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Abstract: Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional
and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF,
was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension
test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-
induced model of depression. In the present study, we evaluated the effect of chronic per os
administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was
observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing
UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In
addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were
found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore,
prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in
the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain
structures of mice subjected to UCMS procedure. In summary, the present data show that chronic
GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress
model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.

Keywords: BDNF; dipeptide mimetics; TrkB signaling; antidepressant; unpredictable chronic
mild stress

1. Introduction

Major depressive disorder, commonly referred to as clinical depression, is a severe
mental chronic disease that has a high prevalence in almost all developed countries, with
more than 280 million people affected worldwide (approximately 4.4% of the population),
and is expected to become the leading cause of disease burden by 2030 [1]. Complicated
etiology of depression involves large number of factors including stressful life events,
genetic risk, and type of personality response to the adverse life experiences [2]. Multiple
basic and clinical studies proposed that combination of those factors causes disturbances
within mesocorticolimbic circuits (nucleus accumbens, prefrontal cortex and hippocam-
pus), thus contributing to the pathophysiology and the core symptoms of depression [3].
Indeed, magnetic resonance imaging (MRI) revealed smaller volumes of hippocampus,
the inferior anterior cingulate, and the orbital prefrontal cortex in patients suffering from
depression that are consistent with the post-mortem studies and the data on animal models
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of depression-like behavior [4]. Lower volume of hippocampal and prefrontal cortex found
in the subjects with depression are believed to be related to the neuronal atrophy through
an increase in the apoptosis-associated DNA fragmentation and necrotic neuron death, as
well as with alterations of synaptic reorganization proteins and, predominantly, with the
reactive astrogliosis in the distinct hippocampal regions [5].

Although the neurobiology of depression is still not clearly understood, the monoamine-
based, the glucocorticoid-dependent, the glutamate-driven, the neurotrophin signaling
deficiency, the neuroinflammatory, the impaired brain circuit and networks hypotheses
have been proposed [6–10]. To date, clinically active antidepressants target primarily the
monoamine systems in the brain, inhibiting the reuptake of monoamines (selective sero-
tonin or/and noradrenaline and dopamine reuptake inhibitors, tricyclic antidepressants),
decreasing their degradation rate (inhibitors of monoamine oxidase), or acting on receptors
(noradrenergic antagonist-specific serotonin antagonist, serotonin modulating antidepres-
sants) [11]. However, the long onset time for antidepressants effects (several weeks to
months), a significant number of patients that do not respond to typical antidepressants and
a broad range of side effects significantly limit the efficacy of treatment [12]. Experimental
studies have reported that the delayed onset of antidepressants action is associated with
a slowly developed increase and rearrangements of synaptic strength in the depression-
related circuits, requiring changes in the gene expression and protein translation that are
dependent, to some extent, on the engagement of BDNF/TrkB pathways [13,14]. Numerous
basic research findings confirm that typical antidepressants increase the BDNF mRNA and
protein expression as well as the TrkB activation in the hippocampus and the cortex [3,7,15],
thus promoting the structural plastic changes associated with the antidepressant action
mechanisms [8,16,17]. Moreover, conventional antidepressants have been shown to rapidly
increase the phosphorylation of Tyr706/707 at the TrkB catalytic domain and the phospho-
lipase Cγ-binding site (Tyr816), while leaving the phosphorylation of the Shc-interaction
site Tyr515 unaffected [18–20]. A rapidly developing and sustained antidepressant effect
of ketamine which depends on the NMDA receptors inhibition, leads to the activation
of mTORC1 complex followed by an increase in the translation and release of BDNF, an
enhancement of BDNF/TrkB signaling, and a subsequent activation of the related cellular
plasticity cascades [21]. Casarotto and colleagues have recently reported that structurally
unrelated antidepressants (fluoxetine, imipramine, moclobemide, ketamine, esketamine,
R,R-HNK) directly bind to transmembrane region of dimerized TrkB and potentiate the
receptor activation by BDNF [22]. Overall, a number of previous observations as well
as some more recent evidence emphasize the significance of TrkB as a valuable target
for antidepressants [23,24] and reaffirm the critical role of BDNF/TrkB signaling in the
pathophysiology of depression and in antidepressants action [7,25,26].

