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To predict visual acuity (VA) and post-therapeutic optical coherence tomography (OCT)
images 1, 3, and 6months after laser treatment in patients with central serous
chorioretinopathy (CSC) by artificial intelligence (AI). Real-world clinical and imaging
data were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center
(XEC). The data obtained from ZOC (416 eyes of 401 patients) were used as the training
set; the data obtained from XEC (64 eyes of 60 patients) were used as the test set. Six
different machine learning algorithms and a blending algorithm were used to predict VA,
and a pix2pixHDmethod was adopted to predict post-therapeutic OCT images in patients
after laser treatment. The data for VA predictions included clinical features obtained from
electronic medical records (20 features) and measured features obtained from fundus
fluorescein angiography, indocyanine green angiography, and OCT (145 features). The
data for OCT predictions included 480 pairs of pre- and post-therapeutic OCT images. The
VA and OCT images predicted by AI were compared with the ground truth. In the VA
predictions of XEC dataset, the mean absolute errors (MAEs) were 0.074–0.098 logMAR
(within four to five letters), and the root mean square errors were 0.096–0.127 logMAR
(within five to seven letters) for the 1-, 3-, and 6-month predictions, respectively; in the
post-therapeutic OCT predictions, only about 5.15% (5 of 97) of synthetic OCT images
could be accurately identified as synthetic images. The MAEs of central macular thickness
of synthetic OCT images were 30.15 ± 13.28 μm and 22.46 ± 9.71 μm for the 1- and 3-
month predictions, respectively. This is the first study to apply AI to predict VA and post-
therapeutic OCT of patients with CSC. This work establishes a reliable method of
predicting prognosis 6 months in advance; the application of AI has the potential to
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help reduce patient anxiety and serve as a reference for ophthalmologists when choosing
optimal laser treatments.

Keywords: artificial intelligence, machine learning, central serous chorioretinopathy, visual acuity, optical
coherence tomography

INTRODUCTION

Central serous chorioretinopathy (CSC) is an idiopathic
ophthalmopathy in which the neurosensory retina is often
detached in the central macular region due to serous leakage
from defects of the retinal pigment epithelium (RPE), causing
damage to central vision (Saperstein et al., 2002; Piccolino et al.,
2005; Maruko et al., 2010; Wong et al., 2016). Recurrent or
persistent detachment is often associated with diffuse
pathological RPE changes, which can be accompanied by
secondary subretinal neovascularization and lead to permanent
vision loss (Framme et al., 2015; Iacono et al., 2015; Manayath
et al., 2018; Lee et al., 2019). Among nonsurgical retinopathies,
CSC ranks fourth in incidence after age-related macular
degeneration (AMD), diabetic retinopathy (DR), and retinal
vein occlusion (RVO), and it is second only to AMD as the
presumed cause of subretinal neovascularization (Wang et al.,
2008; Manayath et al., 2018). Compared with AMD, DR, and
RVO, which are generally seen in the elderly, CSC mostly affects
young men of working age, exerting a heavy economic burden on
families and society (Iacono et al., 2015; Daruich et al., 2017).

The increasing application of fundus fluorescein angiography
(FFA), indocyanine green angiography (ICGA), optical
coherence tomography angiography (OCTA), and optical
coherence tomography (OCT) in CSC has greatly improved
the understanding of its pathogenesis and provides an
unprecedented opportunity to collect large-scale real-world
imaging data (Feucht et al., 2016; Izumi et al., 2017; Cakir
et al., 2019). Meanwhile, the application of artificial
intelligence (AI) in the medical field is becoming increasingly
popular (Caixinha and Nunes, 2017). The fundus photograph
screening model of CSC and the subretinal fluid (SRF)
segmentation model in OCT images developed by Zhen and
Narendra et al. are both practical AI use cases (Narendra Rao
et al., 2019; Zhen et al., 2019). AI is more widely used in screening
for DR. Because of the increasing number of patients with DR and
the lack of a sufficient number of ophthalmologists to perform
screenings, efforts have been made to detect early forms of DR
using AI. These AI programs show high efficiency and sensitivity
(Oliveira et al., 2011; Haritoglou et al., 2014; Sim et al., 2015). In
addition, previous studies have shown that AI can be applied to
predict post-therapeutic visual acuity (VA) and OCT images
based on automatic analysis of OCT imaging in patients with
AMD (Bogunovic et al., 2017; Rohm et al., 2018; Liu et al., 2020).

A reliable prognostic prediction can help to alleviate emotional
stress of patients with CSC. Personality traits and psychological
disturbances are acknowledged as critical contributing factors in
the development of CSC (Yannuzzi, 1987). Several studies have
shown that psychological factors, typically anxiety, can trigger or
exacerbate CSC (Yannuzzi, 1987; Spahn et al., 2003). In addition,

an accurate prediction of VA based on different therapies as
predictors can help ophthalmologists choose more appropriate
and cost-effective treatment options. Therefore, the purposes of
our study are to predict post-therapeutic VA and OCT images
after different laser therapies in patients with CSC.

