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Infections caused by antibiotic-resistant bacteria have become one of the most serious

global public health crises. Early detection and effective treatment can effectively prevent

deterioration and further spreading of the bacterial infections. Therefore, there is an urgent

need for time-saving diagnosis as well as therapeutically potent therapy approaches.

Development of nanomedicine has provided more choices for detection and therapy

of bacterial infections. Ultrasmall gold nanoclusters (Au NCs) are emerging as potential

antibacterial agents and have drawn intense attention in the biomedical fields owing

to their excellent biocompatibility and unusual physicochemical properties. Recent

significant efforts have shown that these versatile Au NCs also have great application

potential in the selective detection of bacteria and infection treatment. In this review, we

will provide an overview of research progress on the development of versatile Au NCs for

bacterial detection and infection treatment, and the mechanisms of action of designed

diagnostic and therapeutic agents will be highlighted. Based on these cases, we have

briefly discussed the current issues and perspective of Au NCs for bacterial detection

and infection treatment applications.

Keywords: gold nanoclusters, photoluminescence, bacteria detection, antibacterial activity, multidrug-resistant

bacteria

INTRODUCTION

The prevalence of pathogenic bacteria, especially multidrug-resistant bacteria, has become a serious
global health crisis (Blair et al., 2015). Conventional antibiotics often appear to be incapable of
responding to the prevalence of multidrug-resistant bacteria, either ineffective or inducing the
emergence of new resistance after a period of use (Huh and Kwon, 2011). In particular, the
emergence of ESKAPE superbugs even worsens the situation (Boucher et al., 2009). According
to a statement from the Centers for Disease Control and Prevention, the world is on the verge
of entering the “post-antibiotic era,” one where the death toll from bacterial infections than
from cancer (Gupta et al., 2019). Therefore, there is an urgent need to develop alternative
therapeutically effective antibacterial agents that are powerful and cost-effective enough to fight
multidrug-resistant bacterial infections.

In addition to the treatment, the effective diagnosis of multidrug-resistant bacterial infections is
also a huge challenge. Accurate and early detection of pathogenic bacteria is critical to identify
infectious disease. Current techniques to detect bacteria include culture-dependent method,
biochemical assays, PCR and sequencing, which are expensive and time-consuming (Lazcka et al.,
2007; Ray et al., 2012; Yuan et al., 2018; Li D. et al., 2019). The lack of timely diagnosis has further
worsened the condition of many patients with bacterial infections (Palestro and Love, 2009).
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SCHEME 1 | An overview of Au NCs-based bacterial infection diagnostic and therapeutic strategies.

To overcome the drawbacks of conventional infection
diagnostic and therapeutic strategies, various engineered
nanomaterials have been used for diagnosis and treatment
of bacterial infections (Disney et al., 2004; Kulagina et al.,
2005; Yuan et al., 2014, 2018; Mahlapuu et al., 2016). Among
these alternative agents, ultrasmall metal nanoclusters, in
particular Au NCs, have attracted significant attention for
diagnosis and treatment of bacterial infections. Gold-based
NCs have intrinsic advantages such as facile syntheses,
extremely large surface area, excellent biocompatibility,
strong photoluminescence, high photostability, and easy
functionalization with other biomolecules. Benefits from these
excellent physicochemical properties, Au NCs have great
promise in biomedical applications, such as sensing, imaging,
and diseases treatment (Chen L. Y. et al., 2015; Zheng Y. et al.,
2017; Hu et al., 2018; Chen et al., 2019). The antibacterial
activity of Au NCs has been also innovatively explored over
the past few years (Zheng K. et al., 2017; Zheng et al., 2018a,c;
Xie et al., 2018). Apart from antibacterial activity, unusual
photoluminescence properties of Au NCs also provide potential
applications for their use as detection/imaging agents for
bacterial pathogens (Chan and Chen, 2012; Zheng et al., 2018d;
Li D. et al., 2019). Obviously, both diagnosis and treatment

are essential to control the prevalence of multidrug-resistant
bacterial infections. Moreover, the in-depth understanding of
the fundamental principles of diagnosis and treatment plays

a key role in designing bacterial biosensors and antimicrobial
agents. In this review, we will summarize the efforts of Au
NCs for diagnosis and treatment of bacterial infections in the

recent decade as Au NCs may provide solutions to address these
intractable challenges for bacterial infections (Scheme 1). Based
on the overview of Au NCs, we firstly summarize the recent
progress of Au NCs for bacterial detection, containing the probes
design, sensitivity, and selectivity of miscellaneous gold-based
NCs. Then we discuss the antibacterial activity on basis of the
mechanisms by different Au NCs. Physicochemical properties of
Au NCs such as surface chemistry, photoluminescence, and size
that affect the antibacterial behavior or detection performance
are analyzed to offer insight on the further rational design of
new diagnostic and therapeutic agents. Finally, a brief discussion

of current problems and future developments of Au NCs for
diagnosis and treatment of bacterial infections is provided.

ABOUT Au NCs

Au NCs refer to gold species containing a few to several
hundred Au atoms, with their dimensions below a critical size
for electronic energy quantization. According to the free-electron
model, the critical size for Au is ∼2 nm, which is comparable
to the Fermi wavelength of electrons (Zhang and Wang, 2014;
Yang et al., 2015). In this size regime, the strong quantum
confinement of free electrons leads to the discrete electronic
states and thus Au NCs exhibit molecule-like properties, such
as HOMO-LUMO transition, large Stokes shift, and strong
photoluminescence (Goswami et al., 2016; Song et al., 2016). Au
NCs show dramatically different optical and chemical properties
from those of larger gold nanoparticles (NPs). For example, Au
NCs do not possess surface plasmon resonance (SPR) absorption
in the visible region but exhibit apparent fluorescence emission
in the near-infrared (NIR) to visible region (Zheng Y. et al.,
2017). In addition to ultrasmall size, many studies have also
revealed that the optical properties of Au NCs highly depend on
their structures, oxidation states, and surface ligands as well as
environmental parameters such as temperature, pH, and ionic
strength (Zheng Y. et al., 2017; Chen et al., 2019). As a bridge
between single Au atom and plasmonic NPs, Au NCs have
received increasing attention in many fields, including bacterial
detection described in the following sections. Up to now, several
reviews have been dedicated to the ultrasmall Au NCs (Luo et al.,
2014; Jin et al., 2016; Zheng Y. et al., 2017; Chen et al., 2019).

