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LETTER TO TH E JOURNAL

Integrating spatial transcriptomics and single-cell RNA-seq
dissects immune microenvironment in fatty liver
regeneration

Dear Editor,
Liver zonal regeneration in healthy states involves

a dynamic interplay between parenchymal and non-
parenchymal cells, whereas fatty liver chronicity dis-
rupts immune-niche coordination, altering intercellular
crosstalk.1,2 While single-cell technologies resolve cellular
heterogeneity, they often overlook spatial regulation of cel-
lular functions. We performed PHx (partial hepatectomy)
on healthy mice and mice on a high-fat diet, and sam-
pling was performed on postoperative days 0, 2, 4, and 6.
Our study integrates spatial transcriptomics with single-
cell profiling, bulk RNA-seq, and smFISH to construct a
spatiotemporal atlas of liver regeneration post-PHx.
We constructed single-cellmaps (105 442 cells after qual-

ity control) and spatial maps (25 995 points) depicting
the dynamics of liver regeneration after hepatectomy in
normal and fatty livers (Figure 1A,B). Batch-effect-free
integration (Figure S1A–C) confirmed impaired ecolog-
ical niche coordination in the fatty microenvironment.
Clustering identified 14 major cell types (annotated by lit-
erature calibration markers; Figure 1C; Table S1), in which
Kupffer/endothelial cells—key regenerative mediators—
were reduced in the fatty liver state and parenchymal cells
(hepatocytes/BECs) were diminished (Figure 1D; Figure
S1B).3,4 Spatial validation confirmed lipid-laden in the fatty
model (Figure 1E). The temporal analysis highlighted a
different immune response: fatty livers exhibited an early
neutrophil/monocyte surge at day 2 (Figure S1D), in con-
trast to the 48 h regeneration peak in normal livers.5 These
data establish a spatiotemporal map that identifies fatty
liver-specific defects in parenchymal-immune crosstalk
and delayed regenerative activation.
Meanwhile, spatial mapping validated the classical 1, 2,

and 3 zonationmarkers (Sds/Igfbp2/Oat; Figure 1E–G) and
identified 7 molecular niches after PHx (Figure S1E–H).6–8
To further characterize the features of each molecular
niche, we performed differential analysis to identify the
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representative markers (Table S2). Niche 2 and niche
1/6 expressed Cyp2f2/Sds and Cyp2e1/Oat, respectively,
whereas midlobular niche 3/4 was enriched in Igfbp2.6
The molecular niches might be representative of the spa-
tial structure (Figure 2A,C). Spatial projection confirmed
niche-structure alignment: the zonal structure remains
clear and significant in different disease states and at
different points in time (Figure 2B). Pathway analysis
showed attenuated Wnt activation (Figure 2E,F) and simi-
larly attenuated TGF-β inhibition (Figure S2A,B) in fatty
liver compared with normal liver.9,10 Single-cell profil-
ing showed that regeneration of hepatocytes in the fatty
liver was delayed—Wnt signalling and proliferative activ-
ity peaked on day 4, whereas in the normal group, it
peaked on day 2 (Figure 2D,G; Figure S2C,D). This tem-
poral variation was also confirmed by bulk RNA-seq and
western blot results of cell cycle markers such as Pcna
(Figure 2H,I). These data establish that fatty liver retains
regenerative capacity but with impaired spatiotemporal
coordination, evidenced by disorganized niche architec-
ture, desynchronized Wnt/TGF-β signalling, and delayed
proliferation kinetics.
We integrated single-cell data from hepatocytes and