METHODS

Clinical Data and Imaging Examinations
To estimate VA at 1, 3, and 6 months after laser treatment in
patients with CSC, we applied machine learning algorithms to
real-life data obtained from our data warehouse, including
electronic medical records (20 clinical features, e.g., VA) and
measured features from FFA, ICGA, OCTA, and OCT [145
features, e.g., the integrity of the ellipsoid zone (EZ); see
Supplementary Figure S1 and Supplementary Table S1 for
details]. To generate and evaluate individualized post-
therapeutic OCT images that could predict the short-term
response of laser therapies based on pre-therapeutic images
using a generative adversarial network (GAN), a total of 416
pre- and post-therapeutic OCT images of patients with CSC
obtained from Zhongshan Ophthalmic Center (ZOC) were
included in the training set, whereas 64 pre-therapeutic OCT
images obtained from Xiamen Eye Center (XEC) were included
in the test set retrospectively, and the corresponding post-
therapeutic OCT images were used to evaluate the synthetic
images. The overall study workflow is shown in Figure 1. All
the data collected from 1 January 2013 to 30 June 2019 included
detailed information on 480 eyes of 461 CSC patients (416 eyes of
401 patients collected from ZOC, Sun Yat-sen University, were
used as the training set; 64 eyes of 60 patients collected from XEC,
affiliated with XiamenUniversity, were used as the test set). In our
research, patients with CSC were given a definitive diagnosis on
the basis of FFA and ICGA and underwent a comprehensive
examination using OCTA and OCT. Only patients with SRF
involving the fovea on OCT were considered for treatment. The
exclusion criteria were as follows: 1) presence of any other
chorioretinal diseases that may affect the study and 2) media
opacities or an abnormal signal strength index on the OCT
images. Regarding the laser therapies, the data from ZOC
included conventional laser (CL) treatment (117 eyes),
subthreshold micropulse laser (SML) treatment (80 eyes), and
half-dose photodynamic therapy (hd-PDT) (219 eyes); the data
from XEC included CL, SML, and hd-PDT treatment of 21, 14,
and 29 eyes, respectively. In the case of persistent/increased SRF
3 months after the initial treatment or disease recurrence, the
doctor decided whether to repeat or change the treatment on the
basis of the multimodal images. The detailed protocol of the
clinical flow is shown in the Supplementary Materials. The
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FIGURE 1 | Overall study workflow. Workflow diagram showing the training overview for the CSC prognosis prediction model. ZOC, Zhongshan Ophthalmic
Center; XEC, Xiamen Eye Center; OCT, optical coherence tomography; GAN, generative adversarial network; VA, visual acuity.
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follow-up points were at 1, 3, and 6 months after the last laser
treatment. However, it is difficult to perform follow-up visits with
a fixed date because the patients with CSC were mostly young
men with different work schedules. Thus, we determined a time
range to ensure the accuracy of the study: 1 month ± 3 days;
3 months ± 5 days; and 6 months ± 7 days. Our ethics committee
determined that written informed consent was not required
because our study was retrospective in nature and all the
images were fully anonymized. Moreover, this study adhered
to the tenets of the Declaration of Helsinki (2020KYPJ024).

The ZOC data included 6,732 images (1,248 FFA, 1,248 ICGA,
1,412 OCTA, and 2,824 OCT), and the XEC data included 554
images (192 FFA and 362 OCT). FFA (Heidelberg Spectralis,
Heidelberg, Germany), ICGA (Heidelberg Spectralis, Heidelberg,
Germany), OCTA (RTVue XR Avanti with AngioVue; Optovue
Inc., Fremont, CA, United States), and OCT (Heidelberg
Spectralis, Heidelberg, Germany) measurements were extracted
by a panel of 9 licensed Chinese retinal specialists (F. Xu, L. Zhou,
Z. Li, Y. Xiang, L. Zhang, Y. Gong, L. Li, C. Li, and X. Zhang) and
2 senior professors (C. Jin and S. Gong) using the Heidelberg Eye
Explorer (version 1.7.1.0) and Optovue (version 2017.1.0.155)
software (Supplementary Figure S1 and Supplementary Table
S1 ). All steps involving the training and testing were performed
on a workstation with a 32-core Intel Xeon E5 CPU and 128 GB
of RAM. We used Python (version 3.6.8) running under the
Ubuntu 16.04 operating system, and the Python libraries used in
this study are as follows: jupyter (1.1.0), scikit-learn (0.19.1), and
pandas (0.20.3).