To prepare stable and high quality Au NCs, z, polymers,
peptides, DNA, and proteins that act as capping agents are
required when using various synthetic methods, including
chemical reduction, photoreduction, electroreduction, and
chemical etching (Zheng Y. et al., 2017). To further benefit
and broaden applications of Au NCs, it is necessary for further
functionalization with surface ligands (e.g., folic acid, proteins)
on Au NCs, commonly via ligand exchange, bioconjugation, and
non-covalent interaction (Jin et al., 2016; Song et al., 2016; Zheng
Y. et al., 2017).
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In addition to the advantages of easy preparation and unique
physicochemical properties, the excellent biocompatibility is also
the reason why Au NCs have received widespread attention,
especially in biomedical fields. Indeed, as the “noblest” metals,
gold, is inert, highly stable, and would not easily dissociate into
ions (Hammer and Norskov, 1995). These features contribute
to the widely accepted notion of Au NPs as being highly
biocompatible in mammalian system, both in vitro and in vivo
(Connor et al., 2005; Lewinski et al., 2008). This biocompatibility
in mammalian cells still remains when the size locates in the
range of NCs (Pan et al., 2007; Li et al., 2016). For example,
utilizing the in vitromultiple cell models, no cytotoxic effect was
observed on the cells exposed with Au NCs (Zheng et al., 2018b).
Conversely, they were found to improve cell metabolism and

overall cell proliferation. In animal studies, they show improved
tumor uptake and high renal clearance (Zhang et al., 2012; Liang

et al., 2017; Yu et al., 2019). Interestingly, they showed significant

cytotoxicity against prokaryotic bacterial cells as opposed to
eukaryotic mammalian cells. This selective cytotoxicity may be

resulted from the limitations of lysosomal phagocytosis and
mitochondrial obstacles in mammalian cells (Marrache and
Dhar, 2012). Note that it is always critical to tightly control
the surface properties of Au NCs as they can potentially affect
the toxicity.

BACTERIAL DETECTION WITH
GOLD-BASED NCs

Label-Free Detection of Bacteria
Depending on the specific fluorescence changes caused by
bacterial cells, photoluminescent gold-based NCs can be
employed for label-free fluorescence detection of bacteria. For
example, Chan and Chen found that human serum albumin
protected gold nanoclusters (HSA-Au NCs) can act as selective
fluorescent probes for S. aureus and methicillin-resistant S.
aureus (MRSA) (Chan and Chen, 2012). HSA-Au NCs can bind
to S. aureus and MRSA with high specificity, resulting in a
significant fluorescence enhancement (Figure 1A). In another

FIGURE 1 | (A) Luminescent HSA-Au NCs as selective probes for Staphylococcus aureus and MRSA. Reproduced from Chan and Chen (2012) with permission from

American Chemical Society. (B) Schematic illustration of the working principle for the Cu2+ mediated on-off-on Au NC-based fluorescent probe for rapid Escherichia

coli detection. Reproduced from Yan et al. (2018) with permission from American Chemical Society. (C) Simplified scheme of pH controllable adherence of CP-GNC to

E. coli cells. Specially, CP-GNC was fully attached to the cells at pH 5.2, whereas all the CP-GNC detached from the surface of E. coli cells at pH 7.4. (D) Bacterial cells

can be efficiently labeled and form cell clusters using CP-GNC. Reproduced from Liu P. et al. (2015) with permission from Wiley-VCH Verlag & Co. KGaA, Weinheim.
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study, Yan and coworkers designed an on-off-on probe based
fluorescent AuNC for rapid and selective detection of Escherichia
coli, by hijacking the unique Cu2+-binding and redox pathways
of E. coil to recover the photoluminescence of Au NC from
copper-caused quenching (Figure 1B) (Yan et al., 2018). Based
on this fluorescent probe, it can successfully allow the rapid
determination and detection of E. coli in artificially contaminated
water with trace concentrations of bacteria (89 CFU/mL) within
30min, showing great application prospects for rapid point-of-
care analysis of pathogenic E. coli in environment monitoring
and clinical diagnosis.

On the other hand, pH-responsive Au NCs can control the
labeling of bacterial cells through pH regulation. Liu et al.
developed a new method for the preparation of cross-linked
protein (bovine serum albumin, BSA) with Au NCs (CP-GNC)
(Liu P. et al., 2015). BSA is a typical amphoteric electrolyte,
which means the surface net charges of CP-GNC can be adjusted
by environmental pH due to the gain or loss of protons. Since
bacterial cells are mainly negatively charged, the adhesion to and
release of CP-GNC from E. coli cells can be easily controlled
via modulating the pH (Figure 1C). Notably, CP-GNC-based
fluorescent probe provides a solution for the label-free detection
of E. coli. The confocal microscopy images showed that bacteria
were efficiently labeled by this probe and formed cell clusters at
pH 5.2 (Figure 1D). In another work, the antimicrobial peptide
stabilized Au NCs also exhibits pH-responsive bacterial binding
effect, which were useful for the fluorescence detection and
imaging of bacterial infection (Pranantyo et al., 2019). Our
recent study showed that the photoluminescence intensity of
thiolated Au NCs can be significantly enhanced by silver ion
doping (Zheng et al., 2018d). The strong photoluminescence of
AuAg NCs (Ag-doped Au NCs) can be selectively and rapidly
quenched by Acinetobacter baumannii via agglomeration of
NCs, which allows the label-free detection of A. baumannii
with a limit of detection (LOD) of 2.3 × 103 colony forming
unit (CFU)/mL (Figure 2). This study may provide a rapidly
alternative strategy for the analysis of A. baumannii in clinical
samples. Nevertheless, further study is still essential to produce
an updated version of these materials with high selectivity and
sensitivity toward specific bacterial species by combining bacteria
recognizing components.