The given data indicate the importance of BDNF/TrkB pathway for depression, lead-
ing to several proposed approaches aiming to restore or enhance neurotrophin signaling,
such as: a local delivery of neurotrophin by engineered cells or viral vectors; an increase
of BDNF levels and the neurotrophin effects; a regulation of TrkB receptor synthesis and
dimerization; an indirect Trk receptors activation via transactivation mechanisms; a mod-
ulation of individual steps in the desired signal transduction pathway; an interaction
with TrkB receptor (e.g., small peptide and non-peptide compounds for TrkB); a func-
tional mimicry [23,27–29]. Although the intracerebral administration of BDNF produced
an antidepressant-like effect in animal models of depression [30,31], clinical use of neu-
rotrophin is limited, mainly due to its suboptimal pharmacokinetic properties and side
effects. One of the ways to overcome these factors is to augment BDNF/TrkB pathway with
small molecules that could function as TrkB ligands or enhance neurotrophin signaling [27].
Several low-molecular-weight peptide and non-peptide compounds with favorable phar-
macokinetic profiles acting on the BDNF/TrkB pathway and exerting antidepressant prop-
erties in various depression-like animal behavioral models have been developed to date.
The best characterized and well-studied examples are the 7,8-dihydroxyflavone [32,33]
and its synthetic derivative [34], the low-molecular weight TrkB antagonist with anxiolytic
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and antidepressant activity ANA-12 [35], and the low molecular weight BDNF mimetic
GSB-106 [36].

A crystallographic analysis, on par with mutagenesis studies and gain-of-function
approaches based on chimeric recombination of BDNF protein, allowed to propose the
amino acid residues, implicated in neurotrophin interaction with TrkB. In particular,
residues 91–97 of the 4th loop of BDNF (Thr91-Met92-Asp93-Ser94-Lys95-Lys96-Arg97)
have been recognized as one of the sites for neurotrophin/TrkB complex formation (re-
viewed in [37,38]). Orally available homodimeric dipeptide GSB-106 (bis-(N-monosuccinyl-
L-seryl-L-lysine) hexamethylenediamide; Figure 1), which resembles the part of BDNF loop
4, has been recently developed at the Zakusov Institute of Pharmacology [36]. Namely,
GSB-106 has been designed based on the BDNF loop 4 β-turn amino acid sequence -Asp93-
Ser94-Lys95-Lys96-, where the putative TrkB-binding residues -Ser94-Lys95- were retained,
the upstream residue -Asp93- was replaced by its bioisostere, a succinic acid residue, and
-Lys96- was substituted by the amide group; C-terminal dimerization was performed using
oligomethylenediamine spacer [36,39]. The compound has been shown to exert a trophic
effect, up-regulate the TrkB phosphorylation and downstream PI3K/Akt, MAPK/Erk and
PLCγ signaling pathways in vitro [40,41]. Furthermore, GSB-106 has been found to act
as a partial TrkB receptor agonist, promoting protection of serum-deprived neuronal-like
cells by counteracting cell apoptosis through the activation of TrkB-dependent pro-survival
mechanisms, including inactivation of pro-apoptotic BAD protein and suppression of cas-
pases 9 and 3/7 [42]. Behavioral studies revealed the substantial antidepressant-like activity
of GSB-106. Particularly, GSB-106, administered to rodents either orally or intraperitoneally,
under acute, subchronical or chronical conditions demonstrated an antidepressant-like
activity in the Porsolt test, a tail suspension test and the Nomura water wheel test, as well
as in the chronic social defeat stress model and in the inflammation-induced model of
depression [36,43–46].
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Figure 1. Chemical structure of GSB-106.

Generally, a panel of rodent tests and models is used to evaluate the potential an-
tidepressant effect of the compounds. Based on its close resemblance to certain human
depressive symptoms, unpredictable chronic mild stress (UCMS) is considered as one of
the most translationally-relevant and valuable models for studying the pathophysiology
of depression and the efficacy of antidepressants in animals [47]. It has been observed
that rats and mice subjected to UCMS demonstrate anhedonia in a sucrose preference
test and depression-like scores in the tests of learned helplessness such as the Porsolt
test [48–50], while antidepressants eliminate those manifestations [51,52]. Most studies
usually raise the question of drug efficacy in the settings of the developed behavioral
abnormalities, and the course of potential antidepressants is initiated after several weeks
of ongoing stress stimuli [53]. It has been widely shown that chronic stress-induced be-
havioral changes are associated with neuronal atrophy and reduced levels of BDNF and
phosphorylated/activated TrkB in the prefrontal cortex and the hippocampus in rodents,
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while almost all antidepressants can restore BDNF level and activate TrkB receptors in
rodent chronic stress models (reviewed in [7]).

The purpose of this study is to examine the potential antidepressant-like effects of
GSB-106 as demonstrated by an UCMS model of depression in Balb/c mice and to evaluate
whether this effect is mediated through amelioration of BDNF/TrkB signaling.

2. Results
2.1. Effect of Chronic GSB-106 Administration on Depressive-like Responses in the Porsolt Test

The GSB-106 compound administered to mice for 14 days in parallel with ongoing
UCMS (Figure 2a) dose-dependently contributed to a decrease in the immobilization time
in the behavioral test compared to the untreated animals (Figure 3).
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Figure 2. Schedule of unpredictable chronic mild stress experiment. Mice were exposed to UCMS for
28 days, after which, GSB-106 or vehicle were administered over (a) 14 days (14 sequential per os
treatments, 1 time per day) or (b) 26 days (26 sequential per os treatments, 1 time per day) during the
ongoing stress.
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mice in the Porsolt test. The results are presented as means ± SEM. The significance of intergroup
differences was estimated by one-way analysis of the variance (ANOVA), followed by Tukey’s
multiple comparisons test.



