because the
cross-linking density was not specifically affected by the other raw materials needed to
increase the cross-linking efficiency of CB filler. In the rubber industry, it is common to
influence cross-linking efficiency and cross-linking density in the case of inorganic fillers
such as silica using silanogran (Si69) or when using organic fillers and nanofillers based on
polysaccharides as a cell of ionic liquids [49,50].

The presence of filler in the RB restricts the movement of the newly formed bonds,
thus increasing its stiffness at the end of the vulcanization, which is proportional to the CB
filler contents in it [51].
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As the cure temperature increases, the MH decreases due to the breakdown of polysul-
phide bonds, the first bonds formed in the sulphur vulcanization of rubber. Polysulphide
bonds are very unstable thermally and convert to form more stable mono- as well as disul-
phide bonds. The disintegration of polysulfide bonds is also partially limited by the effect
of the CB filler preventing the movement of the polymer chains of the rubber [52].

One effect of the presence of the CB filler in RB is the aforementioned overheat-
ing, which depends on both filler contents and cure temperature. At low concentrations
(30–35 phr) and temperatures above 200 ◦C, the effect of overheating is less pronounced,
leading to a lower rate of polysulphide bonds dissolution and manifested by a stabilization
of MH values [53].

The scorch time ts01 can be defined as the time beyond which the vulcanization begins
and the involvement of the vulcanization accelerator in this process [54]. The effect of
filler contents on the ts01 value is strongly visible in Figure 3, especially at lower filler
contents up to 40 phr. This decrease in the 40–75 phr interval is less steep or slower. The CB
particles make the blend more viscous, which causes it to heat up more when stressed in the
rheometer, and hence also results in faster involvement of the accelerator in the chemical
reactions and earlier onset of the beginning of the vulcanization process [53].

The values of ts01 decrease with increasing cure temperature due to the decrease in the
viscosity of the rubber (Figure 1)—the higher mobility of its chains at higher temperatures
thus contributes to the faster onset of the cross-linking reaction [54]. In the temperature
interval of 200–210 ◦C and filler contents higher than 45 phr, a slighter decrease in ts01
values can be observed due to the overheating of the blend [55].

From Figure 4, it can be seen that the optimum cure time tc90—which is defined as
the time required to reach 90% of the maximum torque value of MH [56]—decreases with
increasing CB filler contents in the blend, but this decrease is milder than in the case of ts01
(Figure 3). The effect of CB filler contents on tc90, increasing blend overheating and hence
crosslink formation, is similar to that of ts01—higher blend overheating can achieve faster
network formation in less time [56].

With increasing cure temperature, the decrease in tc90 is more pronounced, especially
up to 200 ◦C. In the temperature interval 165–200 ◦C, there is a synergistic effect of temper-
ature and filler contents, similar to ts01. As the cross-linking density of the rubber increases,
the amount of the accelerator as well as the activator of vulcanization rapidly decreases,
with the result being that at temperatures above 200 ◦C, the rate of vulcanization reactions
is constant due to the lack of these two ingredients and the decrease in tc90 shows a linear
trend [57].

Since the aim of this study is the intelligent modelling of the above-analyzed depen-
dences of all four curing characteristics of RBs, we will deal with a detailed description
of the creation of their GRNN model in the following sections, based on the theoretical
considerations given in the introduction.

3.2. Pre-Processing of Experimental Data for ANN Analysis

The computer implementation of the ANN model requires a special pre-processing of
the raw experimental data, which is described in detail below.

Six variables, which determine the results of the curing process of RBs, were considered
for ANN analysis: the CB contents C = (C1, C2, . . . Cm) in the RB and cure temperature
T = (T1, T2, . . . Tn) were used as ANN input data, while corresponding values of minimum
ML(C, T) and maximum MH(C, T) elastic torque, scorch time ts01(C, T) and optimal cure
time tc90(C, T) values were used as ANN target data.