Recognition Through Molecular Motifs
The main drawback of using fluorescence Au NCs for bacterial
detection is that their selectivity is generally non-ideal (Chen
et al., 2019). To significantly improve the selectivity and
efficiency, the common strategy is to decorate the clusters with
ligands that recognize receptors on bacterial cells. For instance,
Mukherji and coworkers functionalized Au NCs with acyl
homoserine lactone (AHL) quorum sensing signal molecules that
could recognize the Lux-R family regulators in E. coli (Figure 3A)
(Mukherji et al., 2013). This decoration allows differentiation
of E. coli from S. aureus suspensions that do not produce
this special receptor. Khlebtsov et al. used highly fluorescent
BSA-capped Au NCs decorated with human antistaphylococcal
immunoglobulin (antiSAlgG) for targeted detection of S. aureus
in bacterial mixtures (Khlebtsov et al., 2015). Compared with

non-specific electrostatic binding of HSA-Au NCs to S. aureus at
pH around 5–6, this biosensor can show an enhanced selectivity
at the physiological pH of 7.4.

Type 1 fimbriae present on the surface of Enterobacteriaceae,
such as E. coil, are responsible for their mannose- and
mannoside-binding active sites (Soto and Hultgren, 1999; Harris
et al., 2001). This family of proteins contains FimA, FimF,
FimG, and FimH, and FimH is uniquely responsible for the
binding to mannose. Mannose-etched Au NCs were used as
special recognizer to develop a simple approach for fluorescence
detection of E. coli (Huang et al., 2009; Tseng et al., 2011). The Au
NCs bind to E. coli through the multivalent interactions between
the NCs and FimH on the bacterial pili of E. coli, resulting
in brightly fluorescent cell clusters (Figure 3B). The fluorescent
signal was linearly proportional to the bacterial concentration,
monitoring the fluorescence changes of Au NCs allowed the
detection of E. coli with a LOD of 150 CFU/mL (Tseng et al.,
2011). In addition, microwave-assistant synthesized mannose-
protected Au NCs are also capable of selectively detecting the
E. coli J96, a urinary tract infection isolate, by binding to FimH
protein expressed on the type 1 pili (Chan et al., 2013). A similar
recognition mechanism was also employed to establish specific
probe for detection of Listeria monocytogenes (Hossein-Nejad-
Ariani et al., 2018).

Besides surface receptors, enzymes such as lysozyme can
recognize bacteria by binding to their specific site on cell
surface (Li D. et al., 2019). Therefore, lysozyme-decorated Au
NCs may be used for specific identification of bacteria. For
instance, a point-of-care detection strategy for analysis bacteria
has been established by using lysozyme-protected Au NCs
that are prepared through a one-pot synthesis and reserved
specific identification capability for E. coli (Liu J. et al., 2015).
Based on the specific recognition, lysozyme-decorated Au NCs
could selectively anchor onto the surface of E. coli, leading to
strong red photoluminescence boost (Figure 3C). This strategy
should be generalizable, and fluorescent Au NCs decorated
with other recognition motifs could also be used to sense
pathogenic bacteria.

To further improve the selectivity and sensitivity of bacterial
detection, dual recognition probes based on fluorescent Au NCs
have also been developed. Song and coworkers developed a
dual recognition approach that integrates DNA aptamer and
antibiotic-based dual recognition units, which enables sensitive
and selective fluorescent detection of S. aureus in presence of
ultrahigh concentrations of other bacteria strains (Figure 4A)
(Cheng et al., 2016). Aptamer-decorated magnetic beads were
used for specific capture of S. aureus. In another work,
vancomycin-stabilized fluorescent Au NCs (Au NCs@Van) were
employed for sensitive quantification of S. aureus with a LOD
of 16 CFU/mL by measuring their photoluminescence intensity.
Indeed, vancomycin can combine with S. aureus by binding onto
terminal D-alanyl-D-alanine residues of N-acetylmuramic acid
and N-acetylglucosamine peptide subunits on the cell wall of the
gram-positive bacteria, which will make the Au NCs adhere to
the surface of S. aureus (Xing et al., 2002; Chung et al., 2011).
Using this strategy, about 70 CFU/mL of S. aureus in complex
samples could be successfully sensed. Relying on vancomycin
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FIGURE 2 | (A) Schematic illustration of the syntheses of AuAg NCs and photoluminescent quenching by Acinetobacter baumannii. (B) The fluorescence of AuAg

NCs was selectively quenched by A. baumannii. The order numbers from 1 to 10 in turn represent the group in the presence of no bacteria (control), Bacillus

mycoides, Staphylococcus aureus, methicillin-resistant S. aureus, Candida albicans, P. aeruginosa, E. coli, vancomycin-resistant Enterococcus faecium,

Saccharomyces cerevisiae, and A. baumannii, respectively. (C) The concentration dependent quenching effect of A. baumannii toward AuAg NCs. Insets: Digital

(Continued)
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FIGURE 2 | photos of AuAg NCs under UV illumination after treatment with different concentrations A. baumannii. (D) Relative fluorescence intensity (I0-I) of AuAg NCs

in contrast to the logarithm of the A. baumannii concentrations. (E) The transmission electron microscopy (TEM) micrographs of photoluminescent AuAg NCs treated

with 1 × 105 CFU/mL A. baumannii demonstrate the bacteria induced agglomeration of NCs. Reproduced from Zheng et al. (2018d) with permission from Elsevier Ltd.

FIGURE 3 | (A) Interaction of the fluorescent probe with bacterial cells: structure of the probe with AHL signal molecules deployed on the surface with lactone and

amide moieties intact (top) and specific binding of AHL head groups to receptor sites in Lux-R regulators within bacteria (bottom). Reproduced from Mukherji et al.

