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Abstract: The bipolar androgen therapy (BAT) includes the treatment of prostate cancer (PCa) patients
with supraphysiological androgen level (SAL). Interestingly, SAL induces cell senescence in PCa
cell lines as well as ex vivo in tumor samples of patients. The SAL-mediated cell senescence was
shown to be androgen receptor (AR)-dependent and mediated in part by non-genomic AKT signaling.
RNA-seq analyses compared with and without SAL treatment as well as by AKT inhibition (AKTi)
revealed a specific transcriptome landscape. Comparing the top 100 genes similarly regulated by
SAL in two human PCa cell lines that undergo cell senescence and being counteracted by AKTi
revealed 33 commonly regulated genes. One gene, ERBB receptor feedback inhibitor 1 (ERRFI1),
encodes the mitogen-inducible gene 6 (MIG6) that is potently upregulated by SAL, whereas the
combinatory treatment of SAL with AKTi reverses the SAL-mediated upregulation. Functionally,
knockdown of ERRFI1 enhances the pro-survival AKT pathway by enhancing phosphorylation of
AKT and the downstream AKT target S6, whereas the phospho-retinoblastoma (pRb) protein levels
were decreased. Further, the expression of the cell cycle inhibitor p15INK4b is enhanced by SAL
and ERRFI1 knockdown. In line with this, cell senescence is induced by ERRFI1 knockdown and is
enhanced slightly further by SAL. Treatment of SAL in the ERRFI1 knockdown background enhances
phosphorylation of both AKT and S6 whereas pRb becomes hypophosphorylated. Interestingly, the
ERRFI1 knockdown does not reduce AR protein levels or AR target gene expression, suggesting
that MIG6 does not interfere with genomic signaling of AR but represses androgen-induced cell
senescence and might therefore counteract SAL-induced signaling. The findings indicate that SAL
treatment, used in BAT, upregulates MIG6, which inactivates both pRb and the pro-survival AKT
signaling. This indicates a novel negative feedback loop integrating genomic and non-genomic
AR signaling.

Keywords: prostate cancer; cellular senescence; bipolar androgen therapy; AKT signaling

1. Introduction

Prostate cancer (PCa) is an important age-related disease with the highest estimated
incidence of new cancer cases [1]. Second only to lung cancer, it is one of the leading causes
of cancer mortality in men in Western countries. The evidence shows that growth of the
normal prostate tissue as well as the initial development of PCa relies on the activation
of the androgen receptor (AR) [2]. Thus, the AR represents a major drug target in the
treatment of PCa [3].

To inhibit AR signaling androgen deprivation therapy (ADT) and full blockade by
AR antagonists are the major forms of PCa hormone therapy recommended for advanced
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and metastasized PCa. The growth inhibition of PCa by AR antagonists is associated with
induction of cellular senescence [4–7]. Interestingly, also at supraphysiological androgen
level (SAL), the proliferation of PCa is inhibited and cellular senescence is induced, an
irreversible cell cycle arrest [7–9]. Accordingly, cellular senescence is induced in PCa
samples from patients treated ex vivo [8]. SAL are used in clinical trials with the so-called
bipolar androgen therapy (BAT) for treatment of metastatic PCa patients [10,11]. With BAT
treatment, PCa patients receive intermittent androgen injections at doses shown to produce
a spike in serum androgens to supraphysiological levels, followed by a decline to below
castrate levels at the end of a 28-day treatment cycle. Rapid cycling of androgens from SAL
levels to below normal levels may delay adaptive changes in AR signaling and thereby
delaying the emergence of resistance [12].