The input and target data were stored as inputs and target parameters of the ANN in
the form of Inputs = [C; T] and Targets = [ML; MH; ts01; tc90] data matrices, respectively,
and they can be presented as:

Inputs =

(
C1 C1 . . . C1 C2 C2 . . . C2 . . . Cm Cm . . . Cm
T1 T2 . . . Tn T1 T2 . . . Tn . . . T1 T2 . . . Tn

)
(11)
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and

Targets =


M1

H1
M1

H2
. . . M1

Hn M2
H1

M2
H2

. . . M2
Hn . . . Mm

H1
Mm

H2
. . . Mm

Hn

M1
L1

M1
L2

. . . M1
Ln M2

L1
M2

L2
. . . M2

Ln . . . Mm
L1

Mm
L2

. . . Mm
Ln

t1
s011

t1
s012

. . . t1
s01n t2

s011
t2
s012

. . . t2
s01n . . . tm

s011
tm
s012

. . . tm
s01n

t1
c901

t1
c902

. . . t1
c90n t2

c901
t2
c902

. . . t2
c902

. . . tm
c901

tm
c902

. . . tm
c902

. (12)

Because the inputs and targets of ANN are different physical quantities with different
units and with a different range of values, for a more efficient optimization during the
training, all the input and target data were normalized into the [0, 1] interval according to
the formula [27]

xnorm =
x− xmin

xmax − xmin
, (13)

where x, xmin and xmax represent the original data, their minimal and maximal values
before normalization, respectively, and xnorm are the normalized data. The reverse of
normalized ANN outputs to original data after simulation was performed according to the
relationship [29]:

x = xmin + xnorm(xmax − xmin). (14)

The normalized data were then divided into a set of training data to create the ANN
model and a test set of data to evaluate the predictive performance and generalization
capability of the model [30]. The data for all the cure temperatures, but only the data
corresponding to CB contents in the range from 30 phr to 70 phr with a steady increase
of 10 phr and an unfilled RB sample, were used for training the model. Such an unusual
division of data made it possible to reduce the number of training samples and thus also
the number of measurements required while maintaining the high predictive performance
of the model, which significantly increases its potential benefits for the rubber industry.
In addition, a lower number of training samples reduces the likelihood of model overfit-
ting [23]. However, the parallel reduction in the number of curing temperatures reduces
the scope of the training data in such a way that leads to underfitting [24], so the model
cannot provide any sufficiently reliable prediction.

The remaining data, corresponding to CB contents ranging from 35 to 75 phr with a
steady increase of 10 phr, and cure temperatures in the range of 165–210 ◦C with a steady
increase of 0.1 ◦C, which were not included in the training dataset, were used to evaluate
the predictive performance and generalization capability of the model.

3.3. GRNN Training Algorithm

The topological structure of the developed GRNN model based on the MATLAB®

Neural Network Toolbox consists only of three neuron layers, namely, the input layer, a
hidden RBF layer and a special linear output layer [58], and its scheme is shown in Figure 5.
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The training process of the GRNN is as follows: once the P neurons of the input layer
receive the input signal from the individual vectors C and T of the input training data
matrix Inputs of size P × R (Equation (11)), the MATLAB® built-in Euclidean distance
weight function “dist” is used to compute the R × R Euclidean distance matrix ||dist||
(Equation (4)) between each pair of corresponding elements of R × P input weight matrix
IW1,1 and input training data matrix Inputs according to the relationship

‖dist‖ = ‖IW1,1 − Inputs‖ = dist(IW1,1,Inputs), (15)

where the weight matrix IW1,1 of RBF layer with R hidden neurons is set to a transposed
input training data matrix InputsT. Then, the ||dist|| matrix is multiplied, element-by-
element (symbol ‘.*’), by the R × 1 bias constant vector b1 (Equation (7)) using the net input
function “netprod” to provide the R × R net input

n1 = ‖dist‖ . ∗ b1 = netprod(‖dist‖, b1) (16)

to the “radbas” RBF transfer function (Equation (5)) that gives the R × R output of the
RBF layer

a1 = exp
(
−n2

1

)
= radbas(n1). (17)

A normalized dot product weight function “normprod” of the special linear output
layer with Q neurons returns the Q × R dot product (symbol ‘.’)

n2 =
LW2,1.a1

sum(a1)
= normprod(LW2,1, a1) (18)

of the Q × R input weight matrix LW2,1 and the input matrix a1 normalized by the sum of
all the elements of a1 (Equation (10)), where the weight matrix of the output layer LW2,1 is
set as the Q × R target training data matrix Targets (Equation (12)).