(2013) with permission from American Chemical Society. (B) Visualization of mannose-protected Au NCs (25 nM) in the absence (left) and presence (right) of E. coli

(2.5 × 108 CFU/mL) upon excitation under a hand-held UV lamp (365 nm). Reproduced from Tseng et al. (2011) with permission from Elsevier B.V. (C) Schematic

diagram of the synthesis of the red fluorescent lysozyme-Au NCs and fluorescence enhancement detection of E. coli. Reproduced from Liu J. et al. (2015) with

permission from Elsevier B.V.

and aptamer as dual recognition molecules, Song et al. further
generalized a universal strategy for selective detection of S. aureus
using a dual-recognition motif-based fluorescence resonance
energy transfer (FRET) platform (Figure 4B) (Yu et al., 2017).
Within 30min, by using Au NCs@Van and aptamer-modified Au
NPs as the energy donor and acceptor, respectively, the FRET
signal shows a linear variation with the concentration of S. aureus
in the range from 20 to 108 CFU/mL with a LOD of 10 CFU/mL.
This dual-recognition FRET strategy showed recoveries from
99.00% to the 109.75% for sensing S. aureus in real samples,
which have great application potential in infectious disease
diagnosis and environmental monitoring. In another study,
nanocapsules with antibody-functionalized Au NCs combined
in chitosan (Au NCs@CS) and immunomagnetic NPs were
employed to ultrasensitive recognize E. coliO157:H7 (Figure 4C)
(Cheng et al., 2018). After separation by magnetic fields, E. coli
O157:H7 were isolated attached to the immunomagnetic NPs

and quantified by the fluorescent changes of Au NCs@CS linked

to bacteria.
In addition, a recent study showed that the mimic enzyme

catalytic properties of Au NCs can also be exploited for
colorimetric differentiation of pathogenic bacteria (Xie et al.,

2019). A UV-assisted peroxidase-like Au NC sensor with
an aptamer specific to S. aureus was developed. S. aureus
was attached to the probe, which allows the catalyzed
decomposition of hydrogen peroxide to hydroxyl radicals
( rOH). The substrate 3,3′,5,5′-tetramethylbenzidine (TMB) was
concomitantly oxidized to blue product ox-TMB by rOH. This
colorimetric sensor easily differentiates S. aureus from E. coli
and B. subtilis within 30min, with a LOD of 4 × 102 CFU/mL.
Indeed, nanoenzymes are widely used in analytical chemistry
(Wang et al., 2018; Huang et al., 2019), and the development
of biosensors for the bacterial detection based on Au NC
with mimic enzyme-like catalytic activities has very attractive
application prospects.

Sensor Arrays
To achieve simultaneous detection of multiple bacteria, sensor
arrays based on Au NCs have also been developed. For instance,
Qu and coworkers designed and prepared a bacterial sensor
array based on the integration of HSA-Au NCs, lysozyme (Lyz)-
Au NCs, lactoferrin (Lf)-Au NCs, and vancomycin decorated
HSA-Au NCs (Van-Au NCs) (Figure 5) (Ji et al., 2018). HSA-Au
NCs are selected based on the interaction between the peptide

Frontiers in Chemistry | www.frontiersin.org 6 March 2020 | Volume 8 | Article 181

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tang et al. Gold Nanoclusters for Bacterial Research

FIGURE 4 | (A) Schematic illustrations of (top) one-step preparation of Au NCs@Van and (bottom) determination of S. aureus in mixtures using the aptamer-coated

magnetic beads and Au NCs@Van dual recognition strategy. Reproduced from Cheng et al. (2016) with permission from American Chemical Society. (B) Illustration of

the vancomycin and aptamer dual-recognition molecule based FRET assay platform for S. aureus. Reproduced from Yu et al. (2017) with permission from American

Chemical Society. (C) Illustration of the immunoassay of E. coli O157:H7 using Au NCs@CS nanocapsules and Au NCs as labels. Reproduced from Cheng et al.

(2018) with permission from The Royal Society of Chemistry.

motifs on the surface of HSA and the bacterial cell wall (Chan
and Chen, 2012). Lysozyme can recognize and kill bacteria
by binding to the cell surface polysaccharide (Vocadlo et al.,
2001). Lf-Au NCs can serve as a probe since many bacteria
can express lactoferrin receptors with high affinity to lactoferrin
(Xavier et al., 2010). The strong affinity of Van to D-alanyl-D-
alanine dipeptide on bacterial cell walls endows Van-Au NCs
with a high binding affinity to both gram-positive and gram-
negative bacteria (Xing et al., 2002; Chung et al., 2011). The subtle
changes in the physicochemical properties on different bacterial
surfaces would induce different interactions with the probes in
the sensor array. Based on the sensor array, six types of bacteria,
including Alcaligenes faecalis, B. subtilis, S. aureus, MRSA, E.
coli, and kanamycin-resistant E. coli were distinguished on the
sensor array. Similarly, a bacterial sensor array based onmetal ion
modified Au NCs was established (Wu et al., 2018). In another
study, Yang and coworkers fabricated a sensor array based on Ag-
Au alloy NC-Au NP composite for the discrimination of sulfur-
oxidizing bacteria (Yang et al., 2019). The non-sulfur (S. aureus
and E. coli) and sulfur-oxidizing bacteria (Citreicella thiooxidans,
Thiobacimonas profunda, and Acidithiobacillus caldus) were well
distinguished at a level of OD600 = 0.005. In summary, the
development of these sensor arrays might offer new perspectives
for analyzing intricate bacterial infections.

As mentioned above, Au NCs-based bacterial biosensors
may provide a promising alternative platform for detection

and discrimination of pathogenic bacteria. However, there are
still great challenges that limited their practical applications.
First of all, the stability of Au NCs is essential in their
practical use. In general, the as-synthesized Au NCs are not
comprised of a single component, and they are usually a
complicated mixture system of multiple Au species, leading
to the bacterial biosensors based on Au NCs are less
reproducible. To overcome this problem, atomic precision
controlled synthesis of Au NCs could be utilized to improve
their reproducibility. Secondly, the detection selectivity should be
further improved to work in the biomatrices. Functionalization
of fluorescent Au NCs with specific recognition motifs via
surface chemistry may be helpful to address this problem.
In addition, fundamental understanding of the fluorescence
mechanisms of Au NCs is vital to develop bacterial sensors.
In this aspect, understanding of their photoluminescence
mechanisms such as FRET will help to optimize the detection
strategy (Yu et al., 2017).