Int. J. Mol. Sci. 2021, 22, 13381 5 of 16

As shown in Figure 3, stressed mice exhibited a 1.4-fold increase (F = 12.83; p = 0.001)
in immobilization time compared to non-stressed animals in the Porsolt test. A higher
dose (1 mg/kg, per os) of GSB-106 attenuated depressive-like responses in mice by
1.2 (F = 12.83; p = 0.05) times compared to stressed mice treated with vehicle. Amitripty-
line (10 mg/kg, per os) reduced the dysphoric behavior of stressed animals by 1.5 times
(F = 12.83; p = 0.0001) compared to the control stressed mice. Thus, the preliminary stage of
assessing the behavioral effects of substances in UCMS model indicated a dose-dependent
anti-dysphoric effect of GSB-106.

After the effective dose (1 mg/kg) was determined, antidepressant-like activity and
underlying mechanisms of GSB-106 were evaluated upon the prolonged use of the com-
pound (26 administrations versus 14) (Figure 2b). As follows from the results of the
behavioral assessment GSB-106 effects in Porsolt test (Figure 4), GSB-106 caused a 1.3-fold
decrease in the immobilization periods compared to the vehicle (F = 34.58; p = 0.0499) in the
absence of UCMS. In the vehicle-treated mice group subjected to UCMS a 1.2 folds increase
in immobilization duration was registered (F = 34.58; p = 0.0423) compared to non-stressed
animals treated with vehicle. In mice exposed to UCMS, chronic GSB-106 treatments
decreased the immobilization periods by 2.9 folds (F = 34.58; p = 0.0001), compared to the
stressed mice treated with vehicle. Thus, the Porsolt test data indicate the anti-dysphoric
effect of GSB-106 after 26 days of oral administration in Balb/c mice. At the same time,
animals subjected to the stress procedure exhibited a deeper antidepressant effect of the
substance compared to the corresponding control.
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Figure 4. GSB-106 (1 mg/kg, 26 per os treatments) attenuates depressive-like behavior of mice
in the Porsolt test. The results are presented as means ± SEM. The significance of intergroup
differences was estimated by one-way analysis of the variance (ANOVA), followed by Tukey’s
multiple comparisons test.

2.2. Effects of Chronic GSB-106 Administration on BDNF Content and TrkB Site-Specific
Phosphorylation in the Prefrontal Cortex and the Hippocampus of Mice

To examine the protein level of BDNF and TrkB site-specific phosphorylation
(pTyr706/707, pTyr515, pTyr816) in the different brain regions following UCMS and GSB-106
treatment a Western blotting was performed. Figure 5a shows that BDNF levels signifi-
cantly decreased in the prefrontal cortex and the hippocampus (F = 18.5; p = 0.001 and
F = 27.06; p = 0.001 respectively) of mice exposed to UCMS, compared to the control non-
stressed animals, which is consistent with the previous data [54,55]. A chronic treatment
with GSB-106 (1 mg/kg, per os, 26 days) during ongoing UCMS procedure restored UCMS-
induced BDNF decrease in both brain structures (Fcortex = 18.5; p = 0.001 and Fhip = 27.06;
p = 0.001) compared to that of the vehicle-treated UCMS mice. However, the administration
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of GSB-106 to animals that were not exposed to UCMS had no effect on BDNF content in
these brain regions (Fcortex = 18.5; p = 0.98 and Fhip = 27.06; p = 0.07).
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Figure 5. The effect of GSB-106 on the BDNF content and the site-specific phosphorylation of TrkB receptor in the prefrontal
cortex and the hippocampus of mice subjected to UCMS. (a) BDNF, (b) pTrkB(Tyr706/707), (c) pTrkB(Tyr816), (d) pTrkB(Tyr515)
proteins expression in mice prefrontal cortex and hippocampus. After the completion of UCMS procedure and the compound
treatment, mice were decapitated and brain structures were collected. Protein extracts were subjected to polyacrylamide
gel electrophoresis and transferred for Western blotting. Blots were probed with anti-BDNF, anti-phosphorylated TrkB
antibodies and then reprobed with anti-TrkB antibody, anti-a-tubulin antibodies. For every picture, representative images
for immunoblots are shown on the top panels, and quantitative data are shown on the bottom panels (red dots on the graphs
correspond to mice 4, 8, 10 and 15; dark dots are all mice samples in the group). All data are expressed as mean ± SEM
(n = 3; the significance of intergroup differences was estimated by one-way analysis of the variance (ANOVA), followed by
Tukey’s multiple comparisons test).