cholangiocytes and noted a specific subpopulation,
Vim+Cd44+ interface hepatocytes (Figure 3A). In the fatty
state, interface hepatocytes had an enhanced proliferative
capacity compared with other hepatocytes. However,
Hippo/Wnt signalling remained strong in the normal
state (Figure 3B,C). Spatial mapping with smFISH showed
significant enrichment of Vim+Cd44+ interface hepa-
tocytes in fatty liver at the peak of regeneration (day 4,
Figures 3D, S3A–D). These interface cells showed regional
redistribution: at the peak of normal regeneration (day
2) they were enriched in zone 3, whereas at the peak of
fatty state regeneration (day 4) they were enriched in
zone 1 (Figure 3E). Fatty liver is less regenerative, and
Vim+Cd44+ interface hepatocytes may be a compensatory
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F IGURE 1 Spatiotemporal multi-omic profiling of liver regeneration in normal and fatty liver after PHx. (A) Schematic overview of the
strategy integrating scRNA-seq, spatial transcriptome and bulk RNA sequencing in this study. (B) UMAP of 14 subtypes using scRNA-seq data
across all mouse samples after quality control (n = 105 442 cells). (C) Dot plot of representative markers for annotation of major types using
single-cell data (Also see Table S1). (D) Cell composition of major types in normal and fatty liver after PHx. (E) Spatiotemporal
characterization of mouse liver regeneration for raw H&E image (upper panel) and representative zonal genes (lower panel). (F, G) Spatial
validation of three zonal genes stained with Sds (Zone 1, yellow), Igfbp2 (Zone 2, cyan), and Oat (Zone 3, magenta) by smFISH at normal and
fatty status. Scale bars, 50 µm. BEC, biliary epithelial cell; CV, central vein; HSC, hepatic stellate cell; NK, natural killer cell; DC, dendritic
cell; PHx, partial hepatectomy; PV, portal vein.
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F IGURE 2 Liver regeneration is delayed in fatty liver after PHx. (A) UMAP of molecular niches integrating spots across all slides (left
panel). Representative zonal markers of Zone 1 (Sds), Zone 2 (Igfbp2) and Zone 3 (Oat; right panel). (B) Representative slides mapping
molecular niches onto raw H&E images. The right black blanket in Normal_D2 slide showed Zone 2 region. The middle and right black
blankets in Fatty_D6 slide indicated Zone 3 and Zone 1 regions, separately. (C) Volcano plot of upregulated markers in each molecular niche
labelled with previously reported zonation markers (calculated by FDR using a two-sided Wilcoxon rank-sum test). The y-axis is the fold
change of genes in each molecular niche. The activity of the Cell cycle was shown in AUCell density in normal (D) and fatty (G) status at
different time points after PHx. (E) General activity of Wnt pathway of spots across all slides at different time points and status and (F)
calculated by AddModuleScore method in Seurat ((p-value, two-sided Wilcoxon rank-sum test). (H) Dynamic expression of two representative
proliferation markers (Pcna and Wnt9b) by RNA-seq with normalized value. (I) Immunoblots of each group of Pcna at different time points in
normal and fatty states, and their quantitative statistical plots. Tubulin serves as a loading control. n = 3 independent biological replicates.
The data are presented as the means ± SD (n = 3). *, p < .05; **, p < .01; ***, p < .001;****, p < .0001. Scale bars, 50 µm. PHx, partial
hepatectomy; UMAP, uniform manifold approximation and projection.
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F IGURE 3 Interface hepatocyte’s initial oncofetal genes reprogram fatty liver regeneration. (A) UMAP visualization of hepatocytes and
BECs identifies Cd44+Vim+ interface cells, coloured by cell type (left panel) and expression intensity (right panel). (B) Cell proliferation
ability of interface cell and hepatocytes among normal (left panel) and fatty status (right panel). The AUCell method is used to calculate the
KEGG cell cycle score. (C) Representative pathways of liver regeneration among normal and fatty status profiling by GSEA method. (D)
smFISH of interface cell. Cell nuclei are stained with DAPI (blue) and early hematopoietic markers Cd44 (red), and Vim (grey). Scale bars are
indicated in the figures. (E) Scaled median compositions of major cell types within each Zonation. Asterisks indicate the increased
composition of a cell type in a niche compared with other niches (one-sided Wilcoxon rank sum test, adjusted p <.05). BEC, biliary epithelial
cell; GSEA, gene set enrichment analysis; PHx, partial hepatectomy; UMAP, uniform manifold approximation and projection.
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F IGURE 4 Excessive adaptive immune activation and inflammatory response in microenvironment hamper regeneration in fatty liver
after PHx. UMAP visualization of T cell, coloured by subtypes (A), groups and timepoints (B), and phenotype (C). The phenotypes are
calculated by the AddModuleScore method in Seurat and projected onto UMAP. (D) Shifts of T cells fate among normal (upper panel) and
fatty status (lower panel) by CellRank algorithm. (E) Scaled median compositions of T cell subgroups within each Zonation (also see Figure
S3E). Asterisks indicate the increased composition of a cell type in a niche compared with other niches (one-sided Wilcoxon rank sum test,
adjusted p < .05). (F) Summary: Regenerative capacity is impaired in fatty liver and hepatocytes may require an intermediate state (termed
Cd44+Vim+ interface cells) to maintain function. CD4 Treg insufficiency and day 2 Ccl5+ CD8 T cell accumulation drive immune
dysregulation, disrupting fatty liver regeneration. Nomination of Mup11+ LSEC located in Zone 1 potentially promotes liver regeneration.
PHx, partial hepatectomy; UMAP, uniform manifold approximation and projection.
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response to stress, acting as a transient intermediate to
compensate for impaired regenerative signalling.
Single-cell analysis identified 12 T cell subsets and char-