Au NCs AS ANTIBACTERIAL AGENTS

In addition to bacterial detection, ultrasmall Au NCs are also
developed as an innovative nanomedicine for the treatment
of multidrug-resistant bacterial infections in recent years. The
antibacterial activity of these Au NCs usually results from
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FIGURE 5 | Schematic illustration of protein-Au NC-based fluorescence sensor array for discrimination of various bacteria. (A) The fluorescence intensity of

protein-Au NCs was significantly reduced in the presence of bacteria. (B) A schematic fluorescence pattern generated from the different responses of the protein-Au

NCs probes toward bacteria. Reproduced from Ji et al. (2018) with permission from Wiley-VCH Verlag & Co. KGaA, Weinheim.

the antibiotics delivery, generation of reactive oxygen species
(ROS), and damage of cell membrane and cellular contents.
Usually the antibacterial activity is affected by the size and
surface chemistry of NCs. In this section, we will summarize
in details the progress made by Au NCs in the treatment of
bacterial infections and classify them into different antibacterial
systems based on the fundamental components of Au NCs,
including antibiotic-Au NCs systems, antimicrobial peptide-Au
NCs systems, small molecule-Au NCs systems, macromolecule-
Au NCs systems, and Au NCs-containing combination
systems (Table 1).

Antibiotic-Au NCs Systems
The abuse of antibiotics and low utilization rate are one of
the main causes of antibiotic resistance (Li X. et al., 2019).
One feasible solution for reducing the abuse of antibiotics and
improving the effect involves the use of assembled structures
that have adjustable antibacterial activity. As a versatile platform,
Au NCs can be widely used in antibiotic loading to improve
internalization of antibiotics into bacteria, thereby improving
the efficacy of antibiotics. In addition, some Au NCs possess
inherent antibacterial activity, and may exert certain polyvalent
and synergistic effects through antibiotic loading to enhance the
antibacterial activity of nanosystems (Zhang et al., 2014; Zheng
Y. et al., 2019). For example, Kalita et al. developed a potent
antibacterial hybrid prepared through surface functionalization
of lysozyme-capped Au NCs (Lys-Au NCs) with β-lactam

antibiotic ampicillin (Lys-Au NCs-Amp) (Kalita et al., 2018).
The antibacterial hybrid not only reverses the MRSA resistance
toward ampicillin but also exhibits enhanced antimicrobial
activity against non-resistant bacterial strains. With the help of
cis-2-decenoic acid, Lys-AuNCs-Amp can also inhibit theMRSA
persister, a dormant body of bacteria. This antibacterial hybrid
may eradicate MRSA infections from difficult-to-treat diabetic
wound of rat and accelerate the healing process. Antibacterial
mechanism studies have shown that the antibiotic effect of
Lys-Au NCs-Amp against MRSA and its persister is due to
the increased concentration of ampicillin at the action site,
the multivalent presentation and the enhanced permeation of
ampicillin via lysozyme-mediated cell lysis. In another study,
the self-regulated vancomycin loading and release capabilities of
custom-designed pentapeptide-capped Au NCs (Pep-Au NCs)
were developed on basis of the strong binding affinity of
vancomycin with D-alanine-D-alanine termini (Li et al., 2018).
The self-assembly Au NCs super-structure can spontaneously
release vancomycin upon exposure to gram-positive bacteria due
to the stronger binding affinity of vancomycin with bacteria
than that with Pep-Au NCs. Note that the formation of this
structure does not mitigate the efficacy of the vancomycin. The
on-demand drug release of Pep-Au NCs avoids the systemic
distribution of vancomycin and reduces the potential side effect.
Besides as a cargo, vancomycin can also be directly used as
a reducing agent and template to fabricate the water-soluble,
monodispersed Au NC (Liang et al., 2018), which have excellent
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TABLE 1 | Antibacterial applications of Au NCs.

Formulations Target pathogen Antibacterial mechanism References

ANTIBIOTIC-Au NCs SYSTEMS

Cefradine-labeled Au8 clusters E. coli Increased cefradine bioavailability Khandelwal et al., 2015

Vancomycin-loaded Pep-Au NCs S. aureus Increased antibacterial activity by drug encapsulation;

spontaneous released vancomycin

Li et al., 2018

Bacitracin templated Au NCs S. aureus ROS production; prolonged bacitracin release Wang S. et al., 2019

Lys-Au NCs-Amp MRSA and its persister Increased concentration of ampicillin at the action site;

the multivalent presentation and the enhanced

permeation of ampicillin via lysozyme-induced cell lysis

Kalita et al., 2018

Vancomycin templated Au NCs E. coli; S. aureus Increased vancomycin bioavailability Liang et al., 2018

Chloramphenicol loaded Au NCs E. coli Prolonged drug release Liu P. et al., 2015

ANTIMICROBIAL PEPTIDE-Au NCs SYSTEMS

SFT/DT-Au NDs Gram-negative bacteria;

Gram-positive bacteria

Synergistic effect; bacterial membrane disruption Chen W. Y. et al., 2015

Cysteine-terminated antimicrobial peptide

templated Au NCs

Gram-negative bacteria;

Gram-positive bacteria

pH-responsive charge reversal; disruption of the

bacterial membrane

Pranantyo et al., 2019

Dap-Au NCs MRSA Synergistic effect; bacterial membrane disruption; ROS

production; DNA damage

Zheng Y. et al., 2019

SMALL MOLECULE-Au NCs SYSTEMS

Cys-Au NCs E. coli ROS production Chang et al., 2019

Au25(MHA)18 Gram-negative bacteria;

Gram-positive bacteria

Bacterial membrane disruption; ROS production;

induced metabolic imbalance

Zheng K. et al., 2017

thiolated Au NCs S. aureus ROS production; bacterial membrane disruption Zheng et al., 2018a

AuDAMP Gram-negative bacteria;

Gram-positive bacteria

Bacterial membrane disruption; ROS production; DNA

damage

Zheng et al., 2018c

Man-Au NDs E. coli Agglutination Tseng et al., 2011

AuMS Gram-negative bacteria;