Data Preprocessing of VA Predictions
The data from ZOC were used as the training and validation sets.
For the 1-month VA prediction, a total of 401 patients (416 eyes)
were included, and their mean VA at baseline, in terms of
logarithm of the minimum angle of resolution (logMAR), was
0.28 ± 0.21. Among them, a total of 308 patients (322 eyes) had
available follow-up data for the 3-month VA prediction, and a
total of 244 patients (258 eyes) had sufficient follow-up data for
the 6-month VA prediction. The data from XEC were used as the
test set. For the 1-month VA prediction, 60 patients (64 eyes)
were included, and the mean VA at baseline was 0.29 ± 0.16
logMAR. Among them, a total of 30 patients (33 eyes) had
available follow-up data for the 3-month VA prediction, and a
total of 19 patients (20 eyes) had sufficient follow-up data for the
6-month VA prediction.

During the data processing, we needed to preprocess the data
and manage the missing values. Most of the machine learning
models expects a dataset without any missing values; however,
this is difficult to achieve in a real-life retrospective dataset.
Therefore, we centered all the other values around OCT
measurements. OCT was not missing in all patients and
included follow-up visits. Because there were only a few
missing values of ICGA features and questionnaire scales in
the ZOC dataset, we used the mode and mean values of the
corresponding features to fill in these missing qualitative and
quantitative values. However, in the XEC dataset, large portions
of the ICGA and OCTA features were not documented.
Considering the applicability of the prediction models in the

test set, we removed all missing features in the XEC dataset from
the ZOC dataset in the training of the simplified models. For all of
the above operations, we treated each eye as a separate case. After
the preprocessing step, we used a total of 165 features to train
each VA prediction algorithm in the full model.

Algorithms Used for VA Predictions
To predict the logMAR VA of patients after laser treatment, we
tested six regression algorithms with state-of-the-art performance
in each adaptive domain. They are listed as follows: LASSO
(Fujino et al., 2017), AdaBoost.R2 (Qi et al., 2018), Gradient
Boosting (Luo et al., 2017), XGBoost (Ogunleye and Qing-Guo,
2019), Random Forest (Pavey et al., 2017), and Extra-Trees
(Nattee et al., 2017) (see the Supplementary Materials for
details). As seen by reviewing the websites of various
algorithms from competitors (e.g., Kaggle), the algorithms that
perform best in various projects are typically ensemble methods
based on model combination approaches, such as stacking and
blending (Baskin, 2018; Zhang et al., 2019). Therefore, we used
the blending method to construct an ensemble of several different
algorithms to obtain an algorithm with smaller bias and greater
robustness. In our implementation, we first used the algorithms
introduced above to train six regression models and then chose
the best three to construct a new blending algorithm.

Post-Therapeutic OCT Image Predictions
To predict the post-therapeutic OCT image (1 and 3 months after
laser therapy) using the pre-therapeutic OCT image, the
pix2pixHD method was used for model training, which
leveraged the conditional generative adversarial learning
approach and fine-designed network architectures to achieve
high visual synthesis performance. The pix2pixHD is a deep
GAN-style algorithm, the training process of which is carried out
in a game-playing manner. It consists of two different networks,
namely, a discriminator network and a generator network. The
generator network is a fine-designed network that aims to
produce photo-realistic post-therapeutic images, whereas the
discriminator network aims to discriminate real post-
therapeutic images from the synthesized images. In the model
training process, these two networks are first initialized from
scratch and then update themselves iteratively like two
competitive players in a game; specifically, the generator
iteratively updates itself to produce images as close to real
post-therapeutic images as possible, whereas the discriminator
iteratively updates itself to identify the synthesized images as
accurately as possible. After the training process is terminated, the
generator network is able to translate any given pre-therapeutic
OCT images to synthesized post-therapeutic images with high
resolution (512 × 512 in our project). The framework of the entire
model training process is depicted in Figure 2.

A total of 416 pairs of 1-month pre- and post-therapeutic OCT
images and 322 pairs of 3-month pre- and post-therapeutic OCT
images from 416 eyes with CSC were included in the training set,
whereas 64 pairs of 1-month pre-therapeutic OCT images and 33
pairs of 3-month pre-therapeutic OCT images were included in
the test set retrospectively, and their corresponding post-
therapeutic OCT images were used to evaluate the synthetic
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images. A paired of OCT groups included the horizontal and
vertical B scan pre- and post-therapeutic. The original OCT
images had a resolution of 1,264 × 596 pixels. For every image
included, the OCT B scan image with a size of 760 × 760 was
cropped from the whole OCT image via contour recognition and
zero-padding methods. All the cropped images were further
resized to 512 × 512 pixels for model training.

