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A B S T R A C T

High levels of GABA (gamma-aminobutyric acid, the brain's primary inhibitory neurotransmitter) are associated
with enhanced cognitive and perceptual performance. It has been proposed that these effects result from GABA
reducing neural noise or variability, but the precise mechanisms remain unknown. We have measured how
individual differences in GABA concentration in the visual cortex are related to performance on a visual contrast
discrimination task. Our results reveal that the facilitatory strength of the typical “dipper” function elicited by
this task is strongly correlated with GABA concentration. A simple, biologically plausible, network model
comprising excitatory and suppressive neural populations accounts for the data well and indicates that the
strength of suppression increases as GABA concentration increases. Inter-individual variations in GABA were
correlated both with the inhibition strength of the model (mimicking the effect of GABA) and, inversely, with the
magnitude of the response criterion. This enhanced suppression has the dual effect of suppressing noise and
reducing the gain of the neural response. Our findings thus suggest that the changes in performance conferred by
high GABA concentration are mediated by both a reduction of noise and, paradoxically, a reduction in neural,
but not perceptual, sensitivity.

1. Introduction

High concentrations of GABA are known to enhance human per-
ceptual and cognitive performance 1,2,3,4,5. This relationship is likely to
be causal rather than correlational, as evidenced by the finding that the
GABA agonist Lorazepam increases suppression duration in bistable
figure perception 6. It has been suggested that GABA enhances perfor-
mance by reducing variability or noise. For instance, Sumner et al 2

suggested that the reduction in the effect of distractors on a motor task
found in those with high levels of GABA might be due its ability to
effectively suppress the distractors. Similarly, Sandberg et al 4 suggest
that GABA may enhance cognitive function by either suppressing irre-
levant signals or enhancing relevant neural representations. However,
the precise mechanisms by which GABA exerts these effects remain
unknown. To explore this question, we have investigated how the
“dipper effect” observed in measurements of visual contrast dis-
crimination thresholds, and which has been suggested to reflect the
level of intrinsic neural noise, depends on GABA levels in the visual
cortex. We used a simple visual task in which subjects identified which
of two grating stimuli (Fig. 1A) had the higher contrast for a range of
different base or “pedestal” contrasts. The resulting plots of contrast
detection thresholds against pedestal contrast show a characteristic dip

(enhanced sensitivity) at low, but non-zero, pedestal contrasts (Fig. 1B,
C). It is typically assumed that this improvement in sensitivity is due to
either the shape of the contrast-response function (CRF) describing the
neural population response to a stimulus, the suppression of noise
driven by the non-zero pedestal stimuli (akin to uncertainty reduction),
or both 7. Based on GABA’s proposed role in suppressing noise, we
predicted that individual variations in GABA levels would be associated
with variations in the magnitude of the dipper effect, a prediction that
was borne out by our results. To characterise how modulations of
cortical responses by GABA can account mechanistically for this effect,
we fit a biologically plausible network model of neural population ac-
tivity to our data. The results of this model fit suggest that GABA not
only reduces noise, but also changes the gain of neural responses, a
finding that has wider implications for understanding the role of GABA
in modulating behaviour.

2. Methods

2.1. Subjects

An opportunity sample of fifteen subjects participated in the ex-
periment. All had normal or corrected-to-normal vision. One subject’s
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data was discarded as the measured contrast thresholds at the five
lowest pedestal contrasts were highly variable between blocks (in-
dividual threshold error [SD of threshold estimates]> 2 SDs above the
mean error across subjects). The results below are from the 14 re-
maining subjects.

2.2. Contrast discrimination measurement

All stimuli were horizontally oriented sinusoidal gratings of 6 c deg-
1 displayed on an Eizo 6600-M monochrome CRT whose mean lumi-
nance was 20 cd m-2. The display subtended 34 degrees horizontally by
24 degrees vertically. Stimuli were presented in hard-edged elliptical
windows that subtended 1.5° horizontally and 2° vertically and were
situated equidistant of a small white fixation point, presented con-
tinuously in the centre of the screen. The windows were separated
horizontally by 3 degrees (eccentricity of the centre of each window
was 2.25°). Viewing distance was 57 cm. Subjects viewed the screen
binocularly using a head and chin rest.