Gram-positive bacteria

Bacterial membrane disruption; biofilm inhibition Boda et al., 2015

QA-Au NCs MRSA ROS production; bacterial membrane disruption; ATP

metabolic disturbance

Xie et al., 2018

MACROMOLECULE-Au NCs SYSTEMS

antiSAIgG-BSA- PS- Au NCs S. aureus Photodynamic inactivation Khlebtsov et al., 2015

lysozyme-Au NCs A. baumannii; E. faecalis Increased bioavailability Chen et al., 2010

DPAu/AMD E. coli; S. aureus Increased bioavailability; prolonged drug release Setyawati et al., 2014

dendrimer-Au NCs Gram-negative bacteria Retard endotoxin activity Liao et al., 2018

Au NCs-CONTAINING COMBINATION SYSTEMS

TiO2/graphene/Au NC nanocomposites E. coli; S. aureus Enhanced ROS production Zhou et al., 2019

Au NCs/Ho-GO nanosheets Gram-negative bacteria;

Gram-positive bacteria

Synergistic effect; bacterial membrane disruption; ROS

production; induced metabolic imbalance; physical

piercing

Zheng K. et al., 2019

Au NCs/CS Gram-negative bacteria;

Gram-positive bacteria

Bacterial membrane disruption Girija et al., 2019

Kanamycin-loaded MSN-Au NC@Lys E. coli Increased bioavailability; prolonged drug release Alsaiari et al., 2017

Prot/MTU-Au NCs E. coli; S. aureus Synergistic effect; enhanced ROS production Zhu et al., 2019

antibacterial activities toward both gram-positive and gram-
negative bacteria. This encouraging result suggests that loading
antibiotics with Au NCs may broaden the antibacterial spectrum
of antibiotics themselves, rendering their broader antibacterial
applications. In addition, bacitracin-templated Au NCs (Wang
S. et al., 2019), cefradine-synthesized Au NCs (Khandelwal
et al., 2015), and chloramphenicol-loaded Au NCs (Liu P. et al.,
2015) have also been developed for the treatment of multidrug
resistant infections.

Antimicrobial Peptide-Au NCs Systems
Except antibiotics, antimicrobial peptide-functionalized Au NCs
have also been developed as promising therapeutic formultidrug-
resistant infections. Antimicrobial peptides are produced by
organisms to defend themselves against pathogenic bacteria
(Rajchakit and Sarojini, 2017). The common and generally
accepted mechanism of action of antimicrobial peptides is
perturbation or complete lysis of bacterial membranes relying on
their distinctive amino sequences that can insert into bacterial
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membrane (Hancock and Sahl, 2006; Hassan et al., 2012;
Hilchie et al., 2013). In a previous study, Chen et al. prepared
a ∼2.5 nm Au NCs-based antibacterial structure via etching
and co-deposition of 1-dodecanethiol (DT) and antimicrobial
peptide surfaction (SFT) on gold NPs (Figure 6A) (Chen W.
Y. et al., 2015). The as-synthesized SFT/DT-Au nanodots (NDs,
∼2.5 nm) show significant antibacterial behavior and their

antibacterial activities are highly dependent on the density of
SFT on NDs. Relative to SFT alone, the antibacterial hybrid
exhibit stronger antibacterial activity to multidrug-resistant
bacteria (Figure 6B). The total antibacterial activity is mainly
attributed to the synergistic effect of SFT and NDs on the
disruption of the bacterial cell membrane. In our recent study,
we developed an effective antibacterial hybrid (Dap-Au NCs)

FIGURE 6 | (A) Synthesis of photoluminescent SFT/DT-Au NDs. (B) Comparison of MICs (in terms of the concentration of SFT) of SFT, SFT0.05/DT-Au NDs,

SFT0.1/DT-Au NDs, SFT0.25/DT-Au NDs, SFT0.5/DT-Au NDs, and SFT1.0/DT-Au NDs against E. coli, P. vulgaris, MRSA, S. aureus, and Salmonella enterica, respectively.

Error bars represent the standard deviation of three repeated measurements. Reproduced from citetbib9 with permission from Wiley-VCH Verlag & Co. KGaA,

Weinheim.

FIGURE 7 | (A) Schematic illustrations of the conjugation strategy for antibacterial Au NCs and Dap, conjugation-induced aggregation-induced emission

enhancement, and antibacterial synergistic effect. Reproduced from Zheng Y. et al. (2019) with permission from Elsevier Inc. (B) Schematic illustration of antimicrobial

peptide-reduced Au NCs with charge-reversal moieties for antibacterial application. Reproduced from Pranantyo et al. (2019) with permission from American

Chemical Society.
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by incorporating antimicrobial peptide (daptomycin, Dap) and
antibacterial Au NCs (Zheng et al., 2018c; Zheng Y. et al.,
2019). The antibacterial hybrid could high-efficiently damage
bacterial cell membrane because Dap moiety may induce the
creation of holes on the cell membranes, and motivate the
entry of Dap-Au NCs inside bacteria and even lead to serious
DNA destruction (Figure 7A). In addition, Dap-Au NCs can
also promote the generation of free radicals such as ROS
within bacteria, which may also limit the evolution of drug
resistance in bacteria. In another work, cysteine-terminated
antimicrobial peptide was employed as a reducing ligand to
prepare Au NCs (Pranantyo et al., 2019). The citraconyl
amide on the surface of Au NCs could auto-cleave to re-
expose the cationic amine at low pH. As a result, the NCs
are stable and non-cytotoxic under physiological conditions,
but can switch into a cationic bactericidal mode in an acidic
environment that is commonly encountered at bacterial infection
areas (Figure 7B).