Using a mouse model, it was further confirmed that the functional AR exhibits both
proliferation-promoting as well as tumor suppressive functions [13]. Consistently, it was
discovered that treatment with 1 pM R1881, defined as low androgen levels (LAL), in-
creased proliferation of LNCaP cells, whereas treatment with 1 nM R1881, defined as SAL
reduces proliferation and induces cellular senescence in LNCaP cells [8]. In contrast to
dihydrotestosterone, which is rapidly metabolized and its metabolites may act as estrogen
receptor beta agonists, the much less metabolizable synthetic androgen methyltrienolone
(R1881) and thus more AR-specific androgen was used. Similar results were obtained
using dihydrotestosterone [8]. Furthermore, SAL treatment hyperphosphorylates AKT,
induces p16INK4A and p15INK4b, reduces Cyclin D1, hypophosphorylates retinoblastoma
protein (pRb) and enhances autophagy activity [8,9]. Using the AKT inhibitor (AKTi), the
SAL-induced level of senescent cells was reduced in both castration-sensitive (LNCaP) and
castration-resistant (C4-2) PCa cell lines [8,9]. The AR also has non-genomic activity in
addition to its genomic activity as a transcription factor. This includes the phosphorylation
of AKT and activation of AKT downstream signaling through mTOR and S6 by SAL [8].
Interestingly, the AR-AKT interaction has been shown previously and indicates that SAL
mediates cell senescence in part by this non-genomic androgen signaling through the
AR-AKT pathway.

In this study, we induced cell senescence in the two human PCa cell lines, LNCaP and
C4-2, and performed RNA-seq. In addition, we performed transcriptome analysis from
data of both cell lines treated with SAL, AKTi alone and AKTi in combination with SAL to
identify genes that are upregulated by SAL and downregulated by AKTi in order to define
genes in the SAL-AKT pathway. These factors may function as pro- or as anti-senescence
factors in the SAL-AKT-mediated pathway to induce cell senescence. We identified and
characterized MIG6 as a factor strongly regulated by AR and AKT. Since the knockdown
of MIG6 reveals similar changes in the AKT-S6 and p15-pRb pathway as SAL, it suggests
that MIG6 is involved in a negative feedback loop of AR-SAL signaling. The data indicate
that MIG6 regulates pRb and AKT phosphorylation and might be a modulator of the
SAL-induced non-genomic pathway.

2. Materials and Methods
2.1. Cell Culture and Treatments

The LNCaP (lymph node prostate cancer) cell line [14] was used as a model of human
androgen-dependent PCa. Cells were cultured in RPMI 1640 medium (Gibco Life Technolo-
gies, Carlsbad, California, CA, U.S.) supplemented with 5% fetal calf serum (FCS), penicillin
(100 U/mL), streptomycin (100 µg/mL), 1% sodium pyruvate and 25 mM of HEPES pH 7.5
(Carl Roth, Karlsruhe, Germany). The C4-2 cell line is a derivative of LNCaP and was used
to represent castrate-resistant PCa (CRPC) cells. Comparisons between these cell lines may
reveal common and distinct signaling representing castration sensitivity and resistance.
Cells were cultured in DMEM supplemented with 20% F12, 5% FCS, penicillin (100 U/mL),
streptomycin (100 µg/mL), 1% sodium pyruvate and 25 mM of HEPES pH 7.5. All cells
were maintained in a 5% CO2, humidified atmosphere at 37 ◦C (Thermo Fisher Scientific,
Waltham, Massachusetts, MA, U.S.). Both cell lines were seeded in an appropriate amount
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for each experiment in cell culture plates. After 48 h of incubation, the cells were treated
for 72 h with 1 pM R1881 (LAL), 1 nM R1881 (SAL), 10 µM bicalutamide (Bic), 10 µM
enzalutamide (Enz) or 0.1% DMSO (Carl Roth, Karlsruhe, Germany) as solvent control (C)
in a 5% CO2, humidified atmosphere at 37 ◦C.

2.2. RNA-Sequencing and Transcriptome Analysis

RNA-sequencing and transcriptome analysis of both LNCaP and C4-2 cell lines were
previously described [9]. Cells were treated for 3 days with DMSO and the AR-specific
agonist R1881, with and without the AKT inhibitor (1 µM) AKTi, prior to RNA isolation.
The RNA-sequencing data is available in the gene expression omnibus (GEO) database
under the accession numbers GSE162711, GSE155528, and GSE154755.