Development and Evaluation of VA
Prediction Models
For the purpose of predicting the VA of CSC patients after laser
treatment, we divided the prediction tasks into two types: the
primary task was predicting VA with baseline data at 1, 3, and
6 months after laser treatment. For the secondary tasks, we
further divided the prediction tasks into several categories
according to the available data. We trained another model
using the baseline and 1-month data for the task of predicting
VA at 3 months after treatment. Similarly, we trained another two
models: one using the baseline and 1-month data and the other
one using the baseline and 1- and 3-month data, to predict VA at
6 months after treatment.

After completing the initial detailed investigation, we designed
several simplified prediction models that would be more
conveniently applied for clinical use. The first simplified
prediction model, model Ⅰ, was trained with relatively few
clinical data (eight clinical features, e.g., VA and duration) and
all OCT features (Supplementary Table S2). The second
simplified prediction model, model Ⅱ, was trained with VA
and five types of OCT features [integrity of the EZ, central
macular thickness (CMT), retinal neuroepithelial layer
(RNEL), double-layer sign, and choroidal thickness]. Given the
good predictive power of model Ⅱ, we removed VA and halved
OCT data when training the third simplified prediction model,
model Ⅲ. Therefore, model Ⅲ was trained with only five OCT

features extracted from the horizontal B-scan used in model Ⅱ.
Features were selected to be either dropped or retained in
accordance with their relative importance as determined in the
previous investigation and by the difficulty of image feature
acquisition.

For all the VA prediction tasks mentioned above, we used 10-
fold cross-validation to tune hyperparameters and assess the
performance for each algorithm. We randomly divided the
ZOC data into 10 subsets of nearly equal size, ensuring that
the distribution of VA in each subset was similar to that in the
original dataset. At each iteration, a training set consisted of nine
subsets and was used to train a model, whereas the remaining
subset was a validation set and was used to validate the
performance of the model. The training and validation
processes were repeated 10 times. The performance of an
algorithm was assessed on the basis of the average
performance achieved with the 10 validation datasets. First,
hyperparameter tuning was carried out using a grid search
with 10-fold cross-validation. Next, the optimal parameters
were adopted to train the models. Then, the cross-validation
performance of the six algorithms was compared, and the best
three were selected to ensemble a new model by averaging the
three predictions produced by them. In addition, the cross-
validation performance of the ensembled model was
calculated. Finally, the best three algorithms with their
optimal parameters were trained on the entire ZOC
dataset to generate the final ensembled model for feature
importance interpretation and prediction. Then, we further
assessed the performance of the ensemble models on the XEC
dataset.

To quantitatively evaluate the performance of various
algorithms, we applied the mean absolute error (MAE) and
the root mean square error (RMSE) as the evaluation metrics.
TheMAE is calculated as the average value of the absolute error of
the prediction results, which directly reflects the deviation of the

FIGURE 2 | A conceptual illustration of generating post-therapeutic OCT from pre-therapeutic OCT by the pix2pixHD. OCT, optical coherence tomography.
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predicted values from the actual values. The formula for the MAE
is as follows:

MAE � 1
N

∑N

i�1
∣∣∣∣~yi − yi

∣∣∣∣
The RMSE is the square root of the mean square error (MSE),

which has a greater penalty for samples with larger deviations. At
the same time, because the RMSE and the original response
variables are expressed in the same units, the RMSE is more
interpretable than the MSE. The formula for the RMSE is as
follows:

RMSE �
��������������
1
N

∑N

i�1(~yi − yi)2
√

In the above two formulas, N is the number of predictions per
fold, yi is the ground truth, and ~yi is the predicted value.

Evaluation of Post-Therapeutic OCT
Prediction Models
Because the synthetic OCT images were supposed to be used for
assisting clinical practice, the quality, similarity, and predictive
power of the synthetic OCT images were evaluated by two
experiments (Figure 3). Screening experiment refers to the
evaluations of the quality and similarity of synthetic post-
therapeutic OCT images. All synthetic images and paired real
OCT images were marked and presented to two retinal specialists.
They independently answered two questions: “Is the synthetic
image of sufficient quality?” and “Can you identify the synthetic
image, A, B, or undecided?” Only images that are difficult to
distinguish from originals with sufficient quality were further
analyzed in the evaluation experiment to determine whether the
CMT of synthetic OCT is close to the real post-therapeutic OCT.

FIGURE 3 | Workflow diagram of the synthetic OCT generation and evaluation. GAN, generative adversarial network; nAMD, neovascular age-related macular
degeneration; OCT, optical coherence tomography.
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We calculated the MAE of the CMT of the synthetic post-
therapeutic OCT images. In addition, we also evaluated the
residual SRF between the synthetic post-therapeutic OCT and
the ground truth.