Abundant evidence indicates that action mechanisms of pharmacologically diverse
antidepressants implicate a phosphorylation and an activation/transactivation of the TrkB
receptors in the brain regions is associated with the depression-like behavior [24]. Our
next step was to perform immunoblotting with antibodies to specific phospho tyrosines of
TrkB was performed in the prefrontal cortex and the hippocampus of chronically stressed
mice treated with GSB-106. Figure 5b shows that 4-weeks of UCMS exposure did not
alter Tyr706/707 phosphorylation in both structures (Fcortex = 8.26; p = 0.98; Fhip = 8.37;
p = 0.89). Prolonged GSB-106 administration to UCMS subjected mice caused an increase
in the pTrkB706/707 content in the prefrontal cortex (F = 8.26; p = 0.05) compared to UCMS
animals, while the effect of GSB-106 on pTrkB706/707 level in both brain structures of non-
stressed animals appeared to be statistically insignificant (Fcortex = 8.26; p = 0.65; Fhip = 8.37;
p = 0.15).
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As follows from the data presented in Figure 5c, a decrease in the pTrkB816 level
was observed in the prefrontal cortex (F = 15.31; p = 0.0001) and in the hippocampus
(F = 12.65; p = 0.0001) of UCMS mice compared to unstressed animals. Notably, data
on TrkB816 phosphorylation in the prefrontal cortex of stressed animals shows bimodal
distribution. However, none of the available data sets, other than those indicated, appear
to be mathematically bimodal. At the same time, all our data pass the normality test
(D’Agostino & Pearson normality test, Shapiro-Wilk normality test). Conceivably, the
bimodal distribution of pTrkB816 values might reflect the individual variability in response
to GSB-106 treatment in the cohort of participating animals.

Administration of GSB-106 for 26 days along with a continued stress procedure
promoted a rise of TrkB phosphorylation at Tyr816 site in the prefrontal cortex (F = 15.31;
p =0.0001) and in the hippocampus (F = 12.65; p = 0.0001) compared with control UCMS
mice. Notably, in the absence of stress, GSB-106 caused a reduction of pTrkB816 in the
prefrontal cortex (F = 15.31; p = 0.05), whereas in the hippocampus there was a non-
significant trend for decreased TrkB phosphorylation at that tyrosine residue (F = 12.65;
p = 0.09). We also found that UCMS produced a decrease in TrkB phosphorylation at Tyr515

site in the prefrontal cortex and the hippocampus (F = 8.92; p = 0.0006 and F = 4.4; p = 0.05,
respectively) relative to control (Figure 5d). Further, we observed a decline of pTrkB515

in both structures (Fcortex = 8.92; p = 0.0015 and Fhip = 4.4; p = 0.045) of non-stressed mice
after chronic GSB-106 treatment. However, no changes in pTrkB515 values were established
in the prefrontal cortex and in the hippocampus of UCMS mice chronically treated with
GSB-106 (Fcortex = 8.92; p = 0.059 and Fhip = 4.4; p = 0.11).

3. Discussion

The presented results for the first time show that prolonged per os GSB-106 adminis-
tration (1 mg/kg, 26 days) produced an antidepressant-like behavioral response during
an ongoing stress exposure in UCMS-treated Balb/c mice, as evaluated by the Porsolt test.
Furthermore, GSB-106 restored a decrease in BDNF level induced by the UCMS procedure
in the prefrontal cortex and in the hippocampus. Additionally, chronic administration of
GSB-106 resulted in a TrkB activation (as estimated by phosphorylation of neurotrophin
receptor at TyrY706/707 site) in the prefrontal cortex and induced a pronounced increase of
TrkBY816 phosphorylation in the prefrontal cortex and the hippocampus of UCMS subjected
mice. Overall, these results indicate that GSB-106 exhibits an obvious antidepressant-like ef-
fect in a mouse model of UCMS-induced depression that was mediated, at least partially, by
an increase in BDNF level and site-selective phosphorylation of TrkBY706/707 and TrkBY816.

Two experimental design modifications were used to evaluate behavioral effects of
GSB-106 on chronic stress. Initially, mice were exposed to stressful context for 42 days
and 14 administrations of GSB-106 were carried out; then mice were subjected to a more
prolonged stress procedure (54 days) and more GSB-106 treatments (26) were delivered.
However, both experiments had one fundamental point in common, namely, they initially
formed dysphoria-like chronic stress-induced behavior followed by treatment. Most studies
utilizing this model of chronic stress have a similar design, where once the long-lasting
stressful conditions are discontinued, recovery processes are likely to develop. In the
present study, a 1 mg/kg dose of GSB-106 attenuated the depression-like responses of mice
by 2.9 times following a 26-days treatment and by 1.2 times following a 14-days course,
compared to the corresponding controls.