2.3. Cellular Senescence Assays

The assays were performed with 6-well plates, and the cells were seeded at 25,000 cells
per well. The staining and detection were performed as described previously [15–17]. The
percentage of SA-β-Gal positive cells was calculated by counting at least 3× 200 cells per well
and at least 2 wells per treatment under a light microscope (Zeiss, Oberkochen, Germany).

2.4. Antibodies and Western Blotting

For protein extraction, the assays were performed with 10-cm cell culture plates, and
the cells were seeded at 500,000 cells per dish. Briefly, the cells were lysed using NETN
buffer [8] supplemented with phosphatase inhibitors [8] and followed by three cycles of
freezing (in liquid nitrogen) and thawing (in a 37 ◦C water bath). The protein extracts
were separated by SDS-PAGE. The primary antibodies used for immunodetection were
for MIG6 (Proteintech, 11630-1-AP), panAKT (Cell Signaling, 4685S, lot 6), AR (Biogenex,
256M), β-Actin (Abcam, ab6276, GR3324554-1), p-AKT (S473) (Cell Signaling, 4058S, lot 14),
pRb (Abcam, ab6075, lot 821737), phospho-pRb (Cell Signaling, 9308, lot 13), panS6 (Cell
Signaling, 2217S, lot 10), and p-S6 (S235/236) (Cell Signaling, 2211S, lot 23). Horseradish
peroxidase-conjugated anti-mouse IgG (Cell Signaling, 7076S, lot 32) or anti-rabbit IgG
(Cell Signaling, 7074S, lot 28) were used as secondary antibodies. The detection was
performed by ImageQuantTM LAS 4000 (GE Healthcare Bio-Sciences AB, Chicago, Illinois,
U.S.). Quantification of bands was performed via the LabImage D1 program.

2.5. Immunofluorescence Staining

LNCaP cells were seeded in RPMI 1640 medium containing 5% normal untreated FBS
and cultured for 48 h. After 72 h of ligand treatment, cells were fixed with 4% paraformalde-
hyde and permeabilized with 0.25% Triton-X100/PBS [9] for 10 min at room temperature.
After three washing steps in 1x PBS, a blocking solution (5% Normal Goat Serum/PBS)
was added for 1 h. Primary antibodies were incubated in a humidified chamber overnight
at 4 ◦C. Goat anti-rabbit secondary antibodies were incubated for 1 h at room tempera-
ture. After washing, cells were stained with Hoechst in 1x PBS followed by mounting
with Flouremount G. Images were obtained with a confocal laser scanning microscope
(Zeiss LSM 880, Oberkochen, Germany) with Airyscan in super resolution using a Plan-
Apochromat 63x/1.4 oil DIC M27 objective confocal scanning fluorescence microscope.
Fiji software (2.5.0) (https://fiji.sc/ Accessed on 20 January 2022) was used for analysis of
the images.

2.6. Quantitative Reverse Transcription PCR (qRT-PCR)

The assays were performed with RNA isolated from 10-cm cell culture dishes, and the
cells were seeded at 500,000 cells per dish. The total RNA extraction was performed using
peqGOLD TriFast (Peqlab, Erlangen, Germany) according to the manufacturer’s protocol.
Two-step qRT-PCR was performed as described previously [16,17] with gene-specific
primers. TBP and GAPDH mRNA served as the housekeeping gene for normalization. The
primer sequences are listed (Table 1) as 5′→3′:

https://fiji.sc/
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Table 1. Primers (5’ to 3’) used for qRT-PCR.