RESULTS

Descriptive data of the study population are provided in Table 1.
The VA and post-therapeutic OCT images predicted by AI
models were compared with the ground truth (Tables 2, 3).

In the comparative analysis of VA predictions, the blending
algorithm exhibited the highest accuracy in VA prediction,
outperforming the LASSO, AdaBoost, Gradient Boosting,
XGBoost, Random Forest, and Extra-Trees models. Therefore,
all subsequent analyses were conducted on the basis of the
blending algorithm. In the full model, the MAEs of the VA
predictions using baseline data with respect to the ground
truth were 0.057 logMAR (within three letters), 0.070 logMAR
(within four letters), and 0.072 logMAR (within four letters)
for the 1-, 3-, and 6-month predictions, respectively, and the
RMSEs of the VA predictions with respect to the ground truth
were 0.080 logMAR (within four letters), 0.099 logMAR
(within five letters), and 0.098 logMAR (within five letters)
for the 1-, 3-, and 6-month predictions, respectively, using the
10-fold cross validation.

In the simplified model Ⅰ, the MAEs of the VA predictions
using baseline data, with respect to the ground truth, were
0.057 logMAR (within three letters), 0.071 logMAR (within
four letters), and 0.073 logMAR (within four letters) for the 1-,
3-, and 6-month predictions, respectively, and the RMSEs of
the VA predictions with respect to the ground truth were 0.080
logMAR (within four letters), 0.099 logMAR (within five
letters), and 0.098 logMAR (within five letters) for the 1-,
3-, and 6-month predictions, respectively, using the validation
set. In the test set, the MAEs of the VA predictions with
respect to the ground truth were 0.074 logMAR (within four
letters), 0.074 logMAR (within four letters), and 0.091
logMAR (within five letters) for the 1-, 3-, and 6-month
predictions, respectively, and the RMSEs of the VA
predictions with respect to the ground truth were 0.096
logMAR (within five letters), 0.103 logMAR (within six
letters), and 0.119 logMAR (within six letters) for the 1-,
3-, and 6-month predictions, respectively. The second
simplified model, model Ⅱ, achieved a comparable level of
predictive power with fewer features, and although the
accuracy of model Ⅲ declined slightly, the error remained
within seven letters overall in terms of MAEs and RMSEs.
When the previous follow-up data were considered in
the four models, the performances for long-term
predictions were improved compared with those achieved
using the baseline data alone (Supplementary Tables S3–S6).

TABLE 1 | Patient demographics.

1-month prediction 3-month prediction 6-month prediction

ZOC data XEC data ZOC data XEC data ZOC data XEC data

Patients (Female) 401 (63) 60 (11) 308 (46) 30 (5) 244 (37) 19 (2)
Eyes 416 64 322 33 258 20
Hd-PDT/SML/CL 117/80/219 21/14/29 86/61/175 11/8/14 63/45/150 9/3/8
Age (Years) 43.19 ± 6.44 43.86 ± 7.06 42.87 ± 6.44 43.21 ± 7.51 42.96 ± 6.48 41.70 ± 6.73
VA (Baseline) 0.28 ± 0.21 0.29 ± 0.16 0.28 ± 0.21 0.27 ± 0.16 0.28 ± 0.22 0.28 ± 0.17
VA (Endpoint) 0.13 ± 0.16 0.11 ± 0.14 0.07 ± 0.17 0.07 ± 0.14 0.03 ± 0.17 0.04 ± 0.18

ZOC, Zhongshan Ophthalmic Center; XEC, Xiamen Eye Center; PDT, photodynamic therapy, half-dose PDT (hd-PDT) was applied in our study; SML, subthreshold micropulse laser
treatment; CL, conventional laser treatment; VA, visual acuity, values are presented as the means ± standard deviations at baseline in different groups (in logarithm of minimum angle of
resolution [logMAR] units).

TABLE 2 | Accuracy of visual acuity predictions.

Algorithm learner 1 month 3 months 6 months

Validation set MAE RMSE MAE RMSE MAE RMSE

Full model 0.057 ± 0.008 0.080 ± 0.011 0.070 ± 0.013 0.099 ± 0.021 0.072 ± 0.011 0.098 ± 0.019
Simplified model Ⅰ 0.057 ± 0.007 0.080 ± 0.010 0.071 ± 0.014 0.099 ± 0.023 0.073 ± 0.011 0.099 ± 0.018
Simplified model Ⅱ 0.058 ± 0.008 0.080 ± 0.010 0.072 ± 0.012 0.099 ± 0.019 0.075 ± 0.010 0.102 ± 0.016
Simplified model Ⅲ 0.077 ± 0.007 0.100 ± 0.010 0.079 ± 0.012 0.110 ± 0.022 0.080 ± 0.010 0.107 ± 0.014