Small Molecule-Au NCs Systems
Compared with passive drug carriers, non-antibiotic small
molecule-functionalized AuNCs can directly obtain antibacterial
ability through precise size and surface chemistry regulations,
which showed great potential as an alternative for commercial
antibiotics. In a pioneering work, Zheng et al. demonstrated
that ultasmall Au NCs (<2 nm) may own antibacterial
activity that not observed for large-sized Au NPs with same
ligands (Zheng K. et al., 2017). The synthesized atomic
precision 6-mercaptohexanoic acid (MHA)-templated Au
NCs (Au25MHA18) showed a wide-spectrum antibacterial
activity and exhibited interactions with both gram-negative
and gram-positive bacteria to induce intracellular metabolic
disorders after the internalization of Au25MHA18, and result
in an increase of intracellular ROS generation that killed
bacteria consequently (Figure 8A). However, the large-sized
MHA-Au NPs (∼6 nm) cannot induce ROS generation and
therefore did not possess antibacterial capability. Indeed, the

FIGURE 8 | (A) Schematic illustration of the size regulation of Au NPs to significantly affect their antibacterial properties. Reproduced from Zheng K. et al. (2017) with

permission from American Chemical Society. (B) Antibacterial activities of mercaptopyrimidine-conjugated Au NCs indicated with MIC (µg/mL). Here DAMPAu(I) is the

precursor complex during the synthesis of Au NCs. Reproduced from Zheng et al. (2018c) with permission from American Chemical Society. (C) Surface ligand

chemistry of gold nanoclusters determines their antimicrobial ability. Reproduced from Zheng et al. (2018a) with permission from American Chemical Society.
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induction of ROS generation is the dominant antibacterial
mechanism of action of Au NCs (Chang et al., 2019).
Similar circumstances have been witnessed in our recent
work. We demonstrated that mercaptopyrimidine analogs
templated Au NCs can serve as potent nanoantibiotics for
ESKAPE superbugs (Zheng et al., 2018c). Mercaptopyrimidine
analogs, including 4,6-dihydroxyl-2-mercaptopyrimidine
(DHMP), 4-amino-6-hydroxyl-2-mercaptopyrimidine (AHMP),
4,6-diamino-2-mercaptopyrimidine (DAMP), and 4-amino-
2-mercaptopyrimidine (AMP), were employed as templates

and reducing agents to prepare Au NCs. Unlike large-sized
Au NPs, the as-prepared Au NCs especially AuDAMP possess
excellent antibacterial capabilities against both gram-negative
and gram-positive bacteria (Figure 8B). The Au NCs kill
ESKAPE via a combined mechanism including cell membrane
damage, DNA destruction, and ROS production. Moreover, the
induction of ROS generation in bacteria is mainly attributed
to intrinsic oxidase- and peroxidase-like catalysis by Au NCs.
In contrast, large-sized AuDAMP NPs exhibit relatively weak
antibacterial activity due to their weak enzyme mimic activity.

FIGURE 9 | QA-Au NCs combat bacteria through a multipath mechanism. (A) Scanning electron microscopy (SEM) and (B) TEM images showing the morphological

changes of S. aureus after treatment with QA-Au NCs. The administration of QA-Au NCs leads to an increase in the membrane permeability (C), a dissipation of the

membrane potential (D) and the generation of ROS (E). The intracellular ATP level (F) and F-type ATPase activity (G) of S. aureus decrease upon treatment with

increasing concentrations of QA-Au NCs. Reproduced from Xie et al. (2018) with permission from Wiley-VCH Verlag & Co. KGaA, Weinheim.
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FIGURE 10 | (A) Schematic illustration of DPAu/AMD as an image-guided nanotheranostic agent. Reproduced from Setyawati et al. (2014) with permission from

American Chemical Society. (B) A simple model representing the possible correlation between the packing density of lipid A of lipopolysaccharide and sepsis

progression in the presence of Au NCs. Reproduced from Liao et al. (2018) with permission from American Chemical Society.

Broadening the antibacterial spectrum of Au NCs by co-
functionalizing albumin and DAMP has also been reported
(Sun et al., 2019). Quaternary ammonium-functionalized
Au NCs (QA-Au NCs) have been utilized to treat bacterial
infections through the combined physicochemical mechanisms
including cell membrane disruption, ROS generation, and
disturbance of intracellular metabolic pathways (Figure 9)
(Xie et al., 2018). These NCs can specifically target and kill
antibiotic-resistant gram-positive superbugs including MRSA
and vancomycin-resistant Enterococcus. Mannose-protected Au
NCs were also found to selectively and efficiently inhibit the
proliferation of E. coli through Au NCs-induced agglutination
(Tseng et al., 2011). Furthermore, the use of antibacterial Au NCs
for biofilm inhibition of multidrug-resistant bacteria has also
been demonstrated (Boda et al., 2015).

In addition to size effects, the surface ligand chemistry of
Au NCs also profoundly affects their antibacterial properties.
In general, antibacterial agents with positive surface charges
are considered to lead higher antibacterial abilities (El Badawy
et al., 2011; Chen W. Y. et al., 2015; Le Ouay and Stellacci,
2015; Zheng et al., 2018c). However, Zheng et al. obtained the
opposite results when using Au25(SR)18 NCs (SR means thiolate
ligands) (Zheng et al., 2018a). The molecular features and the
surface properties of Au25(SR)18 NCs could be precisely tailored
at the atomic level, producing a series of Au NCs with same Au
atom numbers but different surface properties. By adjusting the
type and ratio of surface ligands on Au25(SR)18, more negatively
charged Au25(SR)18 would producemore ROS, leading to a better
bacterial killing efficiency (Figure 8C). This unexpected result
indicates the intricacies of the nano-bio interactions and may
offer some inspiration on the design of high-performance Au
NCs-based antibacterial drugs.