It is well known that long-term exposure to stress, as well as other conditions that
contribute to the depressive-like behavior in animals, is accompanied by a BDNF expression
decrease in the prefrontal cortex and in the hippocampus, while an increase in the level of
neurotrophin has been observed in the nucleus accumbens [56,57]. In particular, numerous
studies reported a decrease in the BDNF mRNA or protein levels, as well as an attenuation
of TrkB receptor activity (detected by the level of phosphorylation of tyrosine residues at
Tyr706/707) and a decrease of Tyr515 and Tyr816 phosphorylation in the prefrontal cortex and
hippocampus of rodents subjected to UCMS, that is consistent with the depression-like
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behavior [23,55,58]. In our study, a decrease of BDNF protein level both in the prefrontal
cortex and the hippocampus in UCMS-induced depressed mice was found. Furthermore, a
reduction of pTrkB515 and pTrkB816 content in the prefrontal cortex and the hippocampus
of UCMS-treated mice was also revealed, while no changes in TrkB706/707 phosphorylation
were observed in both brain structures of UCMS mice, generally indicating the alleviation
of TrkB-dependent signaling in vulnerable brain regions of stressed animals. Overall, our
behavioral and western-blot findings have demonstrated that UCMS produces depression-
like symptoms (dysphoria), which are accompanied by the alterations of BDNF content
and TrkB phosphorylation at specific tyrosine residues in the limbic brain structures, which
are similar to those evidenced elsewhere. Importantly, the present study revealed that
continuous UCMS procedure concomitantly with long-term per os GSB-106 treatment
resulted in a BDNF content increase in the prefrontal cortex and the hippocampus and
induction of site-specific phosphorylation of the TrkB receptor—at Tyr706/707 and Tyr816

sites, but not at Tyr515 site, in this way mimicking the pattern attributed for most of the
conventional antidepressants. We consider that an increase in TrkB706/707 phosphorylation
in the prefrontal cortex of stressed animals upon GSB-106 treatment might be a consequence
of increased BDNF content, evoked by GSB-106, although it is quite difficult to determine
the exact cause-and-effect relationships under the conditions of in vivo experiment with
the multiple crosstalk and feedback loop mechanisms all of which suggest that this point
requires additional investigations. Obtained data indicate the ability of GSB-106 to reverse
depressive-like behavior. Simultaneously, GSB-106 normalizes the BDNF content, reduced
due to a prolonged UCMS in animals, as well as the site-specific phosphorylation of
TrkB receptor.

It has been experimentally established that the development of a depressive phenotype
in UCMS is based on the elevated functionality of the hypothalamus-pituitary-adrenal
(HPA) axis and its effects on the feedback systems of the limbic structures [59,60].

When a stressful event occurs, an activation of the HPA axis leads to the release of
glucocorticoids and triggers a feedback mechanism, the main contributors of which are
the hippocampus and the prefrontal cortex. As a result, the effects of stress are limited in
time and the mechanism for restoring homeostasis and behavior is triggered. Prolonged
activation of the HPA axis under chronic stress causes prolonged release of glucocorticoids
which are toxic both for the hippocampus and the frontal cortex which leads to a decrease
in the BDNF content [61,62], depletion of synaptic connections [63] and their morphological
decrease develop [63,64].

In contrast to the hippocampus and the prefrontal cortex, the amygdala provides
positive feedback to the HPA axis. Prolonged UCMS with the loss of hippocampal inhibition
over the HPA axis increases activity in the amygdala. UCMS has been found to cause an
increased coherence of activity in the amygdala [65], along with an increase in the dendrites’
length, the density of dendritic spines [66–68], and synaptic proteins [66]. The chronic
stress activation causes a decrease in the activity of the mesolimbic dopamine system,
which may lead to the development of anhedonia as a result of stress which could be a
target of antidepressant effect [69].

It is widely believed that chronic antidepressant treatment causes an increase in the
synthesis or release of BDNF, activation of TrkB receptors and related signal transduc-
tion pathways, triggers up-regulation of genes associated with BDNF-induced plastic-
ity [7,24,70,71]. Duman and co-workers were the first, who have demonstrated the stimu-
lating effect of chronic (21 days), but not acute tranylcypromine, sertraline, desipramine,
mianserin treatment on the BDNF and TrkB mRNA expression in rat hippocampus [15].
Then, multiple studies supported the positive effect of prolonged antidepressant courses
on the BDNF mRNA expression and their ability to prevent/abolish a decrease in BDNF
protein level caused by a chronic stress paradigm in vivo [72–77].