Contrast increment detection thresholds were estimated using a 2-
alternative forced choice procedure. On each trial, subjects were shown
two stimulus patches on either side of a fixation marker and indicated
by a button press which patch had the higher contrast (Fig. 1A). Trials
began by displaying the fixation marker for 5 seconds, after which the
stimulus patches were shown for 250ms, after which only the fixation
marker was shown until the subject responded by pressing a button.
Once the response button had been pressed the screen remained blank

for 1 s before the onset of the next trial. Trials were run back-to-back in
blocks of 50 trials.

Gratings were shown at one of 10 pedestal contrasts (0 to 0.4) in
separate blocks. On each trial one of the gratings (randomly left or
right) was shown at slightly higher contrast, with contrast increments
adjusted by an adaptive staircase procedure 8 to obtain a threshold
estimate corresponding to 82% correct. For each pedestal contrast four
blocks were run and threshold estimates averaged across blocks. We
quantified the dipper magnitude (, DM) as the difference between the
zero pedestal contrast threshold (absolute threshold) C0 and the
minimum increment threshold Cmin, divided by the maximum threshold
Cmax:

=DM C C
C

min

max

0

(1)

2.3. Modelling

Dipper functions were fit with a model derived from Boynton et al 9.
In this model, the dipper function arises from an accelerating non-lin-
earity in the CRF at low pedestal contrasts. The model assumes that
contrast detection thresholds correspond to a fixed internal response
difference (criterion) Δr between the pedestal contrast c and the target
contrast c+Δc. Under this assumption, the contrast increment required
for threshold detection Δc corresponds directly to the slope of the CRF
at each pedestal contrast, such that steeper slopes result in smaller

Fig. 1. A. Experimental design. Stimuli consisted of two grating patches shown either side of a fixation spot for 250ms; subjects indicated which patch had higher
contrast.. . B. Measured dipper functions for all subjects. Colour indicates GABA concentration (lighter – low, darker – high). C. Average dipper function for low GABA
(GABA < mean) and high GABA (GABA > mean) subjects. Each line represents the average of 7 subjects dipper functions. Error bars, standard error of the mean. D.
Cortical GABA concentration correlates with DM (r=0.71, P=0.0041). Y error bars, bootstrapped 68% confidence intervals (∼ 1 standard deviation); X error bars,
range of GABA measurements.

S.T. Hammett, et al. Neuroscience Letters 736 (2020) 135294

2



increment thresholds. We used a sigmoid CRF that has previously
successfully fit psychophysical, electrophysiological and fMRI data
9,10,11,12,13 given by

=
+

+
R C a c

c
( )

p q

q q (2)

where R(C) is the response at contrast C, a is an arbitrary scale factor
that determines the maximum response, p and q exponents govern the
shape of the sigmoid, and σ determines the contrast at which the
function changes shape. From this function, for a fixed response cri-
terion difference Δr, the contrast increment threshold Δc at pedestal
contrast c can be approximated by the difference in contrasts between c
and the contrast corresponding to the response to the pedestal contrast,
plus the response difference criterion Δr:

Δc=C(R(c) + Δr) - c=R-1(R(c) + Δr) - c (3)

where C(R) = R-1 denotes the “response-contrast function”, i.e., the
inverse of the contrast response function. The inverse was computed
numerically from the CRF (2) by creating a look-up table for 10,000
contrasts between 0 and 1 (maximum contrast).

Nelder-Mead simplex minimisation was used to fit equation (3) to
measured dipper functions, holding a fixed at 1 while allowing the
remaining parameters to vary freely. To avoid larger, more variable
threshold values from biasing the fit and ensure that the fitted curve
accurately captured the dip at the lowest contrasts, each data point was
weighted by a value proportional to the inverse of the measurement
error. As an estimate of the error we used the mean of the threshold
estimate for each contrast, rather than the standard deviation, as the
small number of measurements (4 per pedestal contrast) meant that
standard deviation estimates were much less robust and variable than
the mean. This was conceptually equivalent to weighting by the stan-
dard deviation, as this measure scaled with the mean threshold
(r=0.82, P < 0.0001; Supplementary Fig. 1). As a comparison we also
ran the fits without weights, but the resulting fitted curves failed to
fully capture the dip at lower contrasts. Initial values of p and q were set
to 0.3 and 2 respectively as in Boynton et al. 9 The initial value of Δr
was set to 0.1 (i.e., 10% of the maximum response) and σ set to the
contrast corresponding to the minimum contrast increment threshold.
We fit the model with a range of initial values for these four parameters
to ensure that the resulting fit was not strongly dependent on starting
parameters.