CCND1
(Cyclin D1)

fwd
rev

TCAACCTAAGTTCGGTTCCGATG
GTCAGCCTCCACACTCTTGC

ERRFI1
(MIG6)

fwd
rev

GAAGACCTACTGGAGCAGTCG
GACTTTTGAGATGGACCATTTTCTG

FKBP5 fwd
rev

GAGGAAACGCCGATGATTGGAGAC
CATGCCTTGATGACTTGGCCTTTG

GAPDH fwd
rev

AGTCCCTGCCACACTCAG
TACTTTATTGATGGTACATGACAAGG

CDKN1A
(p21)

fwd
rev

TCGACTTTGTCACCGAGACACCAC T
CAGGTCCACATGGTCTTCCTCTG

CDKN2B
(p15INK4B)

fwd
rev

GATGCGTTCACTCCAATGTC
CTTTGTCCTCAGTCTTCAGGTT

TBP fwd
rev

GGCGTGTGAAGATAACCCAAGG
CGCTGGAACTCGTCTCACT

2.7. ChIP-Seq and ChIP-Seq Analysis

Chromatin immunoprecipitation (ChIP) was performed according to the manufac-
turer’s protocol (iDeal ChIP-seq Kit Diagenode, Cat.-Nr.: C01010055, Denville, U.S.). Cells
were harvested and cross-linked with ChIP cross-link Gold (Diagenode,) for 30 min and 1%
formaldehyde for 10 min followed by quenching with glycine. Chromatin was isolated and
sheared using Bioruptor Pico for 4 cycles (30 s on, 30 s off). Sheared and digested chromatin
was verified on agarose gels to obtain 150–900 bp fragments following incubation with
antibody-bound protein A conjugated beads overnight at 4 ◦C with rotation. For immuno-
precipitation, antibodies against AR (Cell signaling) and AKT (ThermoFisher, Waltham,
Massachusetts, U.S.) were used. IgG-coupled beads served as negative control. 1% input is
indicated. ChIPed DNA was eluted from beads, purified by IPure magnetic beads and then
used for ChIP-qPCR or ChIP-seq library preparation. Preparation of ChIP-Seq libraries
(TruSeq ChIP-seq) and ChIP-sequencing were performed by Macrogen (Seoul, South Korea).
Sequencing was performed using the NovaSeq 6000 platform at a 2 × 150 bp configuration
and with an output of 5 Gb (30 Mio reads) per sample.

Quality control was performed by “fastqc (v0.11.9, Simon Andrews, released in Babra-
ham institute, Cambridgeshire England, available online at: http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) (Accessed on 20 January 2022)” and “fastqscreen (v0.14.0,
Steven Wingett, released in Babraham institute, Cambridgeshire, England, available online
at: https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) (Accessed on
20 January 2022)” software. Fastq files were aligned to reference genome (GRch37/hg19) us-
ing Bowtie (v1.1.2, Ben Langmead, College Park, MD, USA) with parameters as “bowtie -q
–max/dev/null –chunkmbs 3,200,000 -p 4 -S –sam-nohead –best –strata -m 1”. Then, SAM
files were sorted by genomic coordinates in commands of “sort -k 3,3 -k 4,4n -T”. Reads in
SAM files are marked for duplication and kept with the initial length of 150 bp. Software
MACS v1.4 tool (Yong Zhang, Boston, MA, USA) was used to generate wiggle files from
sorted SAM files, by parameters of “macs14 –gsize=hg19 -t input_file –format=sam -w -S -p
1e-5 –nolambda –nomodel -n output_file”. Igvtools (v2.3.97, James T. Robinson, Cambridge,
MA, USA) was applied to transfer the wiggle file into a tdf file. Peaks are called in treatment
samples with paired control samples by software MACS (v2.2.6, Young Zhang, Boston,
MA, USA) with parameters of “macs2 callpeak -t treatment_sample -c control_sample
-f SAM -g hs -p 1e-5 –slocal 1000 –llocal 10,000 -n output_file”. Peaks were annotated
for promoters, exons, introns and intergenic regions by the script “annotatePeaks.pl” in
software “HOMER” (v4.9.1, Sven Heinz, San Diego, CA, USA).

2.8. Statistical Analysis

For statistical analysis a two-tailed unpaired Student’s t-test was performed using the
GraphPad Prism 8.0 software, which was calculated from the mean, standard deviation
(SD), standard error of mean (SEM) and number of replicates (n). A 95% confidence interval

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
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(p-value (p) < 0.05) was considered as statistically significant (*) between two subject groups.
A 99.5% confidence interval (p < 0.05), 99% confidence interval (p < 0.01) and a 99.9%
confidence interval (p < 0.001) were indicated by one (*) two (**) and three stars (***),
respectively. A 99.99% confidence interval (p < 0.0001) was indicated by four stars (****).
Western blotting analysis was performed for at least three biological replicates.