Macromolecule-Au NCs Systems
Macromolecules such as proteins, DNA, and dendrimers are also
commonly used as the surface ligands attached to Au NCs for
antibacterial treatments. Functionalization of macromolecules
endowed potent antibacterial therapeutic capabilities on Au

NCs. Chen et al. have prepared lysozyme-directed Au NCs
as potential antibacterial agent for multidrug-resistant bacteria,
including notorious pandrug resistant A. baumannii (Chen
et al., 2010). Setyawati et al. have used DNA nanopyramid
as the scaffold to intercalate red-emissive glutathione-capped
Au NCs and actinomycin D to form an image-guided
nanoantibiotics (DPAu/AMD) (Figure 10A) (Setyawati et al.,
2014). The nanotheranostic agents of DPAu/AMD show a
significant antibacterial efficiency and have been applied for the
simultaneous diagnosis and treatment of E. coli and S. aureus
infections. Furthermore, Liao and coworkers have constructed
dendrimer-capped Au NCs that can effectively retard endotoxin
activity to protect against sepsis (Liao et al., 2018). The retardant
consists of an Au NC that acts as a flake-like substrate and
a coating of short alkyl motifs that serve as an adhesive to
dock with lipopolysaccharide by compacting the intramolecular
hydrocarbon chain-chain distance of lipid A, which is an
endotoxicity active site that can cause overwhelming cytokine
induction resulting in sepsis progression (Figure 10B). The
treatment of the antiendotoxin Au NCs prominently extended
the survival time in lipopolysaccharide-induced septicemic
mouse. This work might present a potential treatment for the
early prophylaxis of septicemia. In addition, a photodynamic
antibacterial treatment strategy based on Au NCs has also been
developed through photosensitizer conjugated BSA-capped Au
NCs (Khlebtsov et al., 2015).

Au NCs-Containing Combination Systems
In order to improve the antibacterial performances, antibacterial
composites based on Au NCs have also been developed
as nanoantibiotics. For instance, Zheng et al. established a
synergistic antibacterial agent through assembly of paramagnetic
Ho ions and Au NCs onto graphene oxide (GO) nanosheets
(Zheng K. et al., 2019). GO is a new type of antibiotic substance
combined with multiple mechanisms, and its rich functional
groups enable the functionalization of nanomaterials to further
ameliorate antimicrobial performances (Ji et al., 2016; Xia
et al., 2019). The assembled nanostructures could be effectively
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FIGURE 11 | (A) Schematic representation of the formation of AuNCs/CS nanoaggregates. (B) The viability of E. coli and S. aureus post treatment with

nanoaggregates. Reproduced from Girija et al. (2019) with permission from Wiley-VCH Verlag & Co. KGaA, Weinheim.

piercing the bacteria. Meanwhile, the decorated Au NCs
could efficiently induce bacteria to generate high-concentration
ROS, severely interfere with bacterial metabolism, leading to
the death of multidrug-resistant bacteria. TiO2/graphene/Au
NC nanocomposites were also developed to ameliorate the
antimicrobial capability of Au NCs under sunlight (Zhou et al.,
2019). Conjugation of graphene and Au NCs into TiO2 NPs can
dramatically improve the solar energy utilization efficiency and
increase ROS levels, resulting in enhanced antibacterial activity.
Alsaiari et al. designed and fabricated an intelligent antimicrobial
mixed-matrix membrane coating comprising lysozyme-Au NCs
and kanamycin as nanofillers (Alsaiari et al., 2017). The
mixed-matrix coating can successfully treat healthcare-associated
infections. In another study, protamine (Prot) functionalized
Au NCs (Prot-Au NCs) with a highly stable ability to load
positively charged antibacterial agents were developed, which
may penetrate into the bacteria, thereby enhancing the ability to
treat bacterial infections (Zhu et al., 2019). In addition, chitosan
(CS)-induced antibacterial Au NCs nanoaggregates have also
been found to significantly enhance antibacterial activity and
facilitate rapid wound healing compared with their individual
components (Figure 11) (Girija et al., 2019). Indeed, it appears
that aggregation of nanomaterials can significantly improve
their physicochemical properties and subsequently affect their
therapeutic effects (Goswami et al., 2016; Qin et al., 2019).
These investigations provide new options for improving the
antibacterial properties of Au NCs.

As a kind of innovative antibacterial nanomedicine, Au
NCs have very attractive prospects in dealing with increasingly
severe multidrug resistant infections. However, considering
that the research of Au NCs as an antibacterial agent is in
its infancy, there still remain several problems to be solved.

Firstly, the synthesis of Au NCs with antibacterial activity at
atomic precision is still a major challenge. Although the current
research found that reducing the size of Au nanomaterials
can make them have antibacterial capabilities, the structure
of Au NCs is still not unique, which is a major obstacle
to understanding the accurate antibacterial mechanism of
Au NCs. Therefore, it is imperative to synthesize water-
soluble Au NCs with a confirmed structure for the evaluation
of antibacterial activity. Second, the general antibacterial
mechanisms of Au NCs need further investigation. Although
various mechanisms are proposed to explain the antibacterial
property of Au NCs up to now, the metabolisms of Au NCs
in bacterial cells are still needed for in-depth understanding
their antibacterial activity by both experimental and theoretical
studies. In addition, the possible development of bacterial
resistance to Au NCs needs to be concerned. Although
no reports of bacterial resistance to Au NCs have been
reported, bacteria resistant to antibacterial Ag NPs have emerged
(Panácek et al., 2018). Therefore, it is necessary to study the
development of bacteria resistance to antibacterial Au NCs
in a longer period by using genome-wide analysis. Finally,
the biological safety of antibacterial Au NCs on animals,
especially the effect on intestinal flora needs further exploration
(Li J. et al., 2019; Wang L. et al., 2019).

CONCLUSIONS

In summary, we have attempted to present a review of
the recent efforts on Au NCs from the multipath bacterial
diagnostics and treatment. Due to the unique physicochemical
properties, excellent biocompatibility, as well as advantages
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of easy surface functionalization of Au NCs, the recent
mushrooming in fabrication and modification of Au NCs
has empowered the exploitation of these nanomaterials for
applications in selective detection of bacteria and infection
treatment. In terms of bacterial detection, label-free detection
strategies, specific molecular recognition strategies, and sensor
arrays based on gold nanoclusters, have been established.
In terms of bacterial infection treatment, Au NCs-based
different antibacterial systems, including antibiotic-Au NCs
systems, antimicrobial peptide-Au NCs systems, small molecule-
Au NCs systems, macromolecule-Au NCs systems, and Au
NCs-containing combination systems have been used for the
treatment of multidrug-resistant bacterial infections. These
studies reveal that ultrasmall Au NCs can offer promising
opportunity in biomedicine to promote the mushrooming in this
field. With the continuing development to unravel the structure-
function relationships, we believe that the ultrasmall Au NCs will

eventually serve as an important platform for bacterial detection
and infection treatment.
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