A pure linear transfer function “purelin” takes the net input n2 to produce the Q × R
output matrix of the output layer

a2 = n2 = purelin(n2) (19)

or
a2 = purelin(normprod(LW2,1, radbas(neprod(dist(IW1,1, Inputs), b1)))), (20)

where
IW1,1 = InputsT = IW1,1{1, 1}, LW2,1 = Targets = LW2,1{2, 1}, (21)

and b1 = b{1} is given by Equation (7).
Finally, the output of the developed MATLAB®-based P-R-Q-Q (number of input-

hidden-linear-output neurons) GRNN model, created and trained by the “newgrnn” built-in
function, can be obtained by simulating it with inputs using the “sim” function—the
training inputs are reapplied to the input layer of the trained network, and the desired
outputs are compared with training targets at the output layer [58].

During the training process on the training dataset, an adjustable GRNN spread
constant σ is set by a trial-and-error method to achieve the minimum prediction error of
the trained model simulated with the test dataset.

The results of the comparison between training targets and network outputs for the
optimal spread constant σ = 0.069, found by the trial-and-error method, and for the 2-60-4-4
GRNN model structure with a total number of (P + Q) × R or (2 + 4) × 60 training data
points are shown in Figures 6 and 7, respectively. All these curves show a high level of
convergence without any underfitting [24].
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3.4. Evaluation of the Goodness of the GRNN Model

The coefficient of determination (R2) between the modelled outputs and measurements
of the training dataset, mean absolute error (MAE) and root mean square error (RMSE), as
the most common statistical indicators, were used to provide a quantitative description of
the goodness of the trained GRNN model estimates, and they are shown in Figure 8.

As can be seen from Figure 8, the RMSE and MAE parameters (which indicate residual
errors between observed and predicted values) are very small, while R2 (representing the
proportion of variability in the predicted results) is very close to its maximum value of 1
for all four curing characteristics. This means that the GRNN model is well trained, and its
satisfactory predictive performance and generalization capability without any overfitting
can be expected [59].



Polymers 2022, 14, 653 14 of 18

Polymers 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

3.4. Evaluation of the Goodness of the GRNN Model 
The coefficient of determination (R2) between the modelled outputs and measure-

ments of the training dataset, mean absolute error (MAE) and root mean square error 
(RMSE), as the most common statistical indicators, were used to provide a quantitative 
description of the goodness of the trained GRNN model estimates, and they are shown in 
Figure 8. 

As can be seen from Figure 8, the RMSE and MAE parameters (which indicate resid-
ual errors between observed and predicted values) are very small, while R2 (representing 
the proportion of variability in the predicted results) is very close to its maximum value 
of 1 for all four curing characteristics. This means that the GRNN model is well trained, 
and its satisfactory predictive performance and generalization capability without any 
overfitting can be expected [59]. 

 
Figure 8. Statistical goodness parameters of the GRNN model. 

3.5. Evaluation of the Predictive Performance and Generalization Capability of the GRNN Model 
Evaluation of the predictive performance and generalization capability of the GRNN 

model was performed on a test dataset corresponding to CB contents in the range of 35–
75 phr with a steady increase of 10 phr and cure temperatures in the range of 165–210 °C 
with a steady increase of 0.1 °C, which were not included in the training data. The com-
parison of experimental and modelled data is shown in Figures 9 and 10. 

  
(a) (b) 

Figure 9. Comparison between the experimental and GRNN modelled data (a) minimum torque ML; (b) maximum torque 
MH. 

Figure 8. Statistical goodness parameters of the GRNN model.