3. Results
3.1. RNA-seq Identifies ERRFI1 Being Upregulated by SAL in Both LNCaP and C4-2 Cells

RNA-seq was performed and analyzed for an overlap of androgen-mediated upregu-
lated genes in two cell lines, the androgen-dependent LNCaP and the castration-resistant
C4-2 cell lines. In contrast to LAL treatment, SAL induces cellular senescence in both cell
lines [9]. Interestingly, inhibition of AKT by AKTi represses androgen-induced cellular
senescence. The top 100 genes with high score being specifically upregulated by SAL in
each cell line were further analyzed for their common upregulation in both cell lines leading
to 33 genes (Figure 1A and Supplemental Figure S1).
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Figure 1. ERRFI1 expression is upregulated by SAL and inhibited by cotreatment with AKTi. Tran-
scriptome analysis using RNA-seq were performed after treatment of cells for 72 h (n = 3). (A) Venn
diagram indicates the overlap of the top100 significantly SAL-upregulated genes and their overlap
between LNCaP and C4-2 cells. (B) Heat map represents the log2 fold change of the 33 genes up-
regulated upon SAL in LNCaP cells treated with DMSO as a solvent control, low androgen level
(LAL, 1 pM R1881), supraphysiological androgen level (SAL, 1 nM R1881) and AKTi (1 µM). Color
key number represents normalized count. (C–E) Normalized log2 fold change of ERRFI1 upon SAL
(C), AKTi+SAL (D) or AKTi alone (E) in both LNCaP and C4-2 cells of RNA-seq data.

One of the prominently induced genes is ERRFI1, encoding MIG6, being upregulated
significantly by SAL, whereas LAL did not upregulate ERRFI1 expression (Figure 1B–D).
AKTi treatment itself did not affect the basal mRNA expression of ERRFI1 (Figure 1E).
Since the combination treatment of SAL with AKTi did not show statistically significant
downregulation, qRT-PCR experiments were used for both cell lines. The upregulation of
ERRFI1 by SAL was confirmed and the downregulation of ERRFI1 by AKTi was revealed
by qRT-PCR in both cell lines (Figure 2A,B). Notably, treatment with first and second-



Biomolecules 2022, 12, 1048 6 of 13

generation AR antagonists, enzalutamide and bicalutamide, did not induce the expression
level of ERRFI1 (Supplemental Figure S2). To verify an upregulation of MIG6 at protein
level, both cell lines were treated with LAL or SAL in the absence or presence of AKTi
(Figure 2C). The data indicate an upregulation of MIG6 at protein level by SAL treatment in
both cell lines, whereas AKTi reduces MIG6 levels to a different extent comparing LNCaP
with C4-2 cells. ChIP-seq experiments indicate the recruitment of AR up- and downstream
of the ERRFI1 locus (Figure 2D). More reads were obtained at this locus by SAL treatment.
The data suggest that ERRFI1 is a direct AR target gene.
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Figure 2. SAL treatment increases, whereas cotreatment with AKTi reduces ERRFI1 mRNA expres-
sion and MIG6 protein levels in both LNCaP and C4-2 cells. Cells were treated as indicated for 72 h.
(A,B) Confirmed regulation of the ERRFI1 using qRT-PCR in both LNCaP (A) and C4-2 cells (B).
(C) Protein extracts of cells treated as indicated were used to perform Western blotting for MIG6
detection. The numbers indicate fold change of the band intensities compared to the DMSO con-
trol. (D) Chromatin immuno-precipitation with subsequent massive parallel sequencing (ChIP-seq)
revealed recruitment of AR to the ERRFI1 locus.
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The dose-dependent treatment with androgen indicates that ERRFI1 mRNA expres-
sion is induced at 1 nM R1881 (Supplemental Figure S3A). Time-dependent androgen
treatment indicates that MIG6 protein levels are enhanced at 48 and 72 h treatment with
SAL (Supplementary Figure S3). In contrast, treatment with the AR antagonist Enz did not
upregulate MIG6 protein levels at any time point.