XEC set MAE RMSE MAE RMSE MAE RMSE

Simplified model Ⅰ 0.074 (0.060–0.089) 0.096 (0.075–0.114) 0.074 (0.051–0.100) 0.103 (0.066–0.137) 0.092 (0.058–0.127) 0.121 (0.075–0.157)
Simplified model Ⅱ 0.074 (0.060–0.114) 0.096 (0.078–0.114) 0.073 (0.051–0.098) 0.101 (0.066–0.134) 0.094 (0.062–0.133) 0.123 (0.081–0.160)
Simplified model Ⅲ 0.083 (0.066–0.101) 0.110 (0.085–0.137) 0.089 (0.065–0.118) 0.119 (0.083–0.155) 0.098 (0.064–0.138) 0.127 (0.084–0.165)

MAE, mean absolute error; RMSE, root mean square error; XEC, Xiamen Eye Center. Accuracy (VA in logMAR) of VA prediction at 1, 3, and 6 months after laser treatment compared with
the ground truth. The results were stratified according to the follow-up period and the points inputted into the algorithms; this table shows only the predictive effect of the baseline data. All
VA predictions in the validation set are shown with the standard deviation (in logMAR); all VA predictions in the XEC set are shown with the 95% confidence interval.
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TABLE 3 | Accuracy of the synthetic post-therapeutic OCT images in determining the CMT and SRF in the evaluation experiment.

Baseline 1-month prediction 3-month prediction

CMT (μm) Real images Synthetic images Real images MAE (61 eyes) Synthetic images Real images MAE (31 eyes)

Hd-PDT 333.29 ± 132.53 198.32 ± 64.12 189.06 ± 61.49 28.21 ± 12.34 194.54 ± 63.71 187.29 ± 61.02 19.36 ± 8.44
SML 375.41 ± 151.86 264.39 ± 79.58 254.86 ± 77.67 34.14 ± 14.56 254.41 ± 78.01 248.32 ± 77.77 28.65 ± 10.28
CL 334.23 ± 121.82 244.17 ± 95.47 234.69 ± 93.95 31.12 ± 13.52 230.24 ± 76.54 220.23 ± 76.21 21.44 ± 9.68
Total 357.83 ± 142.32 240.56 ± 83.28 228.24 ± 81.08 30.15 ± 13.28 231.45 ± 77.64 220.92 ± 75.76 22.46 ± 9.71

SRF (μm) Real images Synthetic images Real images MAE Synthetic images Real images MAE

Hd-PDT 206.54 ± 119.56 77.84 ± 79.84 75.65 ± 78.15 19.21 ± 20.47 65.47 ± 79.87 63.26 ± 79.14 17.84 ± 20.17
SML 229.65 ± 135.11 86.77 ± 87.65 82.52 ± 82.44 24.26 ± 25.54 74.18 ± 89.74 71.25 ± 88.62 21.04 ± 23.83
CL 210.32 ± 117.48 80.19 ± 84.21 79.34 ± 80.89 22.16 ± 24.05 69.05 ± 86.92 67.94 ± 85.87 19.83 ± 22.86
Total 217.56 ± 130.36 81.57 ± 81.54 78.35 ± 80.42 22.44 ± 23.14 70.07 ± 87.19 68.04 ± 86.53 19.33 ± 22.08

CMT, central macular thickness; SRF, subretinal fluid; PDT, photodynamic therapy, half-dose PDT (hd-PDT) was applied in our clinical protocol; SML, subthreshold micropulse laser treatment; CL, conventional laser treatment; MAE, mean
absolute error, values are presented as the means ± standard deviations.
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Supplementary Figures S2–S4 show the differences
between the predicted and ground-truth VA values,
which were the VA values measured at XEC. Figures 4–7
show the relative importance of the features for the VA
predictions.

In the evaluation of post-therapeutic OCT predictions, a total
of 64 pairs of 1-month and 33 pairs of 3-month synthetic
post-therapeutic images were generated on the basis of the
pre-therapeutic OCT images of patients with CSC (Figure 8).
In the screening experiment, the two retinal specialists (C. Jin
and S. Gong) disagreed on the judgment of one pair of 1-
month synthetic images; specialist 1 considered it
unqualified, whereas specialist 2 considered it qualified.
Finally, the third specialist (D. Ting) was consulted, and

the images were deemed to be qualified. In the experiment
performed to distinguish the synthetic OCT images from the
real images, specialist 1 accurately identified three pairs of 1-
month synthetic and two pairs of 3-month synthetic images,
and specialist 2 accurately identified two pairs of 1-month
synthetic and two pairs of 3-month synthetic images. Most of
the images (95.31% at 1 month and 93.94% at 3 months) were
judged to be indistinguishable by the specialists. All the
synthetic images that could not be identified were analyzed
in the evaluation experiment.