acterized the cytotoxic, immunosuppressive, and inflam-
matory capacities of the T subpopulations (Figure 4A–C),
with Foxp3+Ctla4+CD4+ Tregs and Ccl5+CD8+ T cells
exhibiting dynamic regulation during regeneration. In nor-
mal liver, both subsets decreased at day 2 (pro-regeneration
phase) before rebounding post-repair, while fatty liver dis-
played dysregulation with early CD8+ T cell accumulation
and insufficient Treg expansion (Figure 4D). Compared
with the other timepoint, the Cd4+ Tregs specifically re-
located itself to Zone 3 to conduct the immunosuppressive
function, while Ccl5+ Cd8+ T seemed to be relatively
sparse over Zone 2 and Zone 3 to harness the regenera-
tion at both regenerations’ turning point (Day 2 in normal
status, Day 4 in fatty status, Figure 4E, Figure S3E–G).
Moreover, the single-cell analysis identified six endothe-

lial subtypes (Figure S4A,B) with zonal specialization. The
endothelial cells were well located with Kit+ LSCEs and
Bmp4+ LVECs located in Zone 3, Mup11+ LSECs and
Ccl21a+ LVECs located in Zone 1, while Ccr1+ LSECs and
Mki67+ LSEC located between Zone 1 and Zone 3 (Figure
S4C,D). Zone 3 endothelial cells were enhanced in regen-
erative pathways such as PI3K-Akt and Hippo signalling
pathways (Figure S4E). We noticed the immune suppres-
sive function of Mup11+ LSCEs showed a similar trend
to liver regeneration ability, indicating this LSCE might
be another essential endothelial cell in liver regeneration
(Figure S4F).
Myeloid profiling identified 13 subsets (Figure S5A,B).

We focused on a subgroup termedAce+monocytes (Figure
S5C). This subgroup is more abundant on day 2 in normal
status and on day 4 in fatty status, suggesting that it may
have some contribution to liver regeneration (Figure S5D).
smFISH validated the results (Figure S5F–I). We explore
the function of Ace+ monocytes showing this subtype is
mainly involved in injury repair functions including focal
adhesion, platelet activation, and phagocytosis to remove
dead cells and avoid immune response (Figure S5E).
In summary, the fatty liver shows a delay in regeneration

compared with normal liver after PHx. The intermediate
fetal state (Vim+Cd44+ interface hepatocytes), however,
may be an important source of fatty liver regeneration.
The microenvironment of fatty liver was reshaped to ham-
per the liver regeneration with excessive immune function
by insufficient Cd4+ Tregs and enhanced injury response
by early accumulated Ccl5+ Cd8+ T at day 2. We also
identified several subgroups that potentially promote liver
regeneration such as Mup11+ LSEC located in Zone 1
and Ace+ monocyte more enriched at liver regenera-
tion turning point (Figure 4F). Spatial positioning dic-
tates niche-specific cellular functions across parenchymal

and nonparenchymal compartments. Our spatiotemporal
mapping of fatty liver microenvironments reveals thera-
peutic targets for cell-type or location-based regenerative
strategies.
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