3.2. SAL Treatment Enhances Cytosolic MIG6 Levels

In order to detect intracellular levels of MIG6 and the intracellular distribution of
MIG6 in the absence or presence of SAL, high-resolution laser scanning microscopy was
performed detecting endogenous expressed MIG6. LNCaP cells were cultured in normal
serum and treated with or without SAL. Enhanced fluorescence signals were detected in
the cytoplasm of LNCaP cells upon SAL treatment (Figure 3). These data indicate that
androgens induce the expression of MIG6, which is preferentially localized in the cytoplasm.
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Figure 3. MIG6 levels are enhanced in the cytoplasm upon induction by SAL. Immunofluorescence
detection to visualize intracellular localization of MIG6 (green) in LNCaP cells by high-resolution
confocal scanning fluorescence microscopy. Nuclei are stained by DAPI (blue). LNCaP cells were
treated with DMSO as solvent control or SAL in medium containing 5% FBS for 72 h. DAPI staining
was used for staining nuclei. Immunofluorescence using anti-MIG6 antibody, indicates enhanced
protein levels being predominantly localized in cytoplasm.

3.3. AKTi Reduces SAL-Enhanced p-AKT and p-S6 Levels

The increase of phosphorylation of AKT (p-AKT) at serine 473 (S473) by SAL treatment
in LNCaP cells was shown previously [8]. Similarly, as shown before, LAL had no effect
on the levels of p-AKT. To confirm that AKTi inhibits AKT signaling in both LNCaP and
C4-2 cells, the AKT downstream target S6 was analyzed. SAL enhances in both cell lines
the levels of p-AKT and p-S6 (Figure 4) indicating non-genomic activity of AR signaling
by SAL. Interestingly, AKTi inhibits p-AKT levels in LNCaP more pronounced compared
to C4-2 level, which might be one basis of castration-resistance. In contrast, p-S6 levels
were more reduced in C4-2 cells compared to LNCaP (Figure 4). This indicates that the
AR interacts not only with AKT but also directly or indirectly with S6 kinase(s) to regulate
their activity in the presence of AKT inhibition.
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Figure 4. AKTi treatment counteracts the SAL induced p-AKT and p-S6 levels. LNCaP and C4-2 cells
were treated with DMSO as solvent control, LAL or SAL with and without AKTi for 72 h. Protein
extracts were used for Western blot for detection of p-AKT and pS6. Numbers below the bands
indicate the intensities normalized to β-Actin bands as loading control with statistical significance
(n = 3).

3.4. Knockdown of ERRFI1 Increases SA-β-Gal Positive Cells

SAL is known to activate the AKT-mTOR pro-survival pathway [8]. To analyze
whether MIG6 is also involved in or mediates the SAL-induced phosphorylation of AKT
and S6, knockdown experiments of ERRFI1 were performed. According to the RNA-seq and
qRT-PCR data, MIG6 encoded by ERRFI1 is induced by SAL and downregulated by AKTi
in the presence of SAL. Since SAL enhances phospho-AKT (p-AKT) levels, the hypothesis
was to analyze whether MIG6 also regulates p-AKT levels. To verify this hypothesis, siRNA
pool for ERRFI1 and a non-targeting control pool (siControl), were transfected into LNCaP
cells. The transfected LNCaP cells were treated for 72 h with SAL or DMSO as solvent
control. siERRFI1 significantly reduced SAL-induced mRNA level of ERRFI1 (Figure 5A).
At the protein level, the knockdown of MIG6 was confirmed by Western blotting using
siRNA or short hairpin-mediated knockdown (Figure 5B,C). Of note, we did not detect
upon knockdown of MIG6 an influence on AR protein level (Supplemental Figure S4A) or
the expression of the direct AR target gene FKBP5 (Supplemental Figure S4B).