3.5. Evaluation of the Predictive Performance and Generalization Capability of the GRNN Model

Evaluation of the predictive performance and generalization capability of the GRNN
model was performed on a test dataset corresponding to CB contents in the range of
35–75 phr with a steady increase of 10 phr and cure temperatures in the range of
165–210 ◦C with a steady increase of 0.1 ◦C, which were not included in the training
data. The comparison of experimental and modelled data is shown in Figures 9 and 10.

Because the number of experimental and modelled data is different, the use of the
abovementioned standard statistical indicators to quantify the generalization capability
of the trained model is not possible. Therefore, the goodness of the model was expressed
via the errors of the experimental data, which are shown in Figures 9 and 10 by the error
bars for each individual curing characteristic. The error for modelled ML and MH was
found to be less than 3%, and the error of the modelled data for ts01 and tc90 does not
exceed 5% of their experimental values, confirming an excellent predictive performance
and generalization capability of the developed GRNN model.
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4. Conclusions

In the presented work, a new artificial neural network-based model for predicting the
curing characteristics of rubber blends with different contents of carbon black filler cured
at various temperatures has been developed for the first time.

The variations of the minimum and maximum elastic torque, scorch time and optimal
cure time with black carbon contents in the rubber blend and cure temperature have been
analyzed in detail in the temperature range of 165–210 ◦C, with a steady increase of 5 ◦C,
and in the carbon black filler contents in the range of 30–75 phr, with a steady increase of
5 phr, as well as for an unfilled rubber blend sample.

The carbon black contents and cure temperature have been used as input parameters,
while all of the four above-mentioned curing characteristics have been considered to be the
output parameters of the developed 2-60-4-4 generalized regression neural network model
with an optimal spread constant of 0.069.

Less than 55% of experimental data have been used to significantly reduce the total
number of input and target data points needed for training the model and avoid the
overfitting and underfitting problems. The remaining data have been used as the test
data for the evaluation of the predictive performance and generalization capability of the
trained model.

A satisfactory agreement between the experimental and modelled values has been
found for all four curing characteristics. The maximum error in the prediction for minimum
and maximum elastic torque is less than 3%, and for scorch time and optimal cure time not
exceeding 5% of their experimental values.

It can be concluded that the generalized regression neural network is a very powerful
tool for intelligent modelling the curing process of rubber blends, even in the case of a
small training dataset, and it can find widespread practical applications in the area of the
rubber industry.
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Temperature Dependence of Resin-Rubber Blends Cured by High-Energy Electron Beam Radiation Using Global Search Genetic
Algorithm. Polymers 2020, 12, 2652. [CrossRef]

7. Martin, D.; Ighigeanu, D.; Mateescu, E.; Craciun, G.; Ighigeanu, A. Vulcanization of rubber mixtures by simultaneous electron
beam and microwave irradiation. Radiat. Phys. Chem. 2002, 65, 63–65. [CrossRef]

8. Mutar, M. A study in vulcanization of neoprene rubber (wrt) by polymethylol resin (resol). J. Al-Nahrain Univ. Sci. 2010, 13, 1–6.
[CrossRef]

9. Karpeles, R.; Grossi, A.G. EPDM Rubber Technology. In Handbook of Elastomers, 2nd ed.; Bhowmick, A.K., Stephens, H.L., Eds.;
Marcel Decker, Inc.: New York, NY, USA, 2001; pp. 845–876.

10. Hopmann, C.H.; Schmitz, M. Data Acquisition and Process Monitoring as Enabler for Industry 4.0. In Plastic Industry 4.0; Carl
Hanser Verlag GmbH & Co.: München, Germany, 2020; pp. 11–73.

11. Chang, B.P.P.; Gupta, A.; Muthuraj, R.; Mekonnen, T. Bioresourced fillers for rubber composite sustainability: Current develop-
ment and future opportunities. Green Chem. 2021, 23, 5337–5378. [CrossRef]

12. Yasin, S.; Hussain, M.; Zheng, Q.; Song, Y. Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural
rubber compounds. J. Colloid Interface Sci. 2021, 588, 602–610. [CrossRef]
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