In a follow-on analysis we modified the CRF to include a quasi-
mechanistic model of neural inhibition by replacing equation (2) with
the Wilson-Cowan recurrent network model 14, comprising one ex-
citatory and one inhibitory population which have recurrent connec-
tions both with themselves and with one another. The strength of these
connections is given by the four parameters Jei and Jie (inter-popula-
tion) Jee and Jii respectively (intra-population). The activity of this
network is described by two coupled differential equations:

τ dE / dt=E + ge[JeeE – JeiI+ e(t)] (4)

τ’ dI / dt= I + gi[JieE – JiiI + i(t)] (5)

where τ and τ’ are the time steps or constants corresponding to mem-
brane time constants for the excitatory and inhibitory populations, and
e(t) and i(t) the external input to the excitatory and inhibitory popu-
lations, respectively. ge(x) and gi(x) are the response functions, re-
presenting the proportion of cells firing for any given input value, for
the excitatory and inhibitory populations. We used R(C) given in (2) as
the response function for both ge(x) and gi(x), with initial parameters
derived by fitting equation (2) to the mean dipper function (Δr=0.048,
σ =0.011, p=0.59, q=3.79). For equations (4) and (5) the following
initial parameters were used: τ=10ms, τ’=20ms, e(t)=i(t)=c (input
contrast), initial activities E=I=0, Jei=0.25, Jie=0.5, Jee=0.4,
Jii=0.25. Parameter values were chosen based on previous research
using this model 15. The results were qualitatively similar for different

values for the fixed parameters provided all weights were of similar
magnitude. The ode45 solver in Matlab was used to determine the
steady-state output (defined as the excitatory response, E, at 500ms
post-stimulus) of each of the two populations for each input contrast.
The resulting output response plotted against contrast yielded a con-
trast-response function R(C) incorporating the effects of recurrent ex-
citation and inhibition. This function was substituted into equation (3)
and used to fit to the measured dipper functions in the same way as for
the original model, allowing Jei and/or Δr to vary while keeping all
other parameters constant.

2.4. GABA measurement

Visual cortical GABA concentration was estimated using magnetic
resonance spectroscopy (MRS) 16. MRS data were acquired on a 3 T
whole-body MR scanner (Magnetrom Trio: Siemens, Erlagen, Germany)
using the MEGAPRESS sequence (TR 2000ms, TE 68ms). The MRS
voxel (30× 35×25mm) was placed over the calcarine cortex. To
guide voxel placement, T2-weighted localiser images covering the vi-
sual cortex in the three cardinal planes (in-plane resolution
0.4×0.4mm, slice thickness 3mm) were acquired prior to MRS ac-
quisition; these images were also used for tissue segmentation (Sup-
plementary Fig. 2). Each subject underwent 2 GABA scans (using an
editing pulse to isolate the GABA signal) and 2 reference scans (no
editing pulse and unsuppressed water signal) in alternating order,
starting with GABA acquisition. GABA concentration was estimated
from pairs of GABA and reference scan data using the Gannet toolbox 16

(Supplementary Fig. 3). Four estimates of GABA were computed from
the full set of combinations of GABA and reference scans, and the result
averaged.