In the evaluation experiment, the two retinal specialists
measured the CMT and the SRF of all the synthetic post-
therapeutic OCT images. No significant difference was found
between the two datasets on the basis of the Pearson

FIGURE 5 | Relative importance of different features of prediction for simplified model Ⅰ. These plots show the weights of the different features in the VA prediction
task 1, 3, and 6 months after laser treatment for model Ⅰ. The results were stratified according to the follow-up period and the points input into the algorithms; this figure
shows only the relative importance of the baseline data. The red bar indicates the average importance of the feature in the blending algorithm. (A) Feature weights in the
1-month VA prediction. (B) Feature weights in the 3-month VA prediction. (C) Feature weights in the 6-month VA prediction.

FIGURE 4 | Relative importance of different features of prediction for the full model. These plots show the weights of the different features in the VA prediction task
1, 3, and 6 months after laser treatment in the full model. The results were stratified according to the follow-up period and the points input into the algorithms; this figure
shows only the relative importance of the baseline data. The red bar indicates the average importance of the feature in the blending algorithm. (A) Feature weights in the
1-month VA prediction. (B) Feature weights in the 3-month VA prediction. (C) Feature weights in the 6-month VA prediction. VA, visual acuity; RNEL, retinal
neuroepithelial layer; ChT, choroidal thickness; CMT, central macular thickness; DLS, double-layer sign; PDT, photodynamic therapy; SRF, subretinal fluid; ICGA,
indocyanine green angiography; PED, pigment epithelial detachment.
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correlation (Pearson values > 0.8). The mean values between
the two measurements were used for further analysis. The
MAEs of CMT and SRF between the synthetic OCT images
and real images are shown in Table 3 in detail.

DISCUSSION

This is the first study to predict post-therapeutic VA and OCT
images in CSC patients by AI. We demonstrated that post-
therapeutic VA and OCT images can be accurately predicted
within a very small error using machine learning and deep
learning algorithms on the basis of five models. In the VA
predictions, the first and second simplified models, models Ⅰ
and Ⅱ, achieved a level of predictive power comparable with that
of the full model in terms of MAEs and exhibited only a slight
decline in predictive power in terms of RMSEs. The short-term
predictive power of modelⅢ declined slightly compared with that
of the previous three models, but the prediction errors could still
be controlled within one or two lines on the vision chart after
6 months. For patients with CSC, the most significant predictor of
short-term VA was the most recent VA measurement; however,
for the long-term VA predictions, the retinal integrity, such as
RNEL, is more important (Figures 4–7). In the post-therapeutic
OCT predictions, more than 90% of the generated images could
not be distinguished by retinal specialists. The MAEs of the CMT
and the SRF between synthetic OCT images and real OCT images
were approximately 30 and 20 μm at the 1- and 3-month
predictions, respectively.

The primary concern of patients with CSC is the restoration of
VA (Wang et al., 2008; Wong et al., 2016). In most fundus disease
clinical trials, improving VA is the primary goal, as it not only has
scientific value but also provides an indication of how patients are
affected by the disease. Reliable VA predictions reassure patients
before treatment and alleviate their emotional distress, which
may play a positive role in recovery from CSC (Yannuzzi, 1987;

Wang et al., 2008). In addition, VA predictions may encourage
patients to cooperate with treatment and comply with follow-up.
As indicated by the fitting curves for VA predictions, short-term
predictions tend to outperform long-term predictions, and more
follow-up points are likely to improve prediction accuracy
(Supplementary Tables S3–S6). Moreover, the predictions of
post-therapeutic OCT images can be used as a supplement to VA
predictions. Accurate structural prediction allows the doctors to
foresee the therapeutic effect on OCT more intuitively. However,
given the small number of paired OCT images at 6 months after
laser therapies and the possibility of recurrence, our predictions
for post-therapeutic OCT were limited to the third month.

Interestingly, the simplified VA prediction models were
comparable with the full model in terms of performance, and
all the individual algorithms achieved good performance. This
observation implies that feature extraction was crucial for
achieving high accuracy with machine learning models,
whereas algorithms based on different principles did not lead
to much difference in the results. In general, features need to be
collected as comprehensively as possible during the data
collection phase of a machine learning study to improve
prediction accuracy (Baskin, 2018; Zhang et al., 2019). The full
model is the basis of simplified models and exhibits the greatest
potential performance that we can achieve. However, exhaustive
feature collection is laborious, especially in real clinical settings.
In addition, it is not feasible to perform higher-dimensional
examinations in patients to satisfy the requirements of AI,
considering the invasive nature of angiography and the
unavailability of OCTA facilities in many underdeveloped
regions. Fortunately, our simplified models have achieved good
predictive performance, enabling the prediction of VA in patients
after laser treatment 6 months in advance based on OCT images.
This success greatly expands the potential application scenarios of
our study.