Saarlainen et al. [18], Rantamaki et al. [19,20] have demonstrated that, unlike BDNF,
which requires prolonged administration of antidepressants to get a level increase, acti-
vation of the TrkB receptor in the cortex and hippocampus can occur upon even acute
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drug treatment. Particularly, antidepressant-induced TrkB706/707 phosphorylation takes
place within 30 min after a single dose, whereas no changes were detected at TrkB515

residue (Shc binding site) either under acute or chronic administration. Furthermore,
an increase in Tyr706/707 phosphorylation was observed after sustained (21 days) antide-
pressant treatment as well [18]. However, phosphorylation at Tyr816 residue in the mice
hippocampus was detected 1 h after acute administration of fluoxetine, riboxetine, citalo-
pram, imipramine; a similar effect on the phosphorylation of Tyr816 was also established
upon long-term administration (21 days) of fluoxetine [19]. Altogether, multiple comple-
mentary findings obtained to date, indicate that both acute and chronic courses of most
clinically used antidepressants could induce the kinase activity of the receptor (increased
phosphorylation at Tyr706/707), followed by an increase in Tyr816 (binding site for PLC-γ1).
Notably, through preferential activation of TrkB-PLC-γ1-CREB-mediated signaling, antide-
pressants have been found to raise the level of synaptic plasticity in critical neural circuits
to the degree required for relieving depressive symptoms, pointing out the significance
of PLC-γ1/IP3/Ca2+ pathway for antidepressants response [78–80]. Our results on the
tyrosine-specific phosphorylation of TrkB (Tyr706/707 and Tyr816 sites, but not at Tyr515)
in the brain areas implicated in depression, caused by prolonged GSB-106 treatment in
UCMS-exposed mice, are in line with the data observed on typical antidepressants, which
provide TrkB-Tyr816/PLC-γ1 specific effects [18,19]. As was already mentioned, detailed
animal studies revealed the substantial antidepressant-like activity of GSB-106 both in
various tests (Porsolt, tail suspension, Nomura water wheel tests) and in animal depression
models (chronic social defeat stress, LPS-induced anhedonia) [43–46]. Remarkably, it was
clearly demonstrated that antidepressant-like properties of GSB-106 (acute, i.p.) depend on
TrkB receptor activation and the PLC-γ1 signaling pathway in the Porsolt test in mice, as
it was evident from the experiments with TrkB and PLC-γ1 inhibitors. GSB-106 (21 days,
per os) has been shown to restore the reduced levels of synaptophysin and CREB in the
hippocampus of C57BL/6 mice subjected to the 28-days chronic social defeat stress [45].

To our knowledge, this is the first report showing a site-selective phosphorylation
of TrkB, elicited by small peptide or non-peptide BDNF analogs with antidepressant
effects in the robust behavioral model of depression. Currently, several compounds with
antidepressant properties were identified as putative ligands of the TrkB receptor, such
as 7,8-dihydroxyflavone (TrkB agonist), ANA-12 (TrkB antagonist) and tetraterpenoid
deoxygedunin. Zhang et al. demonstrated that chronic 7,8-dihydroxyflavone (28 days,
i.p.) treatment induce antidepressant-like effect in mouse chronic mild stress model,
accompanied by a restoration of BDNF level, TrkB phosphorylation at Tyr706/707 residue, a
recovery of the synaptic proteins PSD95 and synaptophysin levels in the prefrontal cortex
in CMS-subjected animals [33]. The antidepressant properties of 7,8-dihydroxyflavone
and ANA-12 as well as their ability to increase BDNF and pTrkB-Tyr706/707 levels have
also been demonstrated in a social defeat stress model and LPS-stimulated depressive-like
behavior [81,82]. Another interesting fact is that 7,8-dihydroxyflavone treatment triggered
phosphorylation of TrkBY816 but not TrkBY515 with subsequent activation of the PLC-γ1
pathway in primary striatal neurons and selectively reverted the decrease of pTyr816 but
not pTyr515 in striatum of the chronically treated R6/1 transgenic mice [83].

Although the comprehensive evidence on the engagement of BDNF/TrkB signaling
in antidepressant responses has been acquired, detailed mechanisms of this interaction
remained unresolved until recently. Casarotto and colleagues reported the direct binding of
both typical and rapid-acting antidepressants (in micromolar affinity) to the transmembrane
region of TrkB dimers that promotes translocation and the synaptic localization of TrkB
and facilitation of BDNF binding to TrkB and its activation. It is important to note that
cholesterol has been shown to potentiate the effects of antidepressants and BDNF on
TrkB signaling through the presumed impact on the conformation of TrkB dimers and
the binding site of antidepressants. Furthermore, it was revealed that fluoxetine and
ketamine increased Tyr816 phosphorylation in primary cortical neurons, whereas fluoxetine,
imipramine, ketamine, R,R-HNK enhanced TrkB interaction with PLC-γ1 [22]. To date,
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ability to directly interact with the extracellular domain of TrkB and promote receptor
dimerization was reported only for 7,8-dihydroxyflavone amongst the low-molecular
weight putative ligands of TrkB with antidepressant properties [32]. Whilst GSB-106 has
been shown to mediate its neurotrophic [40,84], neuroprotective [85,86] and antidepressant-
like [87] effects through the TrkB-dependent pathways, the mechanisms, underlying this
interplay remained rather elusive, since we have not yet explored the direct association
of GSB-106 with TrkB. What is important, GSB-106 could produce an indirect receptor
activation, implicated Src-dependent TrkB transactivation in SH-SY5Y serum-deprived
cells [42], and elucidation of this issue in animal models will provide novel knowledge
about the mechanisms of small TrkB ligands antidepressant action.