2.5. Correction for voxel tissue composition

We estimated the proportion of GM, CSF, and white matter (WM)
within the MRS voxel in each subject by segmenting the T2-weighted
localiser images into 3 tissue classes using the FSL “fast” program 17.
The proportion of each tissue label within the volume covered by the
MRS voxel was estimated for each of the three images by creating a
mask image of the MRS voxel (resampled to the localiser image format)
and counting the number of voxels located within the MRS voxel mask
that belonged to each tissue class. The results for the three images were
averaged. Due to poor GM/WM contrast in the localiser images, esti-
mates of GM and WM proportions were quite variable within subjects,
whereas CSF estimates showed a high degree of consistency. Hence, we
used the CSF proportion (PropCSF) to compute a tissue correction factor
for the GABA estimates as follows, which corrects for the fact that CSF
contains virtually no GABA:

GABAadj = GABAraw /(1-PropCSF) (6)

In the results GABA refers to the adjusted GABA estimates
throughout.

3. Results

All subjects displayed a clear dipper effect : as pedestal contrast
increased from zero, contrast increment thresholds initially decreased
with a minimum around 1% contrast (Fig. 1B). DM was strongly cor-
related with cortical GABA concentration, with higher GABA con-
centrations associated with larger DM (r=0.71, P=0.0041) (Fig. 1D).
GABA concentrations were not significantly correlated with either zero
pedestal contrast threshold (r=-0.026, P=0.93) or the minimum
contrast increment threshold (r=-0.37, P=0.19). There was a non-
significant trend for a negative association between GABA and the
contrast increment threshold at maximum pedestal contrast (r=-0.52,
P=0.059). Subjects with high levels of GABA had systematically lower
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contrast increment thresholds at higher pedestal contrasts (Fig. 1C). To
test whether this difference was significant, we split the subjects into
low (GABA < mean GABA) and high (GABA > mean GABA) groups
and compared the groups using a 2-way mixed ANOVA with pedestal
contrast and low/high GABA as factors. The interaction between ped-
estal contrast and low/high GABA was significant [F(9,108)= 4.86,
P < 0.0001]. DMs also differed significantly between the low and high
GABA groups (Kolmogorov-Smirnov 2-tailed test, P=0.028).

3.1. Modelling

We explored whether a standard CRF, with the assumption of a
contrast-invariant criterion shift in response (equations 2 and 3; here-
after, the “CRF model”), could predict the observed dipper functions
and account for inter-individual variability in the size of the dipper.
This model was fit to the mean dipper function (averaged across sub-
jects). The model accurately replicated the shape of the measured
function (Fig. 2D, red line). Simulations showed that all of the model
parameters Δr, σ, p or q influenced the magnitude of simulated dippers,
but each one had distinct effects on the shape of the dipper (Supple-
mentary Fig. 4). To determine which parameter could best account for
inter-individual differences in DM, we fit the dipper functions for each
subject separately, allowing each one of Δr, σ, p or q to vary while
keeping all other parameters fixed at the values obtained by fitting the
mean dipper function (Supplementary Figs. 5–8). Whilst Δr and σ were
found to correlate with DM in opposite directions (r=-0.63, P=0.031

and r=0.88, P=0.0004 respectively; Supplementary Fig. 9), neither p
nor q correlated with DM (r=0.41, P=0.21 and r=-0.17, P=0.57
respectively) (all model fit P-values False Discovery Rate corrected for
multiple comparisons).

Given the association between DM and GABA concentration, we
investigated if these parameters might also correlate with variations in
GABA concentrations across subjects. Δr and σ showed evidence of an
association with GABA, although the association only reached statis-
tical significance for σ (Δr: r=-0.52, P=0.12; σ: r=0.66, P=0.043;
Supplementary Fig. 9). Neither p nor q were significantly correlated
with GABA (P > 0.4 and P > 0.5 respectively).

These results suggest two distinct mechanisms by which GABA
could modulate contrast thresholds. Firstly, for a fixed-performance
task such as the one used in this study, a reduction in the response
criterion Δr implies a corresponding reduction in the width of the noise
distributions, suggesting that GABA could modulate the criterion by
reducing neural noise. Secondly, an increase in the σ parameter leads to
a rightward shift of the underlying neural CRF, suggesting that higher
concentrations of GABA result in a reduction in neural contrast gain.
Importantly however, neither parameter on its own accounts fully for
the interindividual differences in dipper functions. A reduction in Δr
results in an overall reduction of contrast thresholds, particularly at the
highest pedestal contrasts (Supplementary Fig. 4). If GABA levels de-
termine neural noise and thus response criterion, high GABA con-
centrations should be associated with reduced thresholds at high and
low pedestal contrasts. However, we found no correlation between