Notably, however, the clinical application of VA prediction
models should be highly individualized. Currently, laser

FIGURE 6 | Relative importance of different features for prediction for simplified model Ⅱ. These plots show the weights of the different features in the VA prediction
task 1, 3, and 6 months after laser treatment for model Ⅱ. The results were stratified according to the follow-up period and the points input into the algorithms; this figure
shows only the relative importance of the baseline data. The red bar indicates the average importance of the feature in the blending algorithm. (A) Feature weights in the
1-month VA prediction. (B) Feature weights in the 3-month VA prediction. (C) Feature weights in the 6-month VA prediction.
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therapies, including CL treatment, SML treatment, and hd-PDT,
have shown great effectiveness and safety in various clinical
studies (Burumcek et al., 1997; Lim et al., 2011; Scholz et al.,
2016; Zhou et al., 2019). However, clinical data collected in the
real world are often subject to bias due to the rigorous entry
criteria of most clinical studies. In addition, disturbances related

to refractory and repeatedly recurrent CSC are often masked by
the average efficiency of most CSC clinical studies (Doepfner
et al., 2018; Sartini et al., 2019). Moreover, the improvement
observed in the average VA after treatment does not represent the
final improvement in vision for every CSC patient even if the SRF
has been completely absorbed, as EZ atrophy that has occurred

FIGURE 8 | Illustrations of the synthetic OCT of the GANmodel. (A,B) The horizontal and vertical OCT B scans of a patient with CSC. (A1,A2,B1,B2) The synthetic
post-therapeutic images generated by the pix2pixHD. The images in the middle are the corresponding real images.

FIGURE 7 |Relative importance of different features for prediction for simplifiedmodelⅢ. These plots show the weights of the different features in the VA prediction
task 1, 3, and 6 months after laser treatment for modelⅢ. The results were stratified according to the follow-up period and the points input into the algorithms; this figure
shows only the relative importance of the baseline data. The red bar indicates the average importance of the feature in the blending algorithm. (A) Feature weights in the
1-month VA prediction. (B) Feature weights in the 3-month VA prediction. (C) Feature weights in the 6-month VA prediction.
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over a long time is not easily recovered in the short term
(Hasegawa et al., 2015; Chung et al., 2018; van Rijssen et al.,
2018). In this study, we comprehensively measured the clinical
features that might affect the prognosis of CSC patients in the full
model and then identified the predictors that substantially
affected VA restoration. Detailed feature selection and
alternative models that accounted for the complexity of
realistic clinical environments could potentially increase the
robustness of our predictions.

Clinical and imaging features are predictors of VA; conversely,
VA predictions also reveal the factors that influence VA
prognosis. Our study offers a novel approach for identifying
essential factors that influence VA restoration. As shown in
our study, the features of the retina at baseline, such as the
EZ, RNEL, and CMT, are critical for VA prognosis; by
comparison, the choice of CL treatment, SML treatment or
hd-PDT is less important. This method of solving clinical
problems is different from those of clinical trials that
compare the effectiveness of different laser therapies, such
as the PLACE study in 2018, which concluded that hd-PDT
was superior to SML for treating chronic CSC (van Dijk et al.,
2018). However, this conclusion has been reached for a
scenario with limited inclusion criteria and may not be
applicable in acute CSC and other clinical scenarios.
Therefore, the main importance of our study is serving as a
more holistic reference to help ophthalmologists choose more
cost-effective laser therapy for patients with CSC, as hd-PDT
requires patients to bear a high cost, whereas CL and SML
treatment are much less expensive. To be more specific, we can
change the therapy that we enter into the model to calculate the
improvement in VA before the operation. Therefore, an
important contribution of our study is the provision of a
more holistic reference to help ophthalmologists choose the
most cost-effective laser therapy option for patients with CSC,
as CL and SML treatment are much less expensive than
hd-PDT.

The present study has some limitations. First, more and longer
follow-up data are still necessary to improve the accuracy and
stability of the post-therapeutic VA and OCT prediction models.
Second, extracting features manually in machine learning is a
very labor-intensive and time-consuming process. With
additional data, we will likely be able to use more
computationally intensive approaches like deep learning to
achieve VA predictions. Finally, observation is one of the most
important managements due to the self-limiting of patients with
CSC; however, our study did not enroll follow-up data of
observed patients.

In summary, our study shows that multidimensional patterns
in clinical and imaging data can be used as predictive factors for
post-therapeutic VA and OCT predictions in CSC patients.

The proposed models are the first to enable personalized,
objective, and reproducible prediction of the therapeutic
effect. This work presents a novel direction of medical data
mining to support clinical practice and guide precise
individualized interventions.
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