Since enhanced p-AKT and hypo-phosphorylated pRb levels are linked to the AR
mediated induction of cellular senescence by SAL in PCa cells [8,9], we analyzed whether
MIG6 is involved in SAL-mediated cellular senescence. Knockdown cells using siERRFI1
or shERRFI1 were generated (Figure 5A–C). Interestingly, siERRFI1 or shERRFI1 trans-
fected cells showed significantly higher basal SA-β-Gal positive cells compared to control
transfected cells (Figure 5D and Supplemental Figure S5 with si-mediated knockdown),
indicating that MIG6 protects PCa cells to undergo cellular senescence. Still, SAL treatment
enhances further cellular senescence with a slightly but significantly higher percentage
of SA-β-Gal positive cells in ERRFI1-knockdown cells. It should be taken into account
that the fold-enhancement of SA-β-Gal positive cell level in the ERRFI1-knockdown cells
is reduced. This may indicate that ERRFI1 is involved in protecting these cancer cells to
undergo cellular senescence by SAL.
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Figure 5. Knockdown of ERRFI1 significantly decreases ERRFI1 mRNA and protein expression.
LNCaP cells were treated for 72 h with SAL or DMSO as solvent control. RNA and proteins were
extracted and analyzed by (A) qRT-PCR and Western blotting (B,C), respectively. (B) The ERRFI1
mRNA expression was normalized to the housekeeper mRNAs TBP and GAPDH. The mean and SEM
values were calculated from 3 biological replicates. The protein levels of MIG6 upon si-mediated
knockdown (B) or sh-mediated knockdown (C) were normalized to the loading control β-Actin using
LabImage 1D software (Kapelan Bio Imaging solutions, Leipzig, Germany, Version L340). Numbers
indicate a fold-change of protein expression. (D) Knockdown of ERRFI1 induces cellular senescence.
The percentage of the SA-β-Gal positive LNCaP cells was calculated in relation to total number of
cells per observed field of each transfection and treatment. Two random fields per well were counted,
and the mean was calculated.

3.5. ERRFI1 Knockdown Represses CCND1 and Induces the Expression of CDKN2B/p15INK4b

SAL-mediated cellular senescence is associated with hypophosphorylation of pRb as
well as decrease of the E2F target gene CCND1, encoding Cyclin D1. To investigate whether
MIG6 is involved in this pathway, phosphorylation levels of pRb and CCND1 expression
were analyzed in the knockdown background. The ERRFI1 knockdown leads to reduced
pRb levels, which were further decreased in the presence of SAL (Figure 6). In line with
this and SAL-mediated induction of cellular senescence, the p-AKT and p-S6 levels were
enhanced by ERRFI1 knockdown and further induced by SAL treatment (Figure 6).

These data confirm induction of cellular senescence by ERRFI1 knockdown using a
similar pathway as the AR. In accordance with that, CCND1 expression was repressed, and
this effect was further enhanced in the SAL treated ERRFI1 knockdown cells (Figure 7A).
In addition, the expression of the cell cycle inhibitor CDKN1A, encoding p21, shows an
expression pattern being in line with the induction of cellular senescence by knockdown.
The expression further increased by the combination of SAL and ERRFI1 knockdown
(Figure 7B). Recently, it was shown that the cell cycle inhibitor p15INK4b mediates SAL-
induced cellular senescence [9]. To analyze whether MIG6 also regulates the expression
of this factor, knockdown cells were analyzed. Upon SAL treatment, the expression of
CDKN2B mRNA, encoding p15INK4b, was enhanced and further upregulated in the ERRFI1
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knockdown cells (Figure 7C). Accordingly, at protein level p15INK4b is potently enhanced
in the SAL-treated knockdown cells (Figure 7D).
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Figure 6. siRNA mediated knockdown of ERRFI1 decreases phospho-p-Rb (pp-Rb) and enhances
p-AKT and p-S6 levels. siERRFI1 knockdown LNCaP cells treated for 72 h were analyzed for changes
in pRb, AKT and S6 levels using Western blotting. siControl (siC) served as transfection control.
Upper numbers indicate the fold-change of protein level relative to the particular treatment in
transfected control cells. Lower numbers indicate a fold-change of protein levels relative to solvent
control DMSO.
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Taken together, these data indicate that MIG6 regulates the key factors associated with
and mediating induction of cellular senescence by SAL treatment.