Fig. 2. A. A non-linear CRF predicts the dipper effect if subjects require a fixed response increment to detect a contrast increment. The contrast increment will be
smaller when the slope of the CRF is large (blue lines) than when the slope is small (purple lines). B. CRFs fit to the mean dipper function (averaged across subjects).
The CRF model (red) and the Wilson-Cowan model (green) yield similar CRFs. C. Predicted dipper function using the CRF in A. Blue and purple dots correspond to the
contrast interval between the blue and the purple lines respectively shown in panel A. D. Mean dipper function fit with the two models. Black symbols, measured
contrast increment thresholds at each pedestal contrast, averaged across subjects. Both the CRF model (red) and the Wilson-Cowan model (green) account for the dip
in contrast increment thresholds at low pedestal contrasts relative to zero pedestal contrast.
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GABA and zero pedestal contrast thresholds. Conversely, an increase in
σ shifts the CRF rightwards along the contrast axis and thus increases
the contrast increment required to generate a response increment equal
to the response criterion at low pedestal contrasts (Supplementary
Fig. 4, Fig. 2A), but only marginally changes increment thresholds at
high pedestal contrasts (Supplementary Fig. 4). Given the positive
correlation between σ and GABA, we would therefore have expected
high GABA concentrations to be associated with an increase in
thresholds at zero pedestal contrast, a pattern that was not present in
our data. A possible explanation is that GABA modulates both Δr and σ
but in opposite directions (i.e., reducing Δr and increasing σ), resulting
in a net null effect on zero pedestal contrast thresholds while ac-
counting for the individual variability in DM (and the trend for reduced
contrast thresholds at high pedestal contrasts with high GABA).

Whilst this interpretation provides a description of the effect of
GABA on neural responses, it does not explain how these changes come
about. Given that GABA mediates neural inhibition, we explored whe-
ther a more realistic network model of neural responses that in-
corporated neural excitation and inhibition, analogous to that found in
real visual cortical circuits, could account for these changes. We used
Wilson & Cowan’s recurrent network model 14 which describes the
activity of two coupled populations of neurons, one excitatory and one
inhibitory that receive a common input (Fig. 3A). In this model, the
weight parameter which most closely approximates the effect of GABA
is Jei, which quantifies the input to the excitatory population from the
inhibitory one (i.e., the strength of inhibition). The effect of changing
the value of this parameter was similar to changing σ in the original
model – shifting the CRF horizontally (Supplementary Fig. 10). To test
whether changes in this weight – analogous to changes in GABA – could
account for the variation in dipper functions and DM across subjects, we
fit the model to individual dipper functions, allowing Jei to vary while
keeping other parameters constant. While this model did not provide as
close fits as the original model (Supplementary Fig. 11), the fitted Jei
parameter was strongly correlated with both DM (r=0.76,
P=0.0034) and GABA (r=0.65, P=0.012) across subjects (Fig. 3B).
This parameter also accounted for the observation that subjects with
high GABA had the minimum of the dipper function (the minimum
increment contrast threshold) shifted to a higher pedestal contrast than
the low-GABA subjects (Figs. 1C, 3 C–D). Analogous to the effect of σ in
the original model, the rightward shift of the underlying CRF associated
with larger values of Jei (i.e., stronger inhibition) predict an increase in
thresholds at zero pedestal contrast, which were not observed in the
measured dippers (Fig. 3C). We therefore evaluated the effect of si-
multaneously fitting the criterion parameter Δr (Fig. 3D). This resulted
in an improved overall fit of individual functions (Supplementary
Fig. 12) while the correlation between Jei and GABA (r=0.69,
P=0.03) and Jei and DM (r=0.60, P=0.032) remained, and also
predicting the rightward shift in the location of the dipper minimum
associated with high GABA (Fig. 3D). The criterion parameter Δr was
significantly correlated with DM (r=-0.63, P=0.03), though not with
GABA (r=-0.46, P=0.095). These results suggest that GABA mod-
ulates DM by reducing the gain of the CRF whilst simultaneously re-
ducing neural noise, resulting in no overall effect of GABA on absolute
contrast thresholds.