4. Materials and Methods
4.1. Animals

The experiments were conducted on 128 male Balb/c mice weighing 22–25 g (Research
Center of Biomedical Technology, Federal Medical and Biological Agency, Russia). The
animals were group-housed under standard conditions (9–12 mice per home cage), with
a 12-h dark-light cycle at a temperature of 22 ± 2 ◦C and ad libitum access to granulated
chow (MEST, Russia) and water. All experimental procedures were in compliance with
the 322 the EC Directive 86/609/EEC for animal experiments and were approved by the
bioethics committee of the FSBI “Research Zakusov Institute of Pharmacology” (protocol
No. 1 of 31 January 2021).

4.2. Substance

GSB-106 (MW 746.85; Figure 5) was synthesized as described previously [36] at
Medicinal Chemistry Department of Zakusov Institute of Pharmacology.

4.3. Experimental Design

The UCMS model was used to induce chronic stress conditions [88]. While being
maintained in a vivarium, animals were exposed to various stress factors, applied in a
quasi-random manner (wet bedding, dirty boxes, water deprivation, reduction in daylight
hours, etc.) within four weeks. Starting from day 29 stress factors application was accom-
panied by GSB-106, vehicle or amitriptyline treatment. The total duration of exposure
to moderate chronic stress was either 42 or 54 days (Figure 1). The experimental design
assumed the initiation of the treatment with the study drug after the manifestation of
depressive-like responses in animals and its constant administration during the ongoing
stress, which is usually applicable in similar experimental conditions and corresponds
to the clinical situation. The in vivo experimental design was developed in compliance
with the 3R principles. All compounds (GSB-106, amitriptyline) were dissolved in water
immediately before administration. Compounds or vehicle were administered at a volume
of 0.1 mL/10 g body weight.

The first series of behavioral experiments were focused on the ability of GSB-106
to reduce dysphoria under UCMS in comparison with the reference drug amitriptyline
(Figure 3). Experimental animals were divided into five groups: (1) vehicle, no stress
(n = 10); (2) vehicle, stress (n = 12); (3) GSB-106 (0.1 mg/kg), stress (n = 12); (4) GSB-106
(1 mg/kg), stress (n = 12); (5) amitriptyline (10 mg/kg), stress (n = 10). The experiment
started with 28 days of UCMS exposure after which, in conjunction with continuing stress,
the test substances were administered over the following 14 days (Figure 2a). Then, 60 min
after the 14th treatment with vehicle, GSB-106 or amitriptyline, mice were subjected to the
Porsolt test.

The second experimental series consisted of two parallel stages—a behavioral assay
and BDNF and pTrkB protein contents assessment (Figure 2b). Both stages began with the
UCMS simulation for 28 days; on the 29th day of stress, the administration of GSB-106 or
vehicle started (26 sequential per os treatments, 1 time per day) while stressing procedure
was continued. 60 min after the 26th injection, 37 mice were subjected to Western-blot
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analysis. The following groups were formed: (1) vehicle, no stress (n = 9); (2) GSB-106
(1 mg/kg), no stress (n = 10); (3) vehicle, stress (n = 9); (4) GSB-106 (1 mg/kg), stress (n = 9).
Behavioral tests were carried out with the animals of the second experimental cohort
under a similar schedule for the control and the experimental groups. The Porsolt test was
performed 60 min after 26th administration of the vehicle or GSB-106.

4.4. Porsolt Test

The antidepressant activity was studied in the Porsolt test in mice [89]. Cylindri-
cal transparent Plexiglas tanks (30 cm height × 10 cm diameter) were filled with water
(25 ± 1 ◦C) up to 20 cm from the bottom. On the test day mice were put individually in the
cylinders for a 6-min swim session, and from the 4th min it was video-taped marking the
duration of immobility periods. Immobility was defined as a lack of activity other than
that required from the animal to keep its head above water: tail movements and limited
limb movements.