4. Discussion and Conclusions

SAL treatment induces cellular senescence in PCa cells. Treatment with AKTi abro-
gates SAL-induced cellular senescence, indicating that SAL-induced cellular senescence
is mediated in part by non-genomic signaling. SAL treatment induces AR-AKT signaling
pathway. MIG6 is known as the mitogen-inducible gene and is mainly known for its feed-
back inhibitor function of ERBB-2 mitogenic and transforming signals indicating oncogenic
function [18–20]. However, MIG6 also exhibits tumor suppressor activity presumably in a
cell type and context-dependent manner [21–23]. In line with this, both MIG6-mediated
inhibition and stimulation of AKT phosphorylation were reported [24]. In endometrial
epithelial cells MIG6 suppresses proliferation by inhibiting p-AKT [25]. MIG6 expression
decreased migration and invasion of MEK-inhibited mutant NRAS melanoma, especially
in response to epidermal growth factor stimulation, also indicating a tumor suppressive
role in other cancers [26].

Since inhibition of AKT reduced SAL-mediated induction of cellular senescence in
PCa cells, it indicates that AKT-signaling pathway is partly essential for SAL-mediated
induction of cellular senescence [8,9]. Interestingly, the knockdown of ERRFI1 induces
cellular senescence as well as the levels of p-AKT and downstream target p-S6, suggesting
an activation of AKT-signaling by knockdown. This is in line with the suggestion that SAL
increases p-AKT levels and downstream AKT signaling in order to enhance a pro-survival
pathway and to induce cellular senescence [7,27]. The knockdown of ERRFI1 further
increased SAL-mediated induction of cellular senescence but reduced the fold induction
of cellular senescence compared to control transfected cells. The knockdown experiments
suggest that MIG6 inhibits AKT phosphorylation and represses the expression of p15INK4b,
in order to suppress the induction of cellular senescence by SAL. This may suggest that
the knockdown of ERRFl1 causes attenuation of the increased number of SA-Gal positive
cells when compared to the increase upon SAL treatment in shLuc cells, and therefore,
MIG6 might be involved in the SAL inhibition of tumor progression. These findings also
suggest that SAL treatment enhances in addition to p-AKT levels, MIG6 expression. MIG6
subsequently represses phosphorylation of AKT. The data suggest that SAL treatment
induces, through MIG6, a negative feed-back loop to reduce p-AKT levels.

In line with our findings, Mig-6 was shown to be upregulated during the oncogene-
induced senescence process and overexpressing of Mig-6 enhances cellular senescence
levels in human embryonic lung diploid fibroblast (2BS cells), whereas knockdown of
Mig-6 delayed the initiation of Ras-induced cellular senescence [28,29]. Also, it was shown
that overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early
passage of human diploid lung fibroblasts (WI-38 cells). Notably, the induction of ERRFI1
mRNA and recruitment of AR by SAL was recently also described for VCaP cells [30].
Furthermore, SAL was shown to enhance ERRFI1 mRNA levels in patient-derived mouse
xenografts treated with vehicle or high-dose androgen [31] (supplemental Figure S6). Based
on the high degree of tumor heterogeneity of PCa [27], a generalized conclusion cannot be
drawn. Therefore, further experiments using different PCa cell lines have to be performed
to get more insights into the pathways activated by SAL treatment using in the BAT therapy.

Taken together, these results suggest that MIG6 induced by genomic AR signaling
regulates AKT non-genomic AR signaling in LNCaP cells thus integrating the genomic and
non-genomic androgen response.
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in patient-derived xenografts using the LuCaP 35CR model system.
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