4. Discussion

Previous studies 5,18 have demonstrated a strong association be-
tween GABA and behavioural measures of visual inhibition. Our results
are consistent with these findings and indicate that contrast dis-
crimination thresholds for low pedestal contrasts decrease above ab-
solute threshold. This facilitation is strongly associated with GABA.
There are two categories of models that can account for this facilitatory
effect. The first type of model, a variant of which was used in the
present study, explains the effect as a result of changes in the slope of a
non-linear contrast-response function that describes the neural

population response 19 (Fig. 2). Alternatively, facilitation can be mod-
elled as the result of an effective reduction in noise at low pedestal
contrasts 20. For instance, if we assume that discrimination is based
upon detection of the highest response to two stimuli, at threshold this
highest response may well be derived from a spurious noisy response
from a neural population unrelated to the stimulus rather than a neural
population sensitive to the stimulus itself. Above threshold, the re-
sponses will be dominated by neural populations sensitive to the sti-
mulus and thus the effect of noise is reduced. A variant of this model
ascribes the noise reduction to stimulus-evoked inhibition by the ped-
estal stimulus, which is greater at low than zero pedestal contrasts. Our
results reconcile these two types of model by demonstrating that both
are in fact necessary to account for GABA-associated inter-subject
variations in DM and contrast sensitivity. We find that these variations
are best explained by increasing GABAergic inhibition causing a
rightward shift of a non-linear CRF in a recurrent network model (akin
to a reduction in response gain), in combination with a reduction in the
response criterion (akin to a reduction in noise). Specifically, we find
that a model that incorporates changes only in either gain or noise
cannot account for the measured dipper functions. This result is both
biologically plausible and consistent with physiological data. GABA’s
effects in cortical circuits is primarily mediated by a combination of
hyperpolarisation and shunting inhibition. Such inhibition would be
predicted to reduce the likelihood of spurious or spontaneous spikes
(suppressing noise) and increase the stimulus strength required to in-
duce a spike (reducing gain). Although this reduction in gain reduces
sensitivity of a single neuron, this is counteracted by the reduction in
noise in the population of neurons, such that at the level of the observer
contrast sensitivity is enhanced at higher pedestal contrasts when in-
hibition is strong (Fig. 4D). Our model thus makes the somewhat
paradoxical prediction that the enhanced contrast sensitivity in in-
dividuals with high levels of GABA is associated with a decrease in
sensitivity at the neuronal level.

Our results have implications that go beyond the question of the
origin of the dipper function. A growing body of evidence indicates that
high concentrations of GABA is associated with enhanced performance
over a range of perceptual and cognitive tasks 1–5, and it has been
proposed that these effects are due to GABA suppressing noise 1,2,5. Our
results indicate that the effects of GABA on these higher level functions
is likely to involve not just noise suppression but also changes in neu-
ronal gain. This observation suggests potential new strategies to probe
the effects of GABA on cognitive performance. For instance, it has been
shown that attention can modulate the gain of motion-sensitive neurons
in area MT 21. We predict that individual variations in GABA should
likewise affect the gain of these neurons, which could be probed by
measuring individual variations in motion sensitivity. Given that GABA
levels correlate with surround suppression 5, such an approach might
also be a way to probe interactions between attention and suppression
proposed by some models of attention 22.

A number of studies have pointed toward GABA’s role in noise or
distractor suppression but, to date, the mechanisms by which these
suppressive effects may be realised has not been documented. Our re-
sults indicate that a recurrent network model incorporating excitatory
and inhibitory populations offers a viable candidate for how GABA
mediates suppression at the system level. The model fits are consistent
with a scheme whereby GABA reduces neural response gain but si-
multaneously reduces noise. Thus, the facilitatory effect of GABA ap-
pears to be mediated by suppressing excitatory neural responses in a
manner that simultaneously changes the gain of the neural response
and reduces the effective noise in the system.
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reduction in thresholds at high pedestal contrasts.
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