4.5. Western-Blotting
4.5.1. Antibodies

Following primary antibodies were used in this study: rabbit polyclonal anti-BDNF
(1:1000, #ab226843, Abcam, Cambridge, UK); rabbit monoclonal anti-TrkB (1:1000, #4603,
Cell Signaling Technology, Danvers, MA, USA); anti-phospho-TrkB (Tyr706/707) (1:1000,
#4621, Cell Signaling Technology, Danvers, MA, USA); rabbit polyclonal anti-phospho-TrkB
(Tyr816) (1:1000, #NBP1-03499SS, Novus Biologicals, Centennial, CO, USA); anti-phospho-
TrkB (Tyr515) (1:1000, # PA5-36695, Thermo Fisher Scientific, Waltham, MA, USA); mouse
monoclonal anti-α-Tubulin (1:1000, #2125, Cell Signaling Technology, Danvers, MA, USA).
Secondary antibodies conjugated to HRP (used at 1:12000 dilution) were from Cell Signaling
Technology (Danvers, MA, USA) (anti-mouse IgG, #7076; anti-rabbit IgG, #7074).

4.5.2. Samples Preparation

All mice were decapitated by cervical dislocation and the brain was rapidly removed.
The hippocampus and prefrontal cortex were dissected on wet ice covered with filter paper
dampened in 0.32 M sucrose solution at a temperature of 0–4 ◦C. Each brain structure was
frozen in liquid nitrogen (−196 ◦C), weighed, and stored at −80 ◦C.

4.5.3. Protein Preparation and Western Blot Analysis

Brain samples were homogenated and lysed with RIPA buffer (10−2 M Tris-Cl (pH 8.0),
10−3 M EDTA, 5 × 10−4 M EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS,
0.14 × 10−3 M NaCl, 1 × protease inhibitor cocktail (#P8340), 1 × phosphatase inhibitor
cocktail 2 and 3 (#P5726, P0044), 10−3 M PMSF (all from Sigma-Aldrich, St. Louis, MO,
USA) using Tissue LyserLT (Quiagen, Hombrechtikon, Switzerland). Protein concentration
was determined using BCA Protein Assay Kit (#23225, Thermo Fisher Scientific, Waltham,
MA, USA). Lysates were loaded on SDS-PAGE, and separated proteins were transferred
onto the nitrocellulose membranes (#GE10600002, Sigma-Aldrich, St. Louis, MO, USA).
The membranes were blocked in 5% not-fat milk or 5% BSA in TBS-T for 60 min at room
temperature, incubated with the appropriate primary antibody (+4 ◦C, overnight) and then
with a secondary antibody conjugated with HRP (60 min at room temperature). Bands were
visualized using SignalFire Plus ECL Reagent (#12630, Cell Signaling Technology, Dan-
vers, MA, USA). Membranes were scanned using Amersham Imager 680 (GE HealthCare,
Chicago, IL, USA) and quantified in the Image Quant TL v.8.1 (GE HealthCare, Chicago,
IL, USA). Measurement of each protein was then normalized on the related α-Tubulin
loading control.

4.6. Statistical Analysis

Analysis was performed using the GraphPad Prizm 7.0 software (GraphPad, La
Jolla, CA, USA, www.graphpad.com). The normal distribution of the data was evaluated

www.graphpad.com
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using the Shapiro–Wilk test. The results are presented as means ± SEM. The significance
of intergroup differences was estimated by one-way analysis of the variance (ANOVA),
followed by Tukey’s multiple comparisons test.

5. Conclusions

Altogether, irrespective of the mode of GSB-106 interaction with the TrkB, prolonged
per os treatment with dimeric dipeptide ameliorates depressive-like behavior in UCMS-
stressed mice. Remarkably, our findings strongly suggest that an increase in BDNF in the
prefrontal cortex and hippocampus, as well as the restoration of phosphorylation at the
TrkBY706/707 (prefrontal cortex) and at the PLC-γ1 interaction site TrkBY816 (prefrontal cortex
and hippocampus) of UCMS mice might contribute to antidepressant-like mechanisms
of GSB-106.
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Abbreviations
Akt AKT serine/threonine kinase

ANA-12
N-[2-[[(Hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo
[b]thiophene-2-carboxamide

BAD BCL-2 associated agonist of cell death
BDNF Brain-derived neurotrophic factor
BSA Bovine serum albumin
CMS Chronic mild stress
CREB Cyclic AMP-responsive element-binding protein
EDTA Ethylenediaminetetraacetic acid
EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
Erk Mitogen-activated protein kinase; extracellular-signal-regulated kinase
HRP Horseradish peroxidase
IP3 Inositol 1,4,5-trisphosphate
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
mTORC1 Mammalian/mechanistic target of rapamycin complex 1
NMDA (2R)-2-(methylamino)butanedioic acid
PI3K Phosphatidylinositol 3-kinase
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PLCγ 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma
PMSF Phenylmethylsulfonyl fluoride
PSD95 Postsynaptic density protein 95
R,R-HNK (2R,6R)-hydroxynorketamine
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
TBS-T Tris-buffered saline with 0.1% Tween
TrkB BDNF/NT-3 growth factors receptor; neurotrophic receptor tyrosine kinase 2
UCMS Unpredictable chronic